/* * Atmel MACB Ethernet Controller driver * * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/phy.h> #include <mach/board.h> #include <mach/cpu.h> #include "macb.h" #define RX_BUFFER_SIZE 128 #define RX_RING_SIZE 512 #define RX_RING_BYTES (sizeof(struct dma_desc) * RX_RING_SIZE) /* Make the IP header word-aligned (the ethernet header is 14 bytes) */ #define RX_OFFSET 2 #define TX_RING_SIZE 128 #define DEF_TX_RING_PENDING (TX_RING_SIZE - 1) #define TX_RING_BYTES (sizeof(struct dma_desc) * TX_RING_SIZE) #define TX_RING_GAP(bp) \ (TX_RING_SIZE - (bp)->tx_pending) #define TX_BUFFS_AVAIL(bp) \ (((bp)->tx_tail <= (bp)->tx_head) ? \ (bp)->tx_tail + (bp)->tx_pending - (bp)->tx_head : \ (bp)->tx_tail - (bp)->tx_head - TX_RING_GAP(bp)) #define NEXT_TX(n) (((n) + 1) & (TX_RING_SIZE - 1)) #define NEXT_RX(n) (((n) + 1) & (RX_RING_SIZE - 1)) /* minimum number of free TX descriptors before waking up TX process */ #define MACB_TX_WAKEUP_THRESH (TX_RING_SIZE / 4) #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \ | MACB_BIT(ISR_ROVR)) static void __macb_set_hwaddr(struct macb *bp) { u32 bottom; u16 top; bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); macb_writel(bp, SA1B, bottom); top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); macb_writel(bp, SA1T, top); } static void __init macb_get_hwaddr(struct macb *bp) { u32 bottom; u16 top; u8 addr[6]; bottom = macb_readl(bp, SA1B); top = macb_readl(bp, SA1T); addr[0] = bottom & 0xff; addr[1] = (bottom >> 8) & 0xff; addr[2] = (bottom >> 16) & 0xff; addr[3] = (bottom >> 24) & 0xff; addr[4] = top & 0xff; addr[5] = (top >> 8) & 0xff; if (is_valid_ether_addr(addr)) { memcpy(bp->dev->dev_addr, addr, sizeof(addr)); } else { dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); random_ether_addr(bp->dev->dev_addr); } } static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct macb *bp = bus->priv; int value; macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF) | MACB_BF(RW, MACB_MAN_READ) | MACB_BF(PHYA, mii_id) | MACB_BF(REGA, regnum) | MACB_BF(CODE, MACB_MAN_CODE))); /* wait for end of transfer */ while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR))) cpu_relax(); value = MACB_BFEXT(DATA, macb_readl(bp, MAN)); return value; } static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct macb *bp = bus->priv; macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF) | MACB_BF(RW, MACB_MAN_WRITE) | MACB_BF(PHYA, mii_id) | MACB_BF(REGA, regnum) | MACB_BF(CODE, MACB_MAN_CODE) | MACB_BF(DATA, value))); /* wait for end of transfer */ while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR))) cpu_relax(); return 0; } static int macb_mdio_reset(struct mii_bus *bus) { return 0; } static void macb_handle_link_change(struct net_device *dev) { struct macb *bp = netdev_priv(dev); struct phy_device *phydev = bp->phy_dev; unsigned long flags; int status_change = 0; spin_lock_irqsave(&bp->lock, flags); if (phydev->link) { if ((bp->speed != phydev->speed) || (bp->duplex != phydev->duplex)) { u32 reg; reg = macb_readl(bp, NCFGR); reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); if (phydev->duplex) reg |= MACB_BIT(FD); if (phydev->speed == SPEED_100) reg |= MACB_BIT(SPD); macb_writel(bp, NCFGR, reg); bp->speed = phydev->speed; bp->duplex = phydev->duplex; status_change = 1; } } if (phydev->link != bp->link) { if (!phydev->link) { bp->speed = 0; bp->duplex = -1; } bp->link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&bp->lock, flags); if (status_change) { if (phydev->link) printk(KERN_INFO "%s: link up (%d/%s)\n", dev->name, phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full":"Half"); else printk(KERN_INFO "%s: link down\n", dev->name); } } /* based