/* * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports * Copyright (C) 2002 Matthew Dharm * * Based on the 64360 driver from: * Copyright (C) 2002 Rabeeh Khoury * Rabeeh Khoury * * Copyright (C) 2003 PMC-Sierra, Inc., * written by Manish Lachwani * * Copyright (C) 2003 Ralf Baechle * * Copyright (C) 2004-2006 MontaVista Software, Inc. * Dale Farnsworth * * Copyright (C) 2004 Steven J. Hill * * * Copyright (C) 2007-2008 Marvell Semiconductor * Lennert Buytenhek * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static char mv643xx_eth_driver_name[] = "mv643xx_eth"; static char mv643xx_eth_driver_version[] = "1.2"; #define MV643XX_ETH_CHECKSUM_OFFLOAD_TX #define MV643XX_ETH_NAPI #define MV643XX_ETH_TX_FAST_REFILL #ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1) #else #define MAX_DESCS_PER_SKB 1 #endif /* * Registers shared between all ports. */ #define PHY_ADDR 0x0000 #define SMI_REG 0x0004 #define WINDOW_BASE(w) (0x0200 + ((w) << 3)) #define WINDOW_SIZE(w) (0x0204 + ((w) << 3)) #define WINDOW_REMAP_HIGH(w) (0x0280 + ((w) << 2)) #define WINDOW_BAR_ENABLE 0x0290 #define WINDOW_PROTECT(w) (0x0294 + ((w) << 4)) /* * Per-port registers. */ #define PORT_CONFIG(p) (0x0400 + ((p) << 10)) #define UNICAST_PROMISCUOUS_MODE 0x00000001 #define PORT_CONFIG_EXT(p) (0x0404 + ((p) << 10)) #define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10)) #define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10)) #define SDMA_CONFIG(p) (0x041c + ((p) << 10)) #define PORT_SERIAL_CONTROL(p) (0x043c + ((p) << 10)) #define PORT_STATUS(p) (0x0444 + ((p) << 10)) #define TX_FIFO_EMPTY 0x00000400 #define TX_IN_PROGRESS 0x00000080 #define PORT_SPEED_MASK 0x00000030 #define PORT_SPEED_1000 0x00000010 #define PORT_SPEED_100 0x00000020 #define PORT_SPEED_10 0x00000000 #define FLOW_CONTROL_ENABLED 0x00000008 #define FULL_DUPLEX 0x00000004 #define LINK_UP 0x00000002 #define TXQ_COMMAND(p) (0x0448 + ((p) << 10)) #define TXQ_FIX_PRIO_CONF(p) (0x044c + ((p) << 10)) #define TX_BW_RATE(p) (0x0450 + ((p) << 10)) #define TX_BW_MTU(p) (0x0458 + ((p) << 10)) #define TX_BW_BURST(p) (0x045c + ((p) << 10)) #define INT_CAUSE(p) (0x0460 + ((p) << 10)) #define INT_TX_END_0 0x00080000 #define INT_TX_END 0x07f80000 #define INT_RX 0x0007fbfc #define INT_EXT 0x00000002 #define INT_CAUSE_EXT(p) (0x0464 + ((p) << 10)) #define INT_EXT_LINK 0x00100000 #define INT_EXT_PHY 0x00010000 #define INT_EXT_TX_ERROR_0 0x00000100 #define INT_EXT_TX_0 0x00000001 #define INT_EXT_TX 0x0000ffff #define INT_MASK(p) (0x0468 + ((p) << 10)) #define INT_MASK_EXT(p) (0x046c + ((p) << 10)) #define TX_FIFO_URGENT_THRESHOLD(p) (0x0474 + ((p) << 10)) #define TXQ_FIX_PRIO_CONF_MOVED(p) (0x04dc + ((p) << 10)) #define TX_BW_RATE_MOVED(p) (0x04e0 + ((p) << 10)) #define TX_BW_MTU_MOVED(p) (0x04e8 + ((p) << 10)) #define TX_BW_BURST_MOVED(p) (0x04ec + ((p) << 10)) #define RXQ_CURRENT_DESC_PTR(p, q) (0x060c + ((p) << 10) + ((q) << 4)) #define RXQ_COMMAND(p) (0x0680 + ((p) << 10)) #define TXQ_CURRENT_DESC_PTR(p, q) (0x06c0 + ((p) << 10) + ((q) << 2)) #define TXQ_BW_TOKENS(p, q) (0x0700 + ((p) << 10) + ((q) << 4)) #define TXQ_BW_CONF(p, q) (0x0704 + ((p) << 10) + ((q) << 4)) #define TXQ_BW_WRR_CONF(p, q) (0x0708 + ((p) << 10) + ((q) << 4)) #define MIB_COUNTERS(p) (0x1000 + ((p) << 7)) #define SPECIAL_MCAST_TABLE(p) (0x1400 + ((p) << 10)) #define OTHER_MCAST_TABLE(p) (0x1500 + ((p) << 10)) #define UNICAST_TABLE(p) (0x1600 + ((p) << 10)) /* * SDMA configuration register. */ #define RX_BURST_SIZE_16_64BIT (4 << 1) #define BLM_RX_NO_SWAP (1 << 4) #define BLM_TX_NO_SWAP (1 << 5) #define TX_BURST_SIZE_16_64BIT (4 << 22) #if defined(__BIG_ENDIAN) #define PORT_SDMA_CONFIG_DEFAULT_VALUE \ RX_BURST_SIZE_16_64BIT | \ TX_BURST_SIZE_16_64BIT #elif defined(__LITTLE_ENDIAN) #define PORT_SDMA_CONFIG_DEFAULT_VALUE \ RX_BURST_SIZE_16_64BIT | \ BLM_RX_NO_SWAP | \ BLM_TX_NO_SWAP | \ TX_BURST_SIZE_16_64BIT #else #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined #endif /* * Port serial control register. */ #define SET_MII_SPEED_TO_100 (1 << 24) #define SET_GMII_SPEED_TO_1000 (1 << 23) #define SET_FULL_DUPLEX_MODE (1 << 21) #define MAX_RX_PACKET_9700BYTE (5 << 17) #define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13) #define DO_NOT_FORCE_LINK_FAIL (1 << 10) #define SERIAL_PORT_CONTROL_RESERVED (1 << 9) #define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3) #define DISABLE_AUTO_NEG_FOR_DUPLEX (1 << 2) #define FORCE_LINK_PASS (1 << 1) #define SERIAL_PORT_ENABLE (1 << 0) #define DEFAULT_RX_QUEUE_SIZE 400 #define DEFAULT_TX_QUEUE_SIZE 800 /* * RX/TX descriptors. */ #if defined(__BIG_ENDIAN) struct rx_desc { u16 byte_cnt; /* Descriptor buffer byte count */ u16 buf_size; /* Buffer size */ u32 cmd_sts; /* Descriptor command status */ u32 next_desc_ptr; /* Next descriptor pointer */ u32 buf_ptr; /* Descriptor buffer pointer */ }; struct tx_desc { u16 byte_cnt; /* buffer byte count */ u16 l4i_chk; /* CPU provided TCP checksum */ u32 cmd_sts; /* Command/status field */ u32 next_desc_ptr; /* Pointer to next descriptor */ u32 buf_ptr; /* pointer to buffer for this descriptor*/ }; #elif defined(__LITTLE_ENDIAN) struct rx_desc { u32 cmd_sts; /* Descriptor command status */ u16 buf_size; /* Buffer size */ u16 byte_cnt; /* Descriptor buffer byte count */ u32 buf_ptr; /* Descriptor buffer pointer */ u32 next_desc_ptr; /* Next descriptor pointer */ }; struct tx_desc { u32 cmd_sts; /* Command/status field */ u16 l4i_chk; /* CPU provided TCP checksum */ u16 byte_cnt; /* buffer byte count */ u32 buf_ptr; /* pointer to buffer for this descriptor*/ u32 next_desc_ptr; /* Pointer to next descriptor */ }; #else #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined #endif /* RX & TX descriptor command */ #define BUFFER_OWNED_BY_DMA 0x80000000 /* RX & TX descriptor status */ #define ERROR_SUMMARY 0x00000001 /* RX descriptor status */ #define LAYER_4_CHECKSUM_OK 0x40000000 #define RX_ENABLE_INTERRUPT 0x20000000 #define RX_FIRST_DESC 0x08000000 #define RX_LAST_DESC 0x04000000 /* TX descriptor command */ #define TX_ENABLE_INTERRUPT 0x00800000 #define GEN_CRC 0x00400000 #define TX_FIRST_DESC 0x00200000 #define TX_LAST_DESC 0x00100000 #define ZERO_PADDING 0x00080000 #define GEN_IP_V4_CHECKSUM 0x00040000 #define GEN_TCP_UDP_CHECKSUM 0x00020000 #define UDP_FRAME 0x00010000 #define MAC_HDR_EXTRA_4_BYTES 0x00008000 #define MAC_HDR_EXTRA_8_BYTES 0x00000200 #define TX_IHL_SHIFT 11 /* global *******************************************************************/ struct mv643xx_eth_shared_private { /* * Ethernet controller base address. */ void __iomem *base; /* * Protects access to SMI_REG, which is shared between ports. */ spinlock_t phy_lock; /* * Per-port MBUS window access register value. */ u32 win_protect; /* * Hardware-specific parameters. */ unsigned int t_clk; int extended_rx_coal_limit; int tx_bw_control_moved; }; /* per-port *****************************************************************/ struct mib_counters { u64 good_octets_received; u32 bad_octets_received; u32 internal_mac_transmit_err; u32 good_frames_received; u32 bad_frames_received; u32 broadcast_frames_received; u32 multicast_frames_received; u32 frames_64_octets; u32 frames_65_to_127_octets; u32 frames_128_to_255_octets; u32 frames_256_to_511_octets; u32 frames_512_to_1023_octets; u32 frames_1024_to_max_octets; u64 good_octets_sent; u32 good_frames_sent; u32 excessive_collision; u32 multicast_frames_sent; u32 broadcast_frames_sent; u32 unrec_mac_control_received; u32 fc_sent; u32 good_fc_received; u32 bad_fc_received; u32 undersize_received; u32 fragments_received; u32 