on au1000_eth. c*/ static int macb_mii_probe(struct net_device *dev) { struct macb *bp = netdev_priv(dev); struct phy_device *phydev; struct eth_platform_data *pdata; int ret; phydev = phy_find_first(bp->mii_bus); if (!phydev) { printk (KERN_ERR "%s: no PHY found\n", dev->name); return -1; } pdata = bp->pdev->dev.platform_data; /* TODO : add pin_irq */ /* attach the mac to the phy */ ret = phy_connect_direct(dev, phydev, &macb_handle_link_change, 0, pdata && pdata->is_rmii ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); if (ret) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return ret; } /* mask with MAC supported features */ phydev->supported &= PHY_BASIC_FEATURES; phydev->advertising = phydev->supported; bp->link = 0; bp->speed = 0; bp->duplex = -1; bp->phy_dev = phydev; return 0; } static int macb_mii_init(struct macb *bp) { struct eth_platform_data *pdata; int err = -ENXIO, i; /* Enable management port */ macb_writel(bp, NCR, MACB_BIT(MPE)); bp->mii_bus = mdiobus_alloc(); if (bp->mii_bus == NULL) { err = -ENOMEM; goto err_out; } bp->mii_bus->name = "MACB_mii_bus"; bp->mii_bus->read = &macb_mdio_read; bp->mii_bus->write = &macb_mdio_write; bp->mii_bus->reset = &macb_mdio_reset; snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%x", bp->pdev->id); bp->mii_bus->priv = bp; bp->mii_bus->parent = &bp->dev->dev; pdata = bp->pdev->dev.platform_data; if (pdata) bp->mii_bus->phy_mask = pdata->phy_mask; bp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); if (!bp->mii_bus->irq) { err = -ENOMEM; goto err_out_free_mdiobus; } for (i = 0; i < PHY_MAX_ADDR; i++) bp->mii_bus->irq[i] = PHY_POLL; dev_set_drvdata(&bp->dev->dev, bp->mii_bus); if (mdiobus_register(bp->mii_bus)) goto err_out_free_mdio_irq; if (macb_mii_probe(bp->dev) != 0) { goto err_out_unregister_bus; } return 0; err_out_unregister_bus: mdiobus_unregister(bp->mii_bus); err_out_free_mdio_irq: kfree(bp->mii_bus->irq); err_out_free_mdiobus: mdiobus_free(bp->mii_bus); err_out: return err; } static void macb_update_stats(struct macb *bp) { u32 __iomem *reg = bp->regs + MACB_PFR; u32 *p = &bp->hw_stats.rx_pause_frames; u32 *end = &bp->hw_stats.tx_pause_frames + 1; WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); for(; p < end; p++, reg++) *p += __raw_readl(reg); } static void macb_tx(struct macb *bp) { unsigned int tail; unsigned int head; u32 status; status = macb_readl(bp, TSR); macb_writel(bp, TSR, status); dev_dbg(&bp->pdev->dev, "macb_tx status = %02lx\n", (unsigned long)status); if (status & (MACB_BIT(UND) | MACB_BIT(TSR_RLE))) { int i; printk(KERN_ERR "%s: TX %s, resetting buffers\n", bp->dev->name, status & MACB_BIT(UND) ? "underrun" : "retry limit exceeded"); /* Transfer ongoing, disable transmitter, to avoid confusion */ if (status & MACB_BIT(TGO)) macb_writel(bp, NCR, macb_readl(bp, NCR) & ~MACB_BIT(TE)); head = bp->tx_head; /*Mark all the buffer as used to avoid sending a lost buffer*/ for (i = 0; i < TX_RING_SIZE; i++) bp->tx_ring[i].ctrl = MACB_BIT(TX_USED); /* free transmit buffer in upper layer*/ for (tail = bp->tx_tail; tail != head; tail = NEXT_TX(tail)) { struct ring_info *rp = &bp->tx_skb[tail]; struct sk_buff *skb = rp->skb; BUG_ON(skb == NULL); rmb(); dma_unmap_single(&bp->pdev->dev, rp->mapping, skb->len, DMA_TO_DEVICE); rp->skb = NULL; dev_kfree_skb_irq(skb); } bp->tx_head = bp->tx_tail = 0; /* Enable the transmitter again */ if (status & MACB_BIT(TGO)) macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE)); } if (!(status & MACB_BIT(COMP))) /* * This may happen when a buffer becomes complete * between reading the ISR and scanning the * descriptors. Nothing to worry about. */ return; head = bp->tx_head; for (tail = bp->tx_tail; tail != head; tail = NEXT_TX(tail)) { struct ring_info *rp = &bp->tx_skb[tail]; struct sk_buff *skb = rp->skb; u32 bufstat; BUG_ON(skb == NULL); rmb(); bufstat = bp->tx_ring[tail].ctrl; if (!(bufstat & MACB_BIT(TX_USED))) break; dev_dbg(&bp->pdev->dev, "skb %u (data %p) TX complete\n", tail, skb->data); dma_unmap_single(&bp->pdev->dev, rp->mapping, skb->len, DMA_TO_DEVICE); bp->stats.tx_packets++; bp->stats.tx_bytes += skb->len; rp->skb = NULL; dev_kfree_skb_irq(skb); } bp->tx_tail = tail; if (netif_queue_stopped(bp->dev) && TX_BUFFS_AVAIL(bp) > MACB_TX_WAKEUP_THRESH) netif_wake_queue(bp->dev); } static int macb_rx_frame(struct macb *bp, unsigned int first_frag, unsigned int last_frag) { unsigned int len; unsigned int frag; unsigned int offset = 0; struct sk_buff *skb; len = MACB_BFEXT(RX_FRMLEN, bp->rx_ring[last_frag].ctrl); dev_dbg(&bp->pdev->dev, "macb_rx_frame frags %u - %u (len %u)\n", first_frag, last_frag, len); skb = dev_alloc_skb(len + RX_OFFSET); if (!skb) { bp->stats.rx_dropped++; for (frag = first_frag; ; frag = NEXT_RX(frag)) { bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED); if (frag == last_frag) break; } wmb(); return 1; } skb_reserve(skb, RX_OFFSET); skb_checksum_none_assert(skb); skb_put(skb, len); for (frag = first_frag; ; frag = NEXT_RX(frag)) { unsigned int frag_len = RX_BUFFER_SIZE; if (offset + frag_len > len) { BUG_ON(frag != last_frag); frag_len = len - offset; } skb_copy_to_linear_data_offset(skb, offset, (bp->rx_buffers + (RX_BUFFER_SIZE * frag)), frag_len); offset += RX_BUFFER_SIZE; bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED); wmb(); if (frag == last_frag) break; } skb->protocol = eth_type_trans(skb, bp->dev); bp->stats.rx_packets++; bp->stats.rx_bytes += len; dev_dbg(&bp->pdev->dev, "received skb of length %u, csum: %08x\n", skb->len, skb->csum); netif_receive_skb(skb); return 0; } /* Mark DMA descriptors from begin up to and not including end as unused */ static void discard_partial_frame(struct macb *bp, unsigned int begin, unsigned int end) { unsigned int frag; for (frag = begin; frag != end; frag = NEXT_RX(frag)) bp->rx_ring[frag].addr &= ~MACB_BIT(RX_USED); wmb(); /* * When this happens, the hardware stats registers for * whatever caused this is updated, so we don't have to record * anything. */ } static int macb_rx(struct macb *bp, int budget) { int received = 0; unsigned int tail = bp->rx_tail; int first_frag = -1; for (; budget > 0; tail = NEXT_RX(tail)) { u32 addr, ctrl; rmb(); addr = bp->rx_ring[tail].addr; ctrl = bp->rx_ring[tail].ctrl; if (!(addr & MACB_BIT(RX_USED))) break; if (ctrl & MACB_BIT(RX_SOF)) { if (first_frag != -1) discard_partial_frame(bp, first_frag, tail); first_frag = tail; } if (ctrl & MACB_BIT(RX_EOF)) { int dropped; BUG_ON(first_frag == -1); dropped = macb_rx_frame(bp, first_frag, tail); first_frag = -1; if (!dropped) { received++; budget--; } } } if (first_frag != -1) bp->rx_tail = first_frag; else bp->rx_tail = tail; return received; } static int macb_poll(struct napi_struct *napi, int budget) { struct macb *bp = container_of(napi, struct macb, napi); int work_done; u32 status; status = macb_readl(bp, RSR); macb_writel(bp, RSR, status); work_done = 0; dev_dbg(&bp->pdev->dev, "poll: status = %08lx, budget = %d\n", (unsigned long)status, budget); work_done = macb_rx(bp, budget); if (work_done < budget) { napi_complete(napi); /* * We've done what we can to clean the buffers. Make sure we * get notified when new packets arrive. */ macb_writel(bp, IER, MACB_RX_INT_FLAGS); } /* TODO: Handle errors */ return work_done; } static irqreturn_t macb_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct macb *bp = netdev_priv(dev); u32 