oversize_received; u32 jabber_received; u32 mac_receive_error; u32 bad_crc_event; u32 collision; u32 late_collision; }; struct rx_queue { int index; int rx_ring_size; int rx_desc_count; int rx_curr_desc; int rx_used_desc; struct rx_desc *rx_desc_area; dma_addr_t rx_desc_dma; int rx_desc_area_size; struct sk_buff **rx_skb; struct timer_list rx_oom; }; struct tx_queue { int index; int tx_ring_size; int tx_desc_count; int tx_curr_desc; int tx_used_desc; struct tx_desc *tx_desc_area; dma_addr_t tx_desc_dma; int tx_desc_area_size; struct sk_buff **tx_skb; }; struct mv643xx_eth_private { struct mv643xx_eth_shared_private *shared; int port_num; struct net_device *dev; struct mv643xx_eth_shared_private *shared_smi; int phy_addr; spinlock_t lock; struct mib_counters mib_counters; struct work_struct tx_timeout_task; struct mii_if_info mii; /* * RX state. */ int default_rx_ring_size; unsigned long rx_desc_sram_addr; int rx_desc_sram_size; u8 rxq_mask; int rxq_primary; struct napi_struct napi; struct rx_queue rxq[8]; /* * TX state. */ int default_tx_ring_size; unsigned long tx_desc_sram_addr; int tx_desc_sram_size; u8 txq_mask; int txq_primary; struct tx_queue txq[8]; #ifdef MV643XX_ETH_TX_FAST_REFILL int tx_clean_threshold; #endif }; /* port register accessors **************************************************/ static inline u32 rdl(struct mv643xx_eth_private *mp, int offset) { return readl(mp->shared->base + offset); } static inline void wrl(struct mv643xx_eth_private *mp, int offset, u32 data) { writel(data, mp->shared->base + offset); } /* rxq/txq helper functions *************************************************/ static struct mv643xx_eth_private *rxq_to_mp(struct rx_queue *rxq) { return container_of(rxq, struct mv643xx_eth_private, rxq[rxq->index]); } static struct mv643xx_eth_private *txq_to_mp(struct tx_queue *txq) { return container_of(txq, struct mv643xx_eth_private, txq[txq->index]); } static void rxq_enable(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); wrl(mp, RXQ_COMMAND(mp->port_num), 1 << rxq->index); } static void rxq_disable(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); u8 mask = 1 << rxq->index; wrl(mp, RXQ_COMMAND(mp->port_num), mask << 8); while (rdl(mp, RXQ_COMMAND(mp->port_num)) & mask) udelay(10); } static void txq_reset_hw_ptr(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int off = TXQ_CURRENT_DESC_PTR(mp->port_num, txq->index); u32 addr; addr = (u32)txq->tx_desc_dma; addr += txq->tx_curr_desc * sizeof(struct tx_desc); wrl(mp, off, addr); } static void txq_enable(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); wrl(mp, TXQ_COMMAND(mp->port_num), 1 << txq->index); } static void txq_disable(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); u8 mask = 1 << txq->index; wrl(mp, TXQ_COMMAND(mp->port_num), mask << 8); while (rdl(mp, TXQ_COMMAND(mp->port_num)) & mask) udelay(10); } static void __txq_maybe_wake(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); /* * netif_{stop,wake}_queue() flow control only applies to * the primary queue. */ BUG_ON(txq->index != mp->txq_primary); if (txq->tx_ring_size - txq->tx_desc_count >= MAX_DESCS_PER_SKB) netif_wake_queue(mp->dev); } /* rx ***********************************************************************/ static void txq_reclaim(struct tx_queue *txq, int force); static void rxq_refill(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); unsigned long flags; spin_lock_irqsave(&mp->lock, flags); while (rxq->rx_desc_count < rxq->rx_ring_size) { int skb_size; struct sk_buff *skb; int unaligned; int rx; /* * Reserve 2+14 bytes for an ethernet header (the * hardware automatically prepends 2 bytes of dummy * data to each received packet), 16 bytes for up to * four VLAN tags, and 4 bytes for the trailing FCS * -- 36 bytes total. */ skb_size = mp->dev->mtu + 36; /* * Make sure that the skb size is a multiple of 8 * bytes, as the lower three bits of the receive * descriptor's buffer size field are ignored by * the hardware. */ skb_size = (skb_size + 7) & ~7; skb = dev_alloc_skb(skb_size + dma_get_cache_alignment() - 1); if (skb == NULL) break; unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1); if (unaligned) skb_reserve(skb, dma_get_cache_alignment() - unaligned); rxq->rx_desc_count++; rx = rxq->rx_used_desc; rxq->rx_used_desc = (rx + 1) % rxq->rx_ring_size; rxq->rx_desc_area[rx].buf_ptr = dma_map_single(NULL, skb->data, skb_size, DMA_FROM_DEVICE); rxq->rx_desc_area[rx].buf_size = skb_size; rxq->rx_skb[rx] = skb; wmb(); rxq->rx_desc_area[rx].cmd_sts = BUFFER_OWNED_BY_DMA | RX_ENABLE_INTERRUPT; wmb(); /* * The hardware automatically prepends 2 bytes of * dummy data to each received packet, so that the * IP header ends up 16-byte aligned. */ skb_reserve(skb, 2); } if (rxq->rx_desc_count != rxq->rx_ring_size) mod_timer(&rxq->rx_oom, jiffies + (HZ / 10)); spin_unlock_irqrestore(&mp->lock, flags); } static inline void rxq_refill_timer_wrapper(unsigned long data) { rxq_refill((struct rx_queue *)data); } static int rxq_process(struct rx_queue *rxq, int budget) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); struct net_device_stats *stats = &mp->dev->stats; int rx; rx = 0; while (rx < budget && rxq->rx_desc_count) { struct rx_desc *rx_desc; unsigned int cmd_sts; struct sk_buff *skb; unsigned long flags; spin_lock_irqsave(&mp->lock, flags); rx_desc = &rxq->rx_desc_area[rxq->rx_curr_desc]; cmd_sts = rx_desc->cmd_sts; if (cmd_sts & BUFFER_OWNED_BY_DMA) { spin_unlock_irqrestore(&mp->lock, flags); break; } rmb(); skb = rxq->rx_skb[rxq->rx_curr_desc]; rxq->rx_skb[rxq->rx_curr_desc] = NULL; rxq->rx_curr_desc = (rxq->rx_curr_desc + 1) % rxq->rx_ring_size; spin_unlock_irqrestore(&mp->lock, flags); dma_unmap_single(NULL, rx_desc->buf_ptr + 2, rx_desc->buf_size, DMA_FROM_DEVICE); rxq->rx_desc_count--; rx++; /* * Update statistics. * * Note that the descriptor byte count includes 2 dummy * bytes automatically inserted by the hardware at the * start of the packet (which we don't count), and a 4 * byte CRC at the end of the packet (which we do count). */ stats->rx_packets++; stats->rx_bytes += rx_desc->byte_cnt - 2; /* * In case we received a packet without first / last bits * on, or the error summary bit is set, the packet needs * to be dropped. */ if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) || (cmd_sts & ERROR_SUMMARY)) { stats->rx_dropped++; if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) { if (net_ratelimit()) dev_printk(KERN_ERR, &mp->dev->dev, "received packet spanning " "multiple descriptors\n"); } if (cmd_sts & ERROR_SUMMARY) stats->rx_errors++; dev_kfree_skb_irq(skb); } else { /* * The -4 is for the CRC in the trailer of the * received packet */ skb_put(skb, rx_desc->byte_cnt - 2 - 4); if (cmd_sts & LAYER_4_CHECKSUM_OK) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum = htons( (cmd_sts & 0x0007fff8) >> 3); } skb->protocol = eth_type_trans(skb, mp->dev); #ifdef MV643XX_ETH_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif } mp->dev->last_rx = jiffies; } rxq_refill(rxq); return rx; } #ifdef MV643XX_ETH_NAPI static int mv643xx_eth_poll(struct napi_struct *napi, int budget) { struct mv643xx_eth_private *mp; int rx; int i; mp = container_of(napi, struct mv643xx_eth_private, napi); #ifdef MV643XX_ETH_TX_FAST_REFILL if (++mp->tx_clean_threshold > 5) { mp->tx_clean_threshold = 0; for (i = 0; i < 8; i++) if (mp->txq_mask & (1 << i)) txq_reclaim(mp->txq + i, 0); if (netif_carrier_ok(mp->dev)) { spin_lock_irq(&mp->lock); __txq_maybe_wake(mp->txq + mp->txq_primary); spin_unlock_irq(&mp->lock); } } #endif rx = 0; for (i = 7; rx < budget && i >= 0; i--) if (mp->rxq_mask & (1 << i)) rx += rxq_process(mp->rxq + i, budget - rx); if (rx < budget) { netif_rx_complete(mp->dev, napi); wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_EXT); } return rx; } #endif /* tx ***********************************************************************/ static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb) { int frag; for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; if (fragp->size <= 8 && fragp->page_offset & 7) return 1; } return 0; } static int txq_alloc_desc_index(struct tx_queue *txq) { int tx_desc_curr; BUG_ON(txq->tx_desc_count >= txq->tx_ring_size); tx_desc_curr = txq->tx_curr_desc; txq->tx_curr_desc = (tx_desc_curr + 1) % txq->tx_ring_size; BUG_ON(txq->tx_curr_desc == txq->tx_used_desc); return tx_desc_curr; } static void txq_submit_frag_skb(struct tx_queue *txq, struct sk_buff *skb) { int nr_frags = skb_shinfo(skb)->nr_frags; int frag; for (frag = 0; frag < nr_frags; frag++) { skb_frag_t *this_frag; int tx_index; struct tx_desc *desc; this_frag = &skb_shinfo(skb)->frags[frag]; tx_index = txq_alloc_desc_index(txq); desc = &txq->tx_desc_area[tx_index]; /* * The last fragment will generate an interrupt * which will free the skb on TX completion. */ if (frag == nr_frags - 1) { desc->cmd_sts = BUFFER_OWNED_BY_DMA | ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT; txq->tx_skb[tx_index] = skb; } else { desc->cmd_sts = BUFFER_OWNED_BY_DMA; txq->tx_skb[tx_index] = NULL; } desc->l4i_chk = 0; desc->byte_cnt = this_frag->size; desc->buf_ptr = dma_map_page(NULL, this_frag->page, this_frag->page_offset, this_frag->size, DMA_TO_DEVICE); } } static inline __be16 sum16_as_be(__sum16 sum) { return (__force __be16)sum; } static void txq_submit_skb(struct tx_queue *txq, struct sk_buff *skb) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int nr_frags = skb_shinfo(skb)->nr_frags; int tx_index; struct tx_desc *desc; u32 cmd_sts; int length; cmd_sts = TX_FIRST_DESC | GEN_CRC | BUFFER_OWNED_BY_DMA; tx_index = txq_alloc_desc_index(txq); desc = &txq->tx_desc_area[tx_index]; if (nr_frags) { txq_submit_frag_skb(txq, skb); length = skb_headlen(skb); txq->tx_skb[tx_index] = NULL; } else { cmd_sts |= ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT; length = skb->len; txq->tx_skb[tx_index] = skb; } desc->byte_cnt = length; desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE); if (skb->ip_summed == CHECKSUM_PARTIAL) { int mac_hdr_len; BUG_ON(skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_8021Q)); cmd_sts |= GEN_TCP_UDP_CHECKSUM | GEN_IP_V4_CHECKSUM | ip_hdr(skb)->ihl << TX_IHL_SHIFT; mac_hdr_len = (void *)ip_hdr(skb) - (void *)skb->data; switch (mac_hdr_len - ETH_HLEN) { case 0: break; case 4: cmd_sts |= MAC_HDR_EXTRA_4_BYTES; break; case 8: cmd_sts |= MAC_HDR_EXTRA_8_BYTES; break; case 12: cmd_sts |= MAC_HDR_EXTRA_4_BYTES; cmd_sts |= MAC_HDR_EXTRA_8_BYTES; break; default: if (net_ratelimit()) dev_printk(KERN_ERR, &txq_to_mp(txq)->dev->dev, "mac header length is %d?!\n", mac_hdr_len); break; } switch (ip_hdr(skb)->protocol) { case IPPROTO_UDP: cmd_sts |= UDP_FRAME; desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check)); break; case IPPROTO_TCP: desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check)); break; default: BUG(); } } else { /* Errata BTS #50, IHL must be 5 if no HW checksum */ cmd_sts |= 5 << TX_IHL_SHIFT; desc->l4i_chk = 0; } /* ensure all other descriptors are written before first cmd_sts */ wmb(); desc->cmd_sts = cmd_sts; /* clear TX_END interrupt status */ wrl(mp, INT_CAUSE(mp->port_num), ~(INT_TX_END_0 << txq->index)); rdl(mp, INT_CAUSE(mp->port_num)); /* ensure all descriptors are written before poking hardware */ wmb(); txq_enable(txq); txq->tx_desc_count += nr_frags + 1; } static int mv643xx_eth_xmit(struct sk_buff *skb, struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct tx_queue *txq; unsigned long flags; if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) { stats->tx_dropped++; dev_printk(KERN_DEBUG, &dev->dev, "failed to linearize skb with tiny " "unaligned fragment\n"); return NETDEV_TX_BUSY; } spin_lock_irqsave(&mp->lock, flags); txq = mp->txq + mp->txq_primary; if (txq->tx_ring_size - txq->tx_desc_count < MAX_DESCS_PER_SKB) { spin_unlock_irqrestore(&mp->lock, flags); if (txq->index == mp->txq_primary && net_ratelimit()) dev_printk(KERN_ERR, &dev->dev, "primary tx queue full?!\n"); kfree_skb(skb); return NETDEV_TX_OK; } txq_submit_skb(txq, skb); stats->tx_bytes += skb->len; stats->tx_packets++; dev->trans_start = jiffies; if (txq->index == mp->txq_primary) { int entries_left; entries_left = txq->tx_ring_size - txq->tx_desc_count; if (entries_left < MAX_DESCS_PER_SKB) netif_stop_queue(dev); } spin_unlock_irqrestore(&mp->lock, flags); return NETDEV_TX_OK; } /* tx rate control **********************************************************/ /* * Set total maximum TX rate (shared by all TX queues for this port) * to 'rate' bits per second, with a maximum burst of 'burst' bytes. */ static void tx_set_rate(struct mv643xx_eth_private *mp, int rate, int burst) { int token_rate; int mtu; int bucket_size; token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000); if (token_rate > 1023) token_rate = 1023; mtu = (mp->dev->mtu + 255) >> 8; if (mtu > 63) mtu = 63; bucket_size = (burst + 255) >> 8; if (bucket_size > 65535) bucket_size = 65535; if (mp->shared->tx_bw_control_moved) { wrl(mp, TX_BW_RATE_MOVED(mp->port_num), token_rate); wrl(mp, TX_BW_MTU_MOVED(mp->port_num), mtu); wrl(mp, TX_BW_BURST_MOVED(mp->port_num), bucket_size); } else { wrl(mp, TX_BW_RATE(mp->port_num), token_rate); wrl(mp, TX_BW_MTU(mp->port_num), mtu); wrl(mp, TX_BW_BURST(mp->port_num), bucket_size); } } static void txq_set_rate(struct tx_queue *txq, int rate, int burst) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int token_rate; int bucket_size; token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000); if (token_rate > 1023) token_rate = 1023; bucket_size = (burst + 255) >> 8; if (bucket_size > 65535) bucket_size = 65535; wrl(mp, TXQ_BW_TOKENS(mp->port_num, txq->index), token_rate << 14); wrl(mp, TXQ_BW_CONF(mp->port_num, txq->index), (bucket_size << 10) | token_rate); } static void txq_set_fixed_prio_mode(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int off; u32 val; /* * Turn on fixed priority mode. */ if (mp->shared->tx_bw_control_moved) off = TXQ_FIX_PRIO_CONF_MOVED(mp->port_num); else off = TXQ_FIX_PRIO_CONF(mp->port_num); val = rdl(mp, off); val |= 1 << txq->index; wrl(mp, off, val); } static void txq_set_wrr(struct tx_queue *txq, int weight) { struct mv643xx_eth_private *mp = txq_to_mp(txq); int off; u32 val; /* * Turn off fixed priority mode. */ if (mp->shared->tx_bw_control_moved) off = TXQ_FIX_PRIO_CONF_MOVED(mp->port_num); else off = TXQ_FIX_PRIO_CONF(mp->port_num); val = rdl(mp, off); val &= ~(1 << txq->index); wrl(mp, off, val); /* * Configure WRR weight for this queue. */ off = TXQ_BW_WRR_CONF(mp->port_num, txq->index); val = rdl(mp, off); val = (val & ~0xff) | (weight & 0xff); wrl(mp, off, val); } /* mii management interface *************************************************/ #define SMI_BUSY 0x10000000 #define SMI_READ_VALID 0x08000000 #define SMI_OPCODE_READ 0x04000000 #define SMI_OPCODE_WRITE 0x00000000 static void smi_reg_read(struct mv643xx_eth_private *mp, unsigned int addr, unsigned int reg, unsigned int *value) { void __iomem *smi_reg = mp->shared_smi->base + SMI_REG; unsigned long flags; int i; /* the SMI register is a shared resource */ spin_lock_irqsave(&mp->shared_smi->phy_lock, flags); /* wait for the SMI register to become available */ for (i = 0; readl(smi_reg) & SMI_BUSY; i++) { if (i == 1000) { printk("%s: PHY busy timeout\n", mp->dev->name); goto out; } udelay(10); } writel(SMI_OPCODE_READ | (reg << 21) | (addr << 16), smi_reg); /* now wait for the data to be valid */ for (i = 0; !