status; status = macb_readl(bp, ISR); if (unlikely(!status)) return IRQ_NONE; spin_lock(&bp->lock); while (status) { /* close possible race with dev_close */ if (unlikely(!netif_running(dev))) { macb_writel(bp, IDR, ~0UL); break; } if (status & MACB_RX_INT_FLAGS) { /* * There's no point taking any more interrupts * until we have processed the buffers. The * scheduling call may fail if the poll routine * is already scheduled, so disable interrupts * now. */ macb_writel(bp, IDR, MACB_RX_INT_FLAGS); if (napi_schedule_prep(&bp->napi)) { dev_dbg(&bp->pdev->dev, "scheduling RX softirq\n"); __napi_schedule(&bp->napi); } } if (status & (MACB_BIT(TCOMP) | MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) macb_tx(bp); /* * Link change detection isn't possible with RMII, so we'll * add that if/when we get our hands on a full-blown MII PHY. */ if (status & MACB_BIT(HRESP)) { /* * TODO: Reset the hardware, and maybe move the printk * to a lower-priority context as well (work queue?) */ printk(KERN_ERR "%s: DMA bus error: HRESP not OK\n", dev->name); } status = macb_readl(bp, ISR); } spin_unlock(&bp->lock); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling receive - used by netconsole and other diagnostic tools * to allow network i/o with interrupts disabled. */ static void macb_poll_controller(struct net_device *dev) { unsigned long flags; local_irq_save(flags); macb_interrupt(dev->irq, dev); local_irq_restore(flags); } #endif static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct macb *bp = netdev_priv(dev); dma_addr_t mapping; unsigned int len, entry; u32 ctrl; unsigned long flags; #ifdef DEBUG int i; dev_dbg(&bp->pdev->dev, "start_xmit: len %u head %p data %p tail %p end %p\n", skb->len, skb->head, skb->data, skb_tail_pointer(skb), skb_end_pointer(skb)); dev_dbg(&bp->pdev->dev, "data:"); for (i = 0; i < 16; i++) printk(" %02x", (unsigned int)skb->data[i]); printk("\n"); #endif len = skb->len; spin_lock_irqsave(&bp->lock, flags); /* This is a hard error, log it. */ if (TX_BUFFS_AVAIL(bp) < 1) { netif_stop_queue(dev); spin_unlock_irqrestore(&bp->lock, flags); dev_err(&bp->pdev->dev, "BUG! Tx Ring full when queue awake!\n"); dev_dbg(&bp->pdev->dev, "tx_head = %u, tx_tail = %u\n", bp->tx_head, bp->tx_tail); return NETDEV_TX_BUSY; } entry = bp->tx_head; dev_dbg(&bp->pdev->dev, "Allocated ring entry %u\n", entry); mapping = dma_map_single(&bp->pdev->dev, skb->data, len, DMA_TO_DEVICE); bp->tx_skb[entry].skb = skb; bp->tx_skb[entry].mapping = mapping; dev_dbg(&bp->pdev->dev, "Mapped skb data %p to DMA addr %08lx\n", skb->data, (unsigned long)mapping); ctrl = MACB_BF(TX_FRMLEN, len); ctrl |= MACB_BIT(TX_LAST); if (entry == (TX_RING_SIZE - 1)) ctrl |= MACB_BIT(TX_WRAP); bp->tx_ring[entry].addr = mapping; bp->tx_ring[entry].ctrl = ctrl; wmb(); entry = NEXT_TX(entry); bp->tx_head = entry; macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); if (TX_BUFFS_AVAIL(bp) < 1) netif_stop_queue(dev); spin_unlock_irqrestore(&bp->lock, flags); return NETDEV_TX_OK; } static void macb_free_consistent(struct macb *bp) { if (bp->tx_skb) { kfree(bp->tx_skb); bp->tx_skb = NULL; } if (bp->rx_ring) { dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES, bp->rx_ring, bp->rx_ring_dma); bp->rx_ring = NULL; } if (bp->tx_ring) { dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES, bp->tx_ring, bp->tx_ring_dma); bp->tx_ring = NULL; } if (bp->rx_buffers) { dma_free_coherent(&bp->pdev->dev, RX_RING_SIZE * RX_BUFFER_SIZE, bp->rx_buffers, bp->rx_buffers_dma); bp->rx_buffers = NULL; } } static int macb_alloc_consistent(struct macb *bp) { int size; size = TX_RING_SIZE * sizeof(struct ring_info); bp->tx_skb = kmalloc(size, GFP_KERNEL); if (!bp->tx_skb) goto out_err; size = RX_RING_BYTES; bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, &bp->rx_ring_dma, GFP_KERNEL); if (!bp->rx_ring) goto out_err; dev_dbg(&bp->pdev->dev, "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", size, (unsigned long)bp->rx_ring_dma, bp->rx_ring); size = TX_RING_BYTES; bp->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, &bp->tx_ring_dma, GFP_KERNEL); if (!bp->tx_ring) goto out_err; dev_dbg(&bp->pdev->dev, "Allocated TX ring of %d bytes at %08lx (mapped %p)\n", size, (unsigned long)bp->tx_ring_dma, bp->tx_ring); size = RX_RING_SIZE * RX_BUFFER_SIZE; bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, &bp->rx_buffers_dma, GFP_KERNEL); if (!bp->rx_buffers) goto out_err; dev_dbg(&bp->pdev->dev, "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers); return 0; out_err: macb_free_consistent(bp); return -ENOMEM; } static void macb_init_rings(struct macb *bp) { int i; dma_addr_t addr; addr = bp->rx_buffers_dma; for (i = 0; i < RX_RING_SIZE; i++) { bp->rx_ring[i].addr = addr; bp->rx_ring[i].ctrl = 0; addr += RX_BUFFER_SIZE; } bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP); for (i = 0; i < TX_RING_SIZE; i++) { bp->tx_ring[i].addr = 0; bp->tx_ring[i].ctrl = MACB_BIT(TX_USED); } bp->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP); bp->rx_tail = bp->tx_head = bp->tx_tail = 0; } static void macb_reset_hw(struct macb *bp) { /* Make sure we have the write buffer for ourselves */ wmb(); /* * Disable RX and TX (XXX: Should we halt the transmission * more gracefully?) */ macb_writel(bp, NCR, 0); /* Clear the stats registers (XXX: Update stats first?) */ macb_writel(bp, NCR, MACB_BIT(CLRSTAT)); /* Clear all status flags */ macb_writel(bp, TSR, ~0UL); macb_writel(bp, RSR, ~0UL); /* Disable all interrupts */ macb_writel(bp, IDR, ~0UL); macb_readl(bp, ISR); } static void macb_init_hw(struct macb *bp) { u32 config; macb_reset_hw(bp); __macb_set_hwaddr(bp); config = macb_readl(bp, NCFGR) & MACB_BF(CLK, -1L); config |= MACB_BIT(PAE); /* PAuse Enable */ config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ config |= MACB_BIT(BIG); /* Receive oversized frames */ if (bp->dev->flags & IFF_PROMISC) config |= MACB_BIT(CAF); /* Copy All Frames */ if (!(bp->dev->flags & IFF_BROADCAST)) config |= MACB_BIT(NBC); /* No BroadCast */ macb_writel(bp, NCFGR, config); /* Initialize TX and RX buffers */ macb_writel(bp, RBQP, bp->rx_ring_dma); macb_writel(bp, TBQP, bp->tx_ring_dma); /* Enable TX and RX */ macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE)); /* Enable interrupts */ macb_writel(bp, IER, (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) | MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE) | MACB_BIT(TXERR) | MACB_BIT(TCOMP) | MACB_BIT(ISR_ROVR) | MACB_BIT(HRESP))); } /* * The hash address register is 64 bits long and takes up two * locations in the memory map. The least significant bits are stored * in EMAC_HSL and the most significant bits in EMAC_HSH. * * The unicast hash enable and the multicast hash enable bits in the * network configuration register enable the reception of hash matched * frames. The destination address is reduced to a 6 bit index into * the 64 bit hash register using the following hash function. The * hash function is an exclusive or of every sixth bit of the * destination address. * * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] * * da[0] represents the least significant bit of the first byte * received, that is, the multicast/unicast indicator, and da[47] * represents the most significant bit of the last byte received. If * the hash index, hi[n], points to a bit that is set in the hash * register then the frame will be