(readl(smi_reg) & SMI_READ_VALID); i++) { if (i == 1000) { printk("%s: PHY read timeout\n", mp->dev->name); goto out; } udelay(10); } *value = readl(smi_reg) & 0xffff; out: spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags); } static void smi_reg_write(struct mv643xx_eth_private *mp, unsigned int addr, unsigned int reg, unsigned int value) { void __iomem *smi_reg = mp->shared_smi->base + SMI_REG; unsigned long flags; int i; /* the SMI register is a shared resource */ spin_lock_irqsave(&mp->shared_smi->phy_lock, flags); /* wait for the SMI register to become available */ for (i = 0; readl(smi_reg) & SMI_BUSY; i++) { if (i == 1000) { printk("%s: PHY busy timeout\n", mp->dev->name); goto out; } udelay(10); } writel(SMI_OPCODE_WRITE | (reg << 21) | (addr << 16) | (value & 0xffff), smi_reg); out: spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags); } /* mib counters *************************************************************/ static inline u32 mib_read(struct mv643xx_eth_private *mp, int offset) { return rdl(mp, MIB_COUNTERS(mp->port_num) + offset); } static void mib_counters_clear(struct mv643xx_eth_private *mp) { int i; for (i = 0; i < 0x80; i += 4) mib_read(mp, i); } static void mib_counters_update(struct mv643xx_eth_private *mp) { struct mib_counters *p = &mp->mib_counters; p->good_octets_received += mib_read(mp, 0x00); p->good_octets_received += (u64)mib_read(mp, 0x04) << 32; p->bad_octets_received += mib_read(mp, 0x08); p->internal_mac_transmit_err += mib_read(mp, 0x0c); p->good_frames_received += mib_read(mp, 0x10); p->bad_frames_received += mib_read(mp, 0x14); p->broadcast_frames_received += mib_read(mp, 0x18); p->multicast_frames_received += mib_read(mp, 0x1c); p->frames_64_octets += mib_read(mp, 0x20); p->frames_65_to_127_octets += mib_read(mp, 0x24); p->frames_128_to_255_octets += mib_read(mp, 0x28); p->frames_256_to_511_octets += mib_read(mp, 0x2c); p->frames_512_to_1023_octets += mib_read(mp, 0x30); p->frames_1024_to_max_octets += mib_read(mp, 0x34); p->good_octets_sent += mib_read(mp, 0x38); p->good_octets_sent += (u64)mib_read(mp, 0x3c) << 32; p->good_frames_sent += mib_read(mp, 0x40); p->excessive_collision += mib_read(mp, 0x44); p->multicast_frames_sent += mib_read(mp, 0x48); p->broadcast_frames_sent += mib_read(mp, 0x4c); p->unrec_mac_control_received += mib_read(mp, 0x50); p->fc_sent += mib_read(mp, 0x54); p->good_fc_received += mib_read(mp, 0x58); p->bad_fc_received += mib_read(mp, 0x5c); p->undersize_received += mib_read(mp, 0x60); p->fragments_received += mib_read(mp, 0x64); p->oversize_received += mib_read(mp, 0x68); p->jabber_received += mib_read(mp, 0x6c); p->mac_receive_error += mib_read(mp, 0x70); p->bad_crc_event += mib_read(mp, 0x74); p->collision += mib_read(mp, 0x78); p->late_collision += mib_read(mp, 0x7c); } /* ethtool ******************************************************************/ struct mv643xx_eth_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int netdev_off; int mp_off; }; #define SSTAT(m) \ { #m, FIELD_SIZEOF(struct net_device_stats, m), \ offsetof(struct net_device, stats.m), -1 } #define MIBSTAT(m) \ { #m, FIELD_SIZEOF(struct mib_counters, m), \ -1, offsetof(struct mv643xx_eth_private, mib_counters.m) } static const struct mv643xx_eth_stats mv643xx_eth_stats[] = { SSTAT(rx_packets), SSTAT(tx_packets), SSTAT(rx_bytes), SSTAT(tx_bytes), SSTAT(rx_errors), SSTAT(tx_errors), SSTAT(rx_dropped), SSTAT(tx_dropped), MIBSTAT(good_octets_received), MIBSTAT(bad_octets_received), MIBSTAT(internal_mac_transmit_err), MIBSTAT(good_frames_received), MIBSTAT(bad_frames_received), MIBSTAT(broadcast_frames_received), MIBSTAT(multicast_frames_received), MIBSTAT(frames_64_octets), MIBSTAT(frames_65_to_127_octets), MIBSTAT(frames_128_to_255_octets), MIBSTAT(frames_256_to_511_octets), MIBSTAT(frames_512_to_1023_octets), MIBSTAT(frames_1024_to_max_octets), MIBSTAT(good_octets_sent), MIBSTAT(good_frames_sent), MIBSTAT(excessive_collision), MIBSTAT(multicast_frames_sent), MIBSTAT(broadcast_frames_sent), MIBSTAT(unrec_mac_control_received), MIBSTAT(fc_sent), MIBSTAT(good_fc_received), MIBSTAT(bad_fc_received), MIBSTAT(undersize_received), MIBSTAT(fragments_received), MIBSTAT(oversize_received), MIBSTAT(jabber_received), MIBSTAT(mac_receive_error), MIBSTAT(bad_crc_event), MIBSTAT(collision), MIBSTAT(late_collision), }; static int mv643xx_eth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); int err; spin_lock_irq(&mp->lock); err = mii_ethtool_gset(&mp->mii, cmd); spin_unlock_irq(&mp->lock); /* * The MAC does not support 1000baseT_Half. */ cmd->supported &= ~SUPPORTED_1000baseT_Half; cmd->advertising &= ~ADVERTISED_1000baseT_Half; return err; } static int mv643xx_eth_get_settings_phyless(struct net_device *dev, struct ethtool_cmd *cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); u32 port_status; port_status = rdl(mp, PORT_STATUS(mp->port_num)); cmd->supported = SUPPORTED_MII; cmd->advertising = ADVERTISED_MII; switch (port_status & PORT_SPEED_MASK) { case PORT_SPEED_10: cmd->speed = SPEED_10; break; case PORT_SPEED_100: cmd->speed = SPEED_100; break; case PORT_SPEED_1000: cmd->speed = SPEED_1000; break; default: cmd->speed = -1; break; } cmd->duplex = (port_status & FULL_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; cmd->port = PORT_MII; cmd->phy_address = 0; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = AUTONEG_DISABLE; cmd->maxtxpkt = 1; cmd->maxrxpkt = 1; return 0; } static int mv643xx_eth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); int err; /* * The MAC does not support 1000baseT_Half. */ cmd->advertising &= ~ADVERTISED_1000baseT_Half; spin_lock_irq(&mp->lock); err = mii_ethtool_sset(&mp->mii, cmd); spin_unlock_irq(&mp->lock); return err; } static int mv643xx_eth_set_settings_phyless(struct net_device *dev, struct ethtool_cmd *cmd) { return -EINVAL; } static void mv643xx_eth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strncpy(drvinfo->driver, mv643xx_eth_driver_name, 32); strncpy(drvinfo->version, mv643xx_eth_driver_version, 32); strncpy(drvinfo->fw_version, "N/A", 32); strncpy(drvinfo->bus_info, "platform", 32); drvinfo->n_stats = ARRAY_SIZE(mv643xx_eth_stats); } static int mv643xx_eth_nway_reset(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); return mii_nway_restart(&mp->mii); } static int mv643xx_eth_nway_reset_phyless(struct net_device *dev) { return -EINVAL; } static u32 mv643xx_eth_get_link(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); return mii_link_ok(&mp->mii); } static u32 mv643xx_eth_get_link_phyless(struct net_device *dev) { return 1; } static void mv643xx_eth_get_strings(struct net_device *dev, uint32_t stringset, uint8_t *data) { int i; if (stringset == ETH_SS_STATS) { for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) { memcpy(data + i * ETH_GSTRING_LEN, mv643xx_eth_stats[i].stat_string, ETH_GSTRING_LEN); } } } static void mv643xx_eth_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, uint64_t *data) { struct mv643xx_eth_private *mp = dev->priv; int i; mib_counters_update(mp); for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) { const struct mv643xx_eth_stats *stat; void *p; stat = mv643xx_eth_stats + i; if (stat->netdev_off >= 0) p = ((void *)mp->dev) + stat->netdev_off; else p = ((void *)mp) + stat->mp_off; data[i] = (stat->sizeof_stat == 8) ? *(uint64_t *)p : *(uint32_t *)p; } } static int mv643xx_eth_get_sset_count(struct net_device *dev, int sset) { if (sset == ETH_SS_STATS) return ARRAY_SIZE(mv643xx_eth_stats); return -EOPNOTSUPP; } static const struct ethtool_ops mv643xx_eth_ethtool_ops = { .get_settings = mv643xx_eth_get_settings, .set_settings = mv643xx_eth_set_settings, .get_drvinfo = mv643xx_eth_get_drvinfo, .nway_reset = mv643xx_eth_nway_reset, .get_link = mv643xx_eth_get_link, .set_sg = ethtool_op_set_sg, .get_strings = mv643xx_eth_get_strings, .get_ethtool_stats = mv643xx_eth_get_ethtool_stats, .get_sset_count = mv643xx_eth_get_sset_count, }; static const struct ethtool_ops mv643xx_eth_ethtool_ops_phyless = { .get_settings = mv643xx_eth_get_settings_phyless, .set_settings = mv643xx_eth_set_settings_phyless, .get_drvinfo = mv643xx_eth_get_drvinfo, .nway_reset = mv643xx_eth_nway_reset_phyless, .get_link = mv643xx_eth_get_link_phyless, .set_sg = ethtool_op_set_sg, .get_strings = mv643xx_eth_get_strings, .get_ethtool_stats = mv643xx_eth_get_ethtool_stats, .get_sset_count = mv643xx_eth_get_sset_count, }; /* address handling *********************************************************/ static void uc_addr_get(struct mv643xx_eth_private *mp, unsigned char *addr) { unsigned int mac_h; unsigned int mac_l; mac_h = rdl(mp, MAC_ADDR_HIGH(mp->port_num)); mac_l = rdl(mp, MAC_ADDR_LOW(mp->port_num)); addr[0] = (mac_h >> 24) & 0xff; addr[1] = (mac_h >> 16) & 0xff; addr[2] = (mac_h >> 8) & 0xff; addr[3] = mac_h & 0xff; addr[4] = (mac_l >> 8) & 0xff; addr[5] = mac_l & 0xff; } static void init_mac_tables(struct mv643xx_eth_private *mp) { int i; for (i = 0; i < 0x100; i += 4) { wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i, 0); wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i, 0); } for (i = 0; i < 0x10; i += 4) wrl(mp, UNICAST_TABLE(mp->port_num) + i, 0); } static void set_filter_table_entry(struct mv643xx_eth_private *mp, int table, unsigned char entry) { unsigned int table_reg; /* Set "accepts frame bit" at specified table entry */ table_reg = rdl(mp, table + (entry & 0xfc)); table_reg |= 0x01 << (8 * (entry & 3)); wrl(mp, table + (entry & 0xfc), table_reg); } static void uc_addr_set(struct mv643xx_eth_private *mp, unsigned char *addr) { unsigned int mac_h; unsigned int mac_l; int table; mac_l = (addr[4] << 8) | addr[5]; mac_h = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; wrl(mp, MAC_ADDR_LOW(mp->port_num), mac_l); wrl(mp, MAC_ADDR_HIGH(mp->port_num), mac_h); table = UNICAST_TABLE(mp->port_num); set_filter_table_entry(mp, table, addr[5] & 0x0f); } static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr) { struct mv643xx_eth_private *mp = netdev_priv(dev); /* +2 is for the offset of the HW addr type */ memcpy(dev->dev_addr, addr + 2, 6); init_mac_tables(mp); uc_addr_set(mp, dev->dev_addr); return 0; } static int addr_crc(unsigned char *addr) { int crc = 0; int i; for (i = 0; i < 6; i++) { int j; crc = (crc ^ addr[i]) << 8; for (j = 7; j >= 0; j--) { if (crc & (0x100 << j)) crc ^= 0x107 << j; } } return crc; } static void mv643xx_eth_set_rx_mode(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); u32 port_config; struct dev_addr_list *addr; int i; port_config = rdl(mp, PORT_CONFIG(mp->port_num)); if (dev->flags & IFF_PROMISC) port_config |= UNICAST_PROMISCUOUS_MODE; else port_config &= ~UNICAST_PROMISCUOUS_MODE; wrl(mp, PORT_CONFIG(mp->port_num), port_config); if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { int port_num = mp->port_num; u32 accept = 0x01010101; for (i = 0; i < 0x100; i += 4) { wrl(mp, SPECIAL_MCAST_TABLE(port_num) + i, accept); wrl(mp, OTHER_MCAST_TABLE(port_num) + i, accept); } return; } for (i = 0; i < 0x100; i += 4) { wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i, 0); wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i, 0); } for (addr = dev->mc_list; addr != NULL; addr = addr->next) { u8 *a = addr->da_addr; int table; if (addr->da_addrlen != 6) continue; if (memcmp(a, "\x01\x00\x5e\x00\x00", 5) == 0) { table = SPECIAL_MCAST_TABLE(mp->port_num); set_filter_table_entry(mp, table, a[5]); } else { int crc = addr_crc(a); table = OTHER_MCAST_TABLE(mp->port_num); set_filter_table_entry(mp, table, crc); } } } /* rx/tx queue initialisation ***********************************************/ static int rxq_init(struct mv643xx_eth_private *mp, int index) { struct rx_queue *rxq = mp->rxq + index; struct rx_desc *rx_desc; int size; int i; rxq->index = index; rxq->rx_ring_size = mp->default_rx_ring_size; rxq->rx_desc_count = 0; rxq->rx_curr_desc = 0; rxq->rx_used_desc = 0; size = rxq->rx_ring_size * sizeof(struct rx_desc); if (index == mp->rxq_primary && size <= mp->rx_desc_sram_size) { rxq->rx_desc_area = ioremap(mp->rx_desc_sram_addr, mp->rx_desc_sram_size); rxq->rx_desc_dma = mp->rx_desc_sram_addr; } else { rxq->rx_desc_area = dma_alloc_coherent(NULL, size, &rxq->rx_desc_dma, GFP_KERNEL); } if (rxq->rx_desc_area == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate rx ring (%d bytes)\n", size); goto out; } memset(rxq->rx_desc_area, 0, size); rxq->rx_desc_area_size = size; rxq->rx_skb = kmalloc(rxq->rx_ring_size * sizeof(*rxq->rx_skb), GFP_KERNEL); if (rxq->rx_skb == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate rx skb ring\n"); goto out_free; } rx_desc = (struct rx_desc *)rxq->rx_desc_area; for (i = 0; i < rxq->rx_ring_size; i++) { int nexti = (i + 1) % rxq->rx_ring_size; rx_desc[i].next_desc_ptr = rxq->rx_desc_dma + nexti * sizeof(struct rx_desc); } init_timer(&rxq->rx_oom); rxq->rx_oom.data = (unsigned long)rxq; rxq->rx_oom.function = rxq_refill_timer_wrapper; return 0; out_free: if (index == mp->rxq_primary && size <= mp->rx_desc_sram_size) iounmap(rxq->rx_desc_area); else dma_free_coherent(NULL, size, rxq->rx_desc_area, rxq->rx_desc_dma); out: return -ENOMEM; } static void rxq_deinit(struct rx_queue *rxq) { struct mv643xx_eth_private *mp = rxq_to_mp(rxq); int i; rxq_disable(rxq); del_timer_sync(&rxq->rx_oom); for (i = 0; i < rxq->rx_ring_size; i++) { if (rxq->rx_skb[i]) { dev_kfree_skb(rxq->rx_skb[i]); rxq->rx_desc_count--; } } if (rxq->rx_desc_count) { dev_printk(KERN_ERR, &mp->dev->dev, "error freeing rx ring -- %d skbs stuck\n", rxq->rx_desc_count); } if (rxq->index == mp->rxq_primary && rxq->rx_desc_area_size <= mp->rx_desc_sram_size) iounmap(rxq->rx_desc_area); else dma_free_coherent(NULL, rxq->rx_desc_area_size, rxq->rx_desc_area, rxq->rx_desc_dma); kfree(rxq->rx_skb); } static int txq_init(struct mv643xx_eth_private *mp, int index) { struct tx_queue *txq = mp->txq + index; struct tx_desc *tx_desc; int size; int i; txq->index = index; txq->tx_ring_size = mp->default_tx_ring_size; txq->tx_desc_count = 0; txq->tx_curr_desc = 0; txq->tx_used_desc = 0; size = txq->tx_ring_size * sizeof(struct tx_desc); if (index == mp->txq_primary && size <= mp->tx_desc_sram_size) { txq->tx_desc_area = ioremap(mp->tx_desc_sram_addr, mp->tx_desc_sram_size); txq->tx_desc_dma = mp->tx_desc_sram_addr; } else { txq->tx_desc_area = dma_alloc_coherent(NULL, size, &txq->tx_desc_dma, GFP_KERNEL); } if (txq->tx_desc_area == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate tx ring (%d bytes)\n", size); goto out; } memset(txq->tx_desc_area, 0, size); txq->tx_desc_area_size = size; txq->tx_skb = kmalloc(txq->tx_ring_size * sizeof(*txq->tx_skb), GFP_KERNEL); if (txq->tx_skb == NULL) { dev_printk(KERN_ERR, &mp->dev->dev, "can't allocate tx skb ring\n"); goto out_free; } tx_desc = (struct tx_desc *)txq->tx_desc_area; for (i = 0; i < txq->tx_ring_size; i++) { struct tx_desc *txd = tx_desc + i; int nexti = (i + 1) % txq->tx_ring_size; txd->cmd_sts = 0; txd->next_desc_ptr = txq->tx_desc_dma + nexti * sizeof(struct tx_desc); } return 0; out_free: if (index == mp->txq_primary && size <= mp->tx_desc_sram_size) iounmap(txq->tx_desc_area); else dma_free_coherent(NULL, size, txq->tx_desc_area, txq->tx_desc_dma); out: return -ENOMEM; } static void txq_reclaim(struct tx_queue *txq, int force) { struct mv643xx_eth_private *mp = txq_to_mp(txq); unsigned long flags; spin_lock_irqsave(&mp->lock, flags); while (txq->tx_desc_count > 0) { int tx_index; struct tx_desc *desc; u32 cmd_sts; struct sk_buff *skb; dma_addr_t addr; int count; tx_index = txq->tx_used_desc; desc = &txq->tx_desc_area[tx_index]; cmd_sts = desc->cmd_sts; if (cmd_sts & BUFFER_OWNED_BY_DMA) { if (!force) break; desc->cmd_sts = cmd_sts & ~BUFFER_OWNED_BY_DMA; } txq->tx_used_desc = (tx_index + 1) % txq->tx_ring_size; txq->tx_desc_count--; addr = desc->buf_ptr; count = desc->byte_cnt; skb = txq->tx_skb[tx_index]; txq->tx_skb[tx_index] = NULL; if (cmd_sts & ERROR_SUMMARY) { dev_printk(KERN_INFO, &mp->dev->dev, "tx error\n"); mp->dev->stats.tx_errors++; } /* * Drop mp->lock while we free the skb. */ spin_unlock_irqrestore(&mp->lock, flags); if (cmd_sts & TX_FIRST_DESC) dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE); else dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE); if (skb) dev_kfree_skb_irq(skb); spin_lock_irqsave(&mp->lock, flags); } spin_unlock_irqrestore(&mp->lock, flags); } static void txq_deinit(struct tx_queue *txq) { struct mv643xx_eth_private *mp = txq_to_mp(txq); txq_disable(txq); txq_reclaim(txq, 1); BUG_ON(txq->tx_used_desc != txq->tx_curr_desc); if (txq->index == mp->txq_primary && txq->tx_desc_area_size <= mp->tx_desc_sram_size) iounmap(txq->tx_desc_area); else dma_free_coherent(NULL, txq->tx_desc_area_size, txq->tx_desc_area, txq->tx_desc_dma); kfree(txq->tx_skb); } /* netdev ops and related ***************************************************/ static void handle_link_event(struct mv643xx_eth_private *mp) { struct net_device *dev = mp->dev; u32 port_status; int speed; int duplex; int fc; port_status = rdl(mp, PORT_STATUS(mp->port_num)); if (!(port_status & LINK_UP)) { if (netif_carrier_ok(dev)) { int i; printk(KERN_INFO "%s: link down\n", dev->name); netif_carrier_off(dev); netif_stop_queue(dev); for (i = 0; i < 8; i++) { struct tx_queue *txq = mp->txq + i; if (mp->txq_mask & (1 << i)) { txq_reclaim(txq, 1); txq_reset_hw_ptr(txq); } } } return; } switch (port_status & PORT_SPEED_MASK) { case PORT_SPEED_10: speed = 10; break; case PORT_SPEED_100: speed = 100; break; case PORT_SPEED_1000: speed = 1000; break; default: speed = -1; break; } duplex = (port_status & FULL_DUPLEX) ? 1 : 0; fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0; printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, " "flow control %sabled\n", dev->name, speed, duplex ? "full" : "half", fc ? "en" : "dis"); if (!netif_carrier_ok(dev)) { netif_carrier_on(dev); netif_wake_queue(dev); } } static irqreturn_t mv643xx_eth_irq(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct mv643xx_eth_private *mp = netdev_priv(dev); u32 int_cause; u32 int_cause_ext; int_cause = rdl(mp, INT_CAUSE(mp->port_num)) & (INT_TX_END | INT_RX | INT_EXT); if (int_cause == 0) return IRQ_NONE; int_cause_ext = 0; if (int_cause & INT_EXT) { int_cause_ext = rdl(mp, INT_CAUSE_EXT(mp->port_num)) & (INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX); wrl(mp, INT_CAUSE_EXT(mp->port_num), ~int_cause_ext); } if (int_cause_ext & (INT_EXT_PHY | INT_EXT_LINK)) handle_link_event(mp); /* * RxBuffer or RxError set for any of the 8 queues? */ #ifdef MV643XX_ETH_NAPI if (int_cause & INT_RX) { wrl(mp, INT_CAUSE(mp->port_num), ~(int_cause & INT_RX)); wrl(mp, INT_MASK(mp->port_num), 0x00000000); rdl(mp, INT_MASK(mp->port_num)); netif_rx_schedule(dev, &mp->napi); } #else if (int_cause & INT_RX) { int i; for (i = 7; i >= 0; i--) if (mp->rxq_mask & (1 << i)) rxq_process(mp->rxq + i, INT_MAX); } #endif /* * TxBuffer or TxError set for any of the 8 queues? */ if (int_cause_ext & INT_EXT_TX) { int i; for (i = 0; i < 8; i++) if (mp->txq_mask & (1 << i)) txq_reclaim(mp->txq + i, 0); /* * Enough space again in the primary TX queue for a * full packet? */ if (netif_carrier_ok(dev)) { spin_lock(&mp->lock); __txq_maybe_wake(mp->txq + mp->txq_primary); spin_unlock(&mp->lock); } } /* * Any TxEnd interrupts? */ if (int_cause & INT_TX_END) { int i; wrl(mp, INT_CAUSE(mp->port_num), ~(int_cause & INT_TX_END)); spin_lock(&mp->lock); for (i = 0; i < 8; i++) { struct tx_queue *txq = mp->txq + i; u32 hw_desc_ptr; u32 expected_ptr; if ((int_cause & (INT_TX_END_0 << i)) == 0) continue; hw_desc_ptr = rdl(mp, TXQ_CURRENT_DESC_PTR(mp->port_num, i)); expected_ptr = (u32)txq->tx_desc_dma + txq->tx_curr_desc * sizeof(struct tx_desc); if (hw_desc_ptr != expected_ptr) txq_enable(txq); } spin_unlock(&mp->lock); } return IRQ_HANDLED; } static void phy_reset(struct mv643xx_eth_private *mp) { unsigned int data; smi_reg_read(mp, mp->phy_addr, MII_BMCR, &data); data |= BMCR_RESET; smi_reg_write(mp, mp->phy_addr, MII_BMCR, data); do { udelay(1); smi_reg_read(mp, mp->phy_addr, MII_BMCR, &data); } while (data & BMCR_RESET); } static void port_start(struct mv643xx_eth_private *mp) { u32 pscr; int i; /* * Perform PHY reset, if there is a PHY. */ if (mp->phy_addr != -1) { struct ethtool_cmd cmd; mv643xx_eth_get_settings(mp->dev, &cmd); phy_reset(mp); mv643xx_eth_set_settings(mp->dev, &cmd); } /* * Configure basic link parameters. */ pscr = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num)); pscr |= SERIAL_PORT_ENABLE; wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr); pscr |= DO_NOT_FORCE_LINK_FAIL; if (mp->phy_addr == -1) pscr |= FORCE_LINK_PASS; wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr); wrl(mp, SDMA_CONFIG(mp->port_num), PORT_SDMA_CONFIG_DEFAULT_VALUE); /* * Configure TX path and queues. */ tx_set_rate(mp, 1000000000, 16777216); for (i = 0; i < 8; i++) { struct tx_queue *txq = mp->txq + i; if ((mp->txq_mask & (1 << i)) == 0) continue; txq_reset_hw_ptr(txq); txq_set_rate(txq, 1000000000, 16777216); txq_set_fixed_prio_mode(txq); } /* * Add configured unicast address to address filter table. */ uc_addr_set(mp, mp->dev->dev_addr); /* * Receive all unmatched unicast, TCP, UDP, BPDU and broadcast * frames to RX queue #0. */ wrl(mp, PORT_CONFIG(mp->port_num), 0x00000000); /* * Treat BPDUs as normal multicasts, and disable partition mode. */ wrl(mp, PORT_CONFIG_EXT(mp->port_num), 0x00000000); /* * Enable the receive queues. */ for (i = 0; i < 8; i++) { struct rx_queue *rxq = mp->rxq + i; int off = RXQ_CURRENT_DESC_PTR(mp->port_num, i); u32 addr; if ((mp->rxq_mask & (1 << i)) == 0) continue; addr = (u32)rxq->rx_desc_dma; addr += rxq->rx_curr_desc * sizeof(struct rx_desc); wrl(mp, off, addr); rxq_enable(rxq); } } static void set_rx_coal(struct mv643xx_eth_private *mp, unsigned int delay) { unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64; u32 val; val = rdl(mp, SDMA_CONFIG(mp->port_num)); if (mp->shared->extended_rx_coal_limit) { if (coal > 0xffff) coal = 0xffff; val &= ~0x023fff80; val |= (coal & 0x8000) << 10; val |= (coal & 0x7fff) << 7; } else { if (coal > 0x3fff) coal = 0x3fff; val &= ~0x003fff00; val |= (coal & 0x3fff) << 8; } wrl(mp, SDMA_CONFIG(mp->port_num), val); } static void set_tx_coal(struct mv643xx_eth_private *mp, unsigned int delay) { unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64; if (coal > 0x3fff) coal = 0x3fff; wrl(mp, TX_FIFO_URGENT_THRESHOLD(mp->port_num), (coal & 0x3fff) << 4); } static int mv643xx_eth_open(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); int err; int i; wrl(mp, INT_CAUSE(mp->port_num), 0); wrl(mp, INT_CAUSE_EXT(mp->port_num), 0); rdl(mp, INT_CAUSE_EXT(mp->port_num)); err = request_irq(dev->irq, mv643xx_eth_irq, IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev); if (err) { dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n"); return -EAGAIN; } init_mac_tables(mp); for (i = 0; i < 8; i++) { if ((mp->rxq_mask & (1 << i)) == 0) continue; err = rxq_init(mp, i); if (err) { while (--i >= 0) if (mp->rxq_mask & (1 << i)) rxq_deinit(mp->rxq + i); goto out; } rxq_refill(mp->rxq + i); } for (i = 0; i < 8; i++) { if ((mp->txq_mask & (1 << i)) == 0) continue; err = txq_init(mp, i); if (err) { while (--i >= 0) if (mp->txq_mask & (1 << i)) txq_deinit(mp->txq + i); goto out_free; } } #ifdef MV643XX_ETH_NAPI napi_enable(&mp->napi); #endif netif_carrier_off(dev); netif_stop_queue(dev); port_start(mp); set_rx_coal(mp, 0); set_tx_coal(mp, 0); wrl(mp, INT_MASK_EXT(mp->port_num), INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX); wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_EXT); return 0; out_free: for (i = 0; i < 8; i++) if (mp->rxq_mask & (1 << i)) rxq_deinit(mp->rxq + i); out: free_irq(dev->irq, dev); return err; } static void port_reset(struct mv643xx_eth_private *mp) { unsigned int data; int i; for (i = 0; i < 8; i++) { if (mp->rxq_mask & (1 << i)) rxq_disable(mp->rxq + i); if (mp->txq_mask & (1 << i)) txq_disable(mp->txq + i); } while (1) { u32 ps = rdl(mp, PORT_STATUS(mp->port_num)); if ((ps & (TX_IN_PROGRESS | TX_FIFO_EMPTY)) == TX_FIFO_EMPTY) break; udelay(10); } /* Reset the Enable bit in the Configuration Register */ data = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num)); data &= ~(SERIAL_PORT_ENABLE | DO_NOT_FORCE_LINK_FAIL | FORCE_LINK_PASS); wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), data); } static int mv643xx_eth_stop(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); int i; wrl(mp, INT_MASK(mp->port_num), 0x00000000); rdl(mp, INT_MASK(mp->port_num)); #ifdef MV643XX_ETH_NAPI napi_disable(&mp->napi); #endif netif_carrier_off(dev); netif_stop_queue(dev); free_irq(dev->irq, dev); port_reset(mp); mib_counters_update(mp); for (i = 0; i < 8; i++) { if (mp->rxq_mask & (1 << i)) rxq_deinit(mp->rxq + i); if (mp->txq_mask & (1 << i)) txq_deinit(mp->txq + i); } return 0; } static int mv643xx_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (mp->phy_addr != -1) return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL); return -EOPNOTSUPP; } static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu) { struct mv643xx_eth_private *mp = netdev_priv(dev); if (new_mtu < 64 || new_mtu > 9500) return -EINVAL; dev->mtu = new_mtu; tx_set_rate(mp, 1000000000, 16777216); if (!netif_running(dev)) return 0; /* * Stop and then re-open the interface. This will allocate RX * skbs of the new MTU. * There is a possible danger that the open will not succeed, * due to memory being full. */ mv643xx_eth_stop(dev); if (mv643xx_eth_open(dev)) { dev_printk(KERN_ERR, &dev->dev, "fatal error on re-opening device after " "MTU change\n"); } return 0; } static void tx_timeout_task(struct work_struct *ugly) { struct mv643xx_eth_private *mp; mp = container_of(ugly, struct mv643xx_eth_private, tx_timeout_task); if (netif_running(mp->dev)) { netif_stop_queue(mp->dev); port_reset(mp); port_start(mp); __txq_maybe_wake(mp->txq + mp->txq_primary); } } static void mv643xx_eth_tx_timeout(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); dev_printk(KERN_INFO, &dev->dev, "tx timeout\n"); schedule_work(&mp->tx_timeout_task); } #ifdef CONFIG_NET_POLL_CONTROLLER static void mv643xx_eth_netpoll(struct net_device *dev) { struct mv643xx_eth_private *mp = netdev_priv(dev); wrl(mp, INT_MASK(mp->port_num), 0x00000000); rdl(mp, INT_MASK(mp->port_num)); mv643xx_eth_irq(dev->irq, dev); wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_EXT); } #endif static int mv643xx_eth_mdio_read(struct net_device *dev, int addr, int reg) { struct mv643xx_eth_private *mp = netdev_priv(dev); int val; smi_reg_read(mp, addr, reg, &val); return val; } static void mv643xx_eth_mdio_write(struct net_device *dev, int addr, int reg, int val) { struct mv643xx_eth_private *mp = netdev_priv(dev); smi_reg_write(mp, addr, reg, val); } /* platform glue ************************************************************/ static void mv643xx_eth_conf_mbus_windows(struct mv643xx_eth_shared_private *msp, struct mbus_dram_target_info *dram) { void __iomem *base = msp->base; u32 win_enable; u32 win_protect; int i; for (i = 0; i < 6; i++) { writel(0, base + WINDOW_BASE(i)); writel(0, base + WINDOW_SIZE(i)); if (i < 4) writel(0, base + WINDOW_REMAP_HIGH(i)); } win_enable = 0x3f; win_protect = 0; for (i = 0; i < dram->num_cs; i++) { struct mbus_dram_window *cs = dram->cs + i; writel((cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id, base + WINDOW_BASE(i)); writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i)); win_enable &= ~(1 << i); win_protect |= 3 << (2 * i); } writel(win_enable, base + WINDOW_BAR_ENABLE); msp->win_protect = win_protect; } static void infer_hw_params(struct mv643xx_eth_shared_private *msp) { /* * Check whether we have a 14-bit coal limit field in bits * [21:8], or a 16-bit coal limit in bits [25,21:7] of the * SDMA config register. */ writel(0x02000000, msp->base + SDMA_CONFIG(0)); if (readl(msp->base + SDMA_CONFIG(0)) & 0x02000000) msp->extended_rx_coal_limit = 1; else msp->extended_rx_coal_limit = 0; /* * Check whether the TX rate control registers are in the * old or the new place. */ writel(1, msp->base + TX_BW_MTU_MOVED(0)); if (readl(msp->base + TX_BW_MTU_MOVED(0)) & 1) msp->tx_bw_control_moved = 1; else msp->tx_bw_control_moved = 0; } static int mv643xx_eth_shared_probe(struct platform_device *pdev) { static int mv643xx_eth_version_printed = 0; struct mv643xx_eth_shared_platform_data *pd = pdev->dev.platform_data; struct mv643xx_eth_shared_private *msp; struct resource *res; int ret; if (!mv643xx_eth_version_printed++) printk(KERN_NOTICE "MV-643xx 10/100/1000 ethernet " "driver version %s\n", mv643xx_eth_driver_version); ret = -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) goto out; ret = -ENOMEM; msp = kmalloc(sizeof(*msp), GFP_KERNEL); if (msp == NULL) goto out; memset(msp, 0, sizeof(*msp)); msp->base = ioremap(res->start, res->end - res->start + 1); if (msp->base == NULL) goto out_free; spin_lock_init(&msp->phy_lock); /* * (Re-)program MBUS remapping windows if we are asked to. */ if (pd != NULL && pd->dram != NULL) mv643xx_eth_conf_mbus_windows(msp, pd->dram); /* * Detect hardware parameters. */ msp->t_clk = (pd != NULL && pd->t_clk != 0) ? pd->t_clk : 133000000; infer_hw_params(msp); platform_set_drvdata(pdev, msp); return 0; out_free: kfree(msp); out: return ret; } static int mv643xx_eth_shared_remove(struct platform_device *pdev) { struct mv643xx_eth_shared_private *msp = platform_get_drvdata(pdev); iounmap(msp->base); kfree(msp); return 0; } static struct platform_driver mv643xx_eth_shared_driver = { .probe = mv643xx_eth_shared_probe, .remove = mv643xx_eth_shared_remove, .driver = { .name = MV643XX_ETH_SHARED_NAME, .owner = THIS_MODULE, }, }; static void phy_addr_set(struct mv643xx_eth_private *mp, int phy_addr) { int addr_shift = 5 * mp->port_num; u32 data; data = rdl(mp, PHY_ADDR); data &= ~(0x1f << addr_shift); data |= (phy_addr & 0x1f) << addr_shift; wrl(mp, PHY_ADDR, data); } static int phy_addr_get(struct mv643xx_eth_private *mp) { unsigned