matched according to whether the * frame is multicast or unicast. A multicast match will be signalled * if the multicast hash enable bit is set, da[0] is 1 and the hash * index points to a bit set in the hash register. A unicast match * will be signalled if the unicast hash enable bit is set, da[0] is 0 * and the hash index points to a bit set in the hash register. To * receive all multicast frames, the hash register should be set with * all ones and the multicast hash enable bit should be set in the * network configuration register. */ static inline int hash_bit_value(int bitnr, __u8 *addr) { if (addr[bitnr / 8] & (1 << (bitnr % 8))) return 1; return 0; } /* * Return the hash index value for the specified address. */ static int hash_get_index(__u8 *addr) { int i, j, bitval; int hash_index = 0; for (j = 0; j < 6; j++) { for (i = 0, bitval = 0; i < 8; i++) bitval ^= hash_bit_value(i*6 + j, addr); hash_index |= (bitval << j); } return hash_index; } /* * Add multicast addresses to the internal multicast-hash table. */ static void macb_sethashtable(struct net_device *dev) { struct netdev_hw_addr *ha; unsigned long mc_filter[2]; unsigned int bitnr; struct macb *bp = netdev_priv(dev); mc_filter[0] = mc_filter[1] = 0; netdev_for_each_mc_addr(ha, dev) { bitnr = hash_get_index(ha->addr); mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); } macb_writel(bp, HRB, mc_filter[0]); macb_writel(bp, HRT, mc_filter[1]); } /* * Enable/Disable promiscuous and multicast modes. */ static void macb_set_rx_mode(struct net_device *dev) { unsigned long cfg; struct macb *bp = netdev_priv(dev); cfg = macb_readl(bp, NCFGR); if (dev->flags & IFF_PROMISC) /* Enable promiscuous mode */ cfg |= MACB_BIT(CAF); else if (dev->flags & (~IFF_PROMISC)) /* Disable promiscuous mode */ cfg &= ~MACB_BIT(CAF); if (dev->flags & IFF_ALLMULTI) { /* Enable all multicast mode */ macb_writel(bp, HRB, -1); macb_writel(bp, HRT, -1); cfg |= MACB_BIT(NCFGR_MTI); } else if (!netdev_mc_empty(dev)) { /* Enable specific multicasts */ macb_sethashtable(dev); cfg |= MACB_BIT(NCFGR_MTI); } else if (dev->flags & (~IFF_ALLMULTI)) { /* Disable all multicast mode */ macb_writel(bp, HRB, 0); macb_writel(bp, HRT, 0); cfg &= ~MACB_BIT(NCFGR_MTI); } macb_writel(bp, NCFGR, cfg); } static int macb_open(struct net_device *dev) { struct macb *bp = netdev_priv(dev); int err; dev_dbg(&bp->pdev->dev, "open\n"); /* if the phy is not yet register, retry later*/ if (!bp->phy_dev) return -EAGAIN; if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; err = macb_alloc_consistent(bp); if (err) { printk(KERN_ERR "%s: Unable to allocate DMA memory (error %d)\n", dev->name, err); return err; } napi_enable(&bp->napi); macb_init_rings(bp); macb_init_hw(bp); /* schedule a link state check */ phy_start(bp->phy_dev); netif_start_queue(dev); return 0; } static int macb_close(struct net_device *dev) { struct macb *bp = netdev_priv(dev); unsigned long flags; netif_stop_queue(dev); napi_disable(&bp->napi); if (bp->phy_dev) phy_stop(bp->phy_dev); spin_lock_irqsave(&bp->lock, flags); macb_reset_hw(bp); netif_carrier_off(dev); spin_unlock_irqrestore(&bp->lock, flags); macb_free_consistent(bp); return 0; } static struct net_device_stats *macb_get_stats(struct net_device *dev) { struct macb *bp = netdev_priv(dev); struct net_device_stats *nstat = &bp->stats; struct macb_stats *hwstat = &bp->hw_stats; /* read stats from hardware */ macb_update_stats(bp); /* Convert HW stats into netdevice stats */ nstat->rx_errors = (hwstat->rx_fcs_errors + hwstat->rx_align_errors + hwstat->rx_resource_errors + hwstat->rx_overruns + hwstat->rx_oversize_pkts + hwstat->rx_jabbers + hwstat->rx_undersize_pkts + hwstat->sqe_test_errors + hwstat->rx_length_mismatch); nstat->tx_errors = (hwstat->tx_late_cols + hwstat->tx_excessive_cols + hwstat->tx_underruns + hwstat->tx_carrier_errors); nstat->collisions = (hwstat->tx_single_cols + hwstat->tx_multiple_cols + hwstat->tx_excessive_cols); nstat->rx_length_errors = (hwstat->rx_oversize_pkts + hwstat->rx_jabbers + hwstat->rx_undersize_pkts + hwstat->rx_length_mismatch); nstat->rx_over_errors = hwstat->rx_resource_errors; nstat->rx_crc_errors = hwstat->rx_fcs_errors; nstat->rx_frame_errors = hwstat->rx_align_errors; nstat->rx_fifo_errors = hwstat->rx_overruns; /* XXX: What does "missed" mean? */ nstat->tx_aborted_errors = hwstat->tx_excessive_cols; nstat->tx_carrier_errors = hwstat->tx_carrier_errors; nstat->tx_fifo_errors = hwstat->tx_underruns; /* Don't know about heartbeat or window errors... */ return nstat; } static int macb_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct macb *bp = netdev_priv(dev); struct phy_device *phydev = bp->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_gset(phydev, cmd); } static int macb_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct macb *bp = netdev_priv(dev); struct phy_device *phydev = bp->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_sset(phydev, cmd); } static void macb_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct macb *bp = netdev_priv(dev); strcpy(info->driver, bp->pdev->dev.driver->name); strcpy(info->version, "$Revision: 1.14 $"); strcpy(info->bus_info, dev_name(&bp->pdev->dev)); } static const struct ethtool_ops macb_ethtool_ops = { .get_settings = macb_get_settings, .set_settings = macb_set_settings, .get_drvinfo = macb_get_drvinfo, .get_link = ethtool_op_get_link, }; static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct macb *bp = netdev_priv(dev); struct phy_device *phydev = bp->phy_dev; if (!netif_running(dev)) return -EINVAL; if (!phydev) return -ENODEV; return phy_mii_ioctl(phydev, rq, cmd); } static const struct net_device_ops macb_netdev_ops = { .ndo_open = macb_open, .ndo_stop = macb_close, .ndo_start_xmit = macb_start_xmit, .ndo_set_multicast_list = macb_set_rx_mode, .ndo_get_stats = macb_get_stats, .ndo_do_ioctl = macb_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = macb_poll_controller, #endif }; static int __init macb_probe(struct platform_device *pdev) { struct eth_platform_data *pdata; struct resource *regs; struct net_device *dev; struct macb *bp; struct phy_device *phydev; unsigned long pclk_hz; u32 config; int err = -ENXIO; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!regs) { dev_err(&pdev->dev, "no mmio resource defined\n"); goto err_out; } err = -ENOMEM; dev = alloc_etherdev(sizeof(*bp)); if (!dev) { dev_err(&pdev->dev, "etherdev alloc failed, aborting.\n"); goto err_out; } SET_NETDEV_DEV(dev, &pdev->dev); /* TODO: Actually, we have some interesting features... */ dev->features |= 0; bp = netdev_priv(dev); bp->pdev = pdev; bp->dev = dev; spin_lock_init(&bp->lock); #if defined(CONFIG_ARCH_AT91) bp->pclk = clk_get(&pdev->dev, "macb_clk"); if (IS_ERR(bp->pclk)) { dev_err(&pdev->dev, "failed to get macb_clk\n"); goto err_out_free_dev; } clk_enable(bp->pclk); #else bp->pclk = clk_get(&pdev->dev, "pclk"); if (IS_ERR(bp->pclk)) { dev_err(&pdev->dev, "failed to get pclk\n"); goto err_out_free_dev; } bp->hclk = clk_get(&pdev->dev, "hclk"); if (IS_ERR(bp->hclk)) { dev_err(&pdev->dev, "failed to get hclk\n"); goto err_out_put_pclk; } clk_enable(bp->pclk); clk_enable(bp->hclk); #endif bp->regs = ioremap(regs->start, regs->end - regs->start + 1); if (!bp->regs) { dev_err(&pdev->dev, "failed to map registers, aborting.