int data; data = rdl(mp, PHY_ADDR); return (data >> (5 * mp->port_num)) & 0x1f; } static void set_params(struct mv643xx_eth_private *mp, struct mv643xx_eth_platform_data *pd) { struct net_device *dev = mp->dev; if (is_valid_ether_addr(pd->mac_addr)) memcpy(dev->dev_addr, pd->mac_addr, 6); else uc_addr_get(mp, dev->dev_addr); if (pd->phy_addr == -1) { mp->shared_smi = NULL; mp->phy_addr = -1; } else { mp->shared_smi = mp->shared; if (pd->shared_smi != NULL) mp->shared_smi = platform_get_drvdata(pd->shared_smi); if (pd->force_phy_addr || pd->phy_addr) { mp->phy_addr = pd->phy_addr & 0x3f; phy_addr_set(mp, mp->phy_addr); } else { mp->phy_addr = phy_addr_get(mp); } } mp->default_rx_ring_size = DEFAULT_RX_QUEUE_SIZE; if (pd->rx_queue_size) mp->default_rx_ring_size = pd->rx_queue_size; mp->rx_desc_sram_addr = pd->rx_sram_addr; mp->rx_desc_sram_size = pd->rx_sram_size; if (pd->rx_queue_mask) mp->rxq_mask = pd->rx_queue_mask; else mp->rxq_mask = 0x01; mp->rxq_primary = fls(mp->rxq_mask) - 1; mp->default_tx_ring_size = DEFAULT_TX_QUEUE_SIZE; if (pd->tx_queue_size) mp->default_tx_ring_size = pd->tx_queue_size; mp->tx_desc_sram_addr = pd->tx_sram_addr; mp->tx_desc_sram_size = pd->tx_sram_size; if (pd->tx_queue_mask) mp->txq_mask = pd->tx_queue_mask; else mp->txq_mask = 0x01; mp->txq_primary = fls(mp->txq_mask) - 1; } static int phy_detect(struct mv643xx_eth_private *mp) { unsigned int data; unsigned int data2; smi_reg_read(mp, mp->phy_addr, MII_BMCR, &data); smi_reg_write(mp, mp->phy_addr, MII_BMCR, data ^ BMCR_ANENABLE); smi_reg_read(mp, mp->phy_addr, MII_BMCR, &data2); if (((data ^ data2) & BMCR_ANENABLE) == 0) return -ENODEV; smi_reg_write(mp, mp->phy_addr, MII_BMCR, data); return 0; } static int phy_init(struct mv643xx_eth_private *mp, struct mv643xx_eth_platform_data *pd) { struct ethtool_cmd cmd; int err; err = phy_detect(mp); if (err) { dev_printk(KERN_INFO, &mp->dev->dev, "no PHY detected at addr %d\n", mp->phy_addr); return err; } phy_reset(mp); mp->mii.phy_id = mp->phy_addr; mp->mii.phy_id_mask = 0x3f; mp->mii.reg_num_mask = 0x1f; mp->mii.dev = mp->dev; mp->mii.mdio_read = mv643xx_eth_mdio_read; mp->mii.mdio_write = mv643xx_eth_mdio_write; mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii); memset(&cmd, 0, sizeof(cmd)); cmd.port = PORT_MII; cmd.transceiver = XCVR_INTERNAL; cmd.phy_address = mp->phy_addr; if (pd->speed == 0) { cmd.autoneg = AUTONEG_ENABLE; cmd.speed = SPEED_100; cmd.advertising = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; if (mp->mii.supports_gmii) cmd.advertising |= ADVERTISED_1000baseT_Full; } else { cmd.autoneg = AUTONEG_DISABLE; cmd.speed = pd->speed; cmd.duplex = pd->duplex; } mv643xx_eth_set_settings(mp->dev, &cmd); return 0; } static void init_pscr(struct mv643xx_eth_private *mp, int speed, int duplex) { u32 pscr; pscr = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num)); if (pscr & SERIAL_PORT_ENABLE) { pscr &= ~SERIAL_PORT_ENABLE; wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr); } pscr = MAX_RX_PACKET_9700BYTE | SERIAL_PORT_CONTROL_RESERVED; if (mp->phy_addr == -1) { pscr |= DISABLE_AUTO_NEG_SPEED_GMII; if (speed == SPEED_1000) pscr |= SET_GMII_SPEED_TO_1000; else if (speed == SPEED_100) pscr |= SET_MII_SPEED_TO_100; pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL; pscr |= DISABLE_AUTO_NEG_FOR_DUPLEX; if (duplex == DUPLEX_FULL) pscr |= SET_FULL_DUPLEX_MODE; } wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr); } static int mv643xx_eth_probe(struct platform_device *pdev) { struct mv643xx_eth_platform_data *pd; struct mv643xx_eth_private *mp; struct net_device *dev; struct resource *res; DECLARE_MAC_BUF(mac); int err; pd = pdev->dev.platform_data; if (pd == NULL) { dev_printk(KERN_ERR, &pdev->dev, "no mv643xx_eth_platform_data\n"); return -ENODEV; } if (pd->shared == NULL) { dev_printk(KERN_ERR, &pdev->dev, "no mv643xx_eth_platform_data->shared\n"); return -ENODEV; } dev = alloc_etherdev(sizeof(struct mv643xx_eth_private)); if (!dev) return -ENOMEM; mp = netdev_priv(dev); platform_set_drvdata(pdev, mp); mp->shared = platform_get_drvdata(pd->shared); mp->port_num = pd->port_number; mp->dev = dev; #ifdef MV643XX_ETH_NAPI netif_napi_add(dev, &mp->napi, mv643xx_eth_poll, 64); #endif set_params(mp, pd); spin_lock_init(&mp->lock); mib_counters_clear(mp); INIT_WORK(&mp->tx_timeout_task, tx_timeout_task); if (mp->phy_addr != -1) { err = phy_init(mp, pd); if (err) goto out; SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops); } else { SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops_phyless); } init_pscr(mp, pd->speed, pd->duplex); res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); BUG_ON(!res); dev->irq = res->start; dev->hard_start_xmit = mv643xx_eth_xmit; dev->open = mv643xx_eth_open; dev->stop = mv643xx_eth_stop; dev->set_multicast_list = mv643xx_eth_set_rx_mode; dev->set_mac_address = mv643xx_eth_set_mac_address; dev->do_ioctl = mv643xx_eth_ioctl; dev->change_mtu = mv643xx_eth_change_mtu; dev->tx_timeout = mv643xx_eth_tx_timeout; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = mv643xx_eth_netpoll; #endif dev->watchdog_timeo = 2 * HZ; dev->base_addr = 0; #ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX /* * Zero copy can only work if we use Discovery II memory. Else, we will * have to map the buffers to ISA memory which is only 16 MB */ dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM; #endif SET_NETDEV_DEV(dev, &pdev->dev); if (mp->shared->win_protect) wrl(mp, WINDOW_PROTECT(mp->port_num), mp->shared->win_protect); err = register_netdev(dev); if (err) goto out; dev_printk(KERN_NOTICE, &dev->dev, "port %d with MAC address %s\n", mp->port_num, print_mac(mac, dev->dev_addr)); if (dev->features & NETIF_F_SG) dev_printk(KERN_NOTICE, &dev->dev, "scatter/gather enabled\n"); if (dev->features & NETIF_F_IP_CSUM) dev_printk(KERN_NOTICE, &dev->dev, "tx checksum offload\n"); #ifdef MV643XX_ETH_NAPI dev_printk(KERN_NOTICE, &dev->dev, "napi enabled\n"); #endif if (mp->tx_desc_sram_size > 0) dev_printk(KERN_NOTICE, &dev->dev, "configured with sram\n"); return 0; out: free_netdev(dev); return err; } static int mv643xx_eth_remove(struct platform_device *pdev) { struct mv643xx_eth_private *mp = platform_get_drvdata(pdev); unregister_netdev(mp->dev); flush_scheduled_work(); free_netdev(mp->dev); platform_set_drvdata(pdev, NULL); return 0; } static void mv643xx_eth_shutdown(struct platform_device *pdev) { struct mv643xx_eth_private *mp = platform_get_drvdata(pdev); /* Mask all interrupts on ethernet port */ wrl(mp, INT_MASK(mp->port_num), 0); rdl(mp, INT_MASK(mp->port_num)); if (netif_running(mp->dev)) port_reset(mp); } static struct platform_driver mv643xx_eth_driver = { .probe = mv643xx_eth_probe, .remove = mv643xx_eth_remove, .shutdown = mv643xx_eth_shutdown, .driver = { .name = MV643XX_ETH_NAME, .owner = THIS_MODULE, }, }; static int __init mv643xx_eth_init_module(void) { int rc; rc = platform_driver_register(&mv643xx_eth_shared_driver); if (!rc) { rc = platform_driver_register(&mv643xx_eth_driver); if (rc) platform_driver_unregister(&mv643xx_eth_shared_driver); } return rc; } module_init(mv643xx_eth_init_module); static void __exit mv643xx_eth_cleanup_module(void) { platform_driver_unregister(&mv643xx_eth_driver); platform_driver_unregister(&mv643xx_eth_shared_driver); } module_exit(mv643xx_eth_cleanup_module); MODULE_AUTHOR("Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, " "Manish Lachwani, Dale Farnsworth and Lennert Buytenhek"); MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME); MODULE_ALIAS("platform:" MV643XX_ETH_NAME);