\n"); err = -ENOMEM; goto err_out_disable_clocks; } dev->irq = platform_get_irq(pdev, 0); err = request_irq(dev->irq, macb_interrupt, IRQF_SAMPLE_RANDOM, dev->name, dev); if (err) { printk(KERN_ERR "%s: Unable to request IRQ %d (error %d)\n", dev->name, dev->irq, err); goto err_out_iounmap; } dev->netdev_ops = &macb_netdev_ops; netif_napi_add(dev, &bp->napi, macb_poll, 64); dev->ethtool_ops = &macb_ethtool_ops; dev->base_addr = regs->start; /* Set MII management clock divider */ pclk_hz = clk_get_rate(bp->pclk); if (pclk_hz <= 20000000) config = MACB_BF(CLK, MACB_CLK_DIV8); else if (pclk_hz <= 40000000) config = MACB_BF(CLK, MACB_CLK_DIV16); else if (pclk_hz <= 80000000) config = MACB_BF(CLK, MACB_CLK_DIV32); else config = MACB_BF(CLK, MACB_CLK_DIV64); macb_writel(bp, NCFGR, config); macb_get_hwaddr(bp); pdata = pdev->dev.platform_data; if (pdata && pdata->is_rmii) #if defined(CONFIG_ARCH_AT91) macb_writel(bp, USRIO, (MACB_BIT(RMII) | MACB_BIT(CLKEN)) ); #else macb_writel(bp, USRIO, 0); #endif else #if defined(CONFIG_ARCH_AT91) macb_writel(bp, USRIO, MACB_BIT(CLKEN)); #else macb_writel(bp, USRIO, MACB_BIT(MII)); #endif bp->tx_pending = DEF_TX_RING_PENDING; err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); goto err_out_free_irq; } if (macb_mii_init(bp) != 0) { goto err_out_unregister_netdev; } platform_set_drvdata(pdev, dev); printk(KERN_INFO "%s: Atmel MACB at 0x%08lx irq %d (%pM)\n", dev->name, dev->base_addr, dev->irq, dev->dev_addr); phydev = bp->phy_dev; printk(KERN_INFO "%s: attached PHY driver [%s] " "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq); return 0; err_out_unregister_netdev: unregister_netdev(dev); err_out_free_irq: free_irq(dev->irq, dev); err_out_iounmap: iounmap(bp->regs); err_out_disable_clocks: #ifndef CONFIG_ARCH_AT91 clk_disable(bp->hclk); clk_put(bp->hclk); #endif clk_disable(bp->pclk); #ifndef CONFIG_ARCH_AT91 err_out_put_pclk: #endif clk_put(bp->pclk); err_out_free_dev: free_netdev(dev); err_out: platform_set_drvdata(pdev, NULL); return err; } static int __exit macb_remove(struct platform_device *pdev) { struct net_device *dev; struct macb *bp; dev = platform_get_drvdata(pdev); if (dev) { bp = netdev_priv(dev); if (bp->phy_dev) phy_disconnect(bp->phy_dev); mdiobus_unregister(bp->mii_bus); kfree(bp->mii_bus->irq); mdiobus_free(bp->mii_bus); unregister_netdev(dev); free_irq(dev->irq, dev); iounmap(bp->regs); #ifndef CONFIG_ARCH_AT91 clk_disable(bp->hclk); clk_put(bp->hclk); #endif clk_disable(bp->pclk); clk_put(bp->pclk); free_netdev(dev); platform_set_drvdata(pdev, NULL); } return 0; } #ifdef CONFIG_PM static int macb_suspend(struct platform_device *pdev, pm_message_t state) { struct net_device *netdev = platform_get_drvdata(pdev); struct macb *bp = netdev_priv(netdev); netif_device_detach(netdev); #ifndef CONFIG_ARCH_AT91 clk_disable(bp->hclk); #endif clk_disable(bp->pclk); return 0; } static int macb_resume(struct platform_device *pdev) { struct net_device *netdev = platform_get_drvdata(pdev); struct macb *bp = netdev_priv(netdev); clk_enable(bp->pclk); #ifndef CONFIG_ARCH_AT91 clk_enable(bp->hclk); #endif netif_device_attach(netdev); return 0; } #else #define macb_suspend NULL #define macb_resume NULL #endif static struct platform_driver macb_driver = { .remove = __exit_p(macb_remove), .suspend = macb_suspend, .resume = macb_resume, .driver = { .name = "macb", .owner = THIS_MODULE, }, }; static int __init macb_init(void) { return platform_driver_probe(&macb_driver, macb_probe); } static void __exit macb_exit(void) { platform_driver_unregister(&macb_driver); } module_init(macb_init); module_exit(macb_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Atmel MACB Ethernet driver"); MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>"); MODULE_ALIAS("platform:macb");