/* * AT86RF230/RF231 driver * * Copyright (C) 2009-2012 Siemens AG * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> * Alexander Aring <aar@pengutronix.de> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/gpio.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/spi/spi.h> #include <linux/spi/at86rf230.h> #include <linux/regmap.h> #include <linux/skbuff.h> #include <linux/of_gpio.h> #include <linux/ieee802154.h> #include <net/mac802154.h> #include <net/cfg802154.h> struct at86rf230_local; /* at86rf2xx chip depend data. * All timings are in us. */ struct at86rf2xx_chip_data { u16 t_sleep_cycle; u16 t_channel_switch; u16 t_reset_to_off; u16 t_off_to_aack; u16 t_off_to_tx_on; u16 t_frame; u16 t_p_ack; /* completion timeout for tx in msecs */ u16 t_tx_timeout; int rssi_base_val; int (*set_channel)(struct at86rf230_local *, u8, u8); int (*get_desense_steps)(struct at86rf230_local *, s32); }; #define AT86RF2XX_MAX_BUF (127 + 3) struct at86rf230_state_change { struct at86rf230_local *lp; struct spi_message msg; struct spi_transfer trx; u8 buf[AT86RF2XX_MAX_BUF]; void (*complete)(void *context); u8 from_state; u8 to_state; bool irq_enable; }; struct at86rf230_local { struct spi_device *spi; struct ieee802154_hw *hw; struct at86rf2xx_chip_data *data; struct regmap *regmap; struct completion state_complete; struct at86rf230_state_change state; struct at86rf230_state_change irq; bool tx_aret; s8 max_frame_retries; bool is_tx; /* spinlock for is_tx protection */ spinlock_t lock; struct sk_buff *tx_skb; struct at86rf230_state_change tx; }; #define RG_TRX_STATUS (0x01) #define SR_TRX_STATUS 0x01, 0x1f, 0 #define SR_RESERVED_01_3 0x01, 0x20, 5 #define SR_CCA_STATUS 0x01, 0x40, 6 #define SR_CCA_DONE 0x01, 0x80, 7 #define RG_TRX_STATE (0x02) #define SR_TRX_CMD 0x02, 0x1f, 0 #define SR_TRAC_STATUS 0x02, 0xe0, 5 #define RG_TRX_CTRL_0 (0x03) #define SR_CLKM_CTRL 0x03, 0x07, 0 #define SR_CLKM_SHA_SEL 0x03, 0x08, 3 #define SR_PAD_IO_CLKM 0x03, 0x30, 4 #define SR_PAD_IO 0x03, 0xc0, 6 #define RG_TRX_CTRL_1 (0x04) #define SR_IRQ_POLARITY 0x04, 0x01, 0 #define SR_IRQ_MASK_MODE 0x04, 0x02, 1 #define SR_SPI_CMD_MODE 0x04, 0x0c, 2 #define SR_RX_BL_CTRL 0x04, 0x10, 4 #define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5 #define SR_IRQ_2_EXT_EN 0x04, 0x40, 6 #define SR_PA_EXT_EN 0x04, 0x80, 7 #define RG_PHY_TX_PWR (0x05) #define SR_TX_PWR 0x05, 0x0f, 0 #define SR_PA_LT 0x05, 0x30, 4 #define SR_PA_BUF_LT 0x05, 0xc0, 6 #define RG_PHY_RSSI (0x06) #define SR_RSSI 0x06, 0x1f, 0 #define SR_RND_VALUE 0x06, 0x60, 5 #define SR_RX_CRC_VALID 0x06, 0x80, 7 #define RG_PHY_ED_LEVEL (0x07) #define SR_ED_LEVEL 0x07, 0xff, 0 #define RG_PHY_CC_CCA (0x08) #define SR_CHANNEL 0x08, 0x1f, 0 #define SR_CCA_MODE 0x08, 0x60, 5 #define SR_CCA_REQUEST 0x08, 0x80, 7 #define RG_CCA_THRES (0x09) #define SR_CCA_ED_THRES 0x09, 0x0f, 0 #define SR_RESERVED_09_1 0x09, 0xf0, 4 #define RG_RX_CTRL (0x0a) #define SR_PDT_THRES 0x0a, 0x0f, 0 #define SR_RESERVED_0a_1 0x0a, 0xf0, 4 #define RG_SFD_VALUE (0x0b) #define SR_SFD_VALUE 0x0b, 0xff, 0 #define RG_TRX_CTRL_2 (0x0c) #define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0 #define SR_SUB_MODE 0x0c, 0x04, 2 #define SR_BPSK_QPSK 0x0c, 0x08, 3 #define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4 #define SR_RESERVED_0c_5 0x0c, 0x60, 5 #define SR_RX_SAFE_MODE 0x0c, 0x80, 7 #define RG_ANT_DIV (0x0d) #define SR_ANT_CTRL 0x0d, 0x03, 0 #define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2 #define SR_ANT_DIV_EN 0x0d, 0x08, 3 #define SR_RESERVED_0d_2 0x0d, 0x70, 4 #define SR_ANT_SEL 0x0d, 0x80, 7 #define RG_IRQ_MASK (0x0e) #define SR_IRQ_MASK 0x0e, 0xff, 0 #define RG_IRQ_STATUS (0x0f) #define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0 #define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1 #define SR_IRQ_2_RX_START 0x0f, 0x04, 2 #define SR_IRQ_3_TRX_END 0x0f, 0x08, 3 #define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4 #define SR_IRQ_5_AMI 0x0f, 0x20, 5 #define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6 #define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7 #define RG_VREG_CTRL (0x10) #define SR_RESERVED_10_6 0x10, 0x03, 0 #define SR_DVDD_OK 0x10, 0x04, 2 #define SR_DVREG_EXT 0x10, 0x08, 3 #define SR_RESERVED_10_3 0x10, 0x30, 4 #define SR_AVDD_OK 0x10, 0x40, 6 #define SR_AVREG_EXT 0x10, 0x80, 7 #define RG_BATMON (0x11) #define SR_BATMON_VTH 0x11, 0x0f, 0 #define SR_BATMON_HR 0x11, 0x10, 4 #define SR_BATMON_OK 0x11, 0x20, 5 #define SR_RESERVED_11_1 0x11, 0xc0, 6 #define RG_XOSC_CTRL (0x12) #define SR_XTAL_TRIM 0x12, 0x0f, 0 #define SR_XTAL_MODE 0x12, 0xf0, 4 #define RG_RX_SYN (0x15) #define SR_RX_PDT_LEVEL 0x15, 0x0f, 0 #define SR_RESERVED_15_2 0x15, 0x70, 4 #define SR_RX_PDT_DIS 0x15, 0x80, 7 #define RG_XAH_CTRL_1 (0x17) #define SR_RESERVED_17_8 0x17, 0x01, 0 #define SR_AACK_PROM_MODE 0x17, 0x02, 1 #define SR_AACK_ACK_TIME 0x17, 0x04, 2 #define SR_RESERVED_17_5 0x17, 0x08, 3 #define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4 #define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5 #define SR_CSMA_LBT_MODE 0x17, 0x40, 6 #define SR_RESERVED_17_1 0x17, 0x80, 7 #define RG_FTN_CTRL (0x18) #define SR_RESERVED_18_2 0x18, 0x7f, 0 #define SR_FTN_START 0x18, 0x80, 7 #define RG_PLL_CF (0x1a) #define SR_RESERVED_1a_2 0x1a, 0x7f, 0 #define SR_PLL_CF_START 0x1a, 0x80, 7 #define RG_PLL_DCU (0x1b) #define SR_RESERVED_1b_3 0x1b, 0x3f, 0 #define SR_RESERVED_1b_2 0x1b, 0x40, 6 #define SR_PLL_DCU_START 0x1b, 0x80, 7 #define RG_PART_NUM (0x1c) #define SR_PART_NUM 0x1c, 0xff, 0 #define RG_VERSION_NUM (0x1d) #define SR_VERSION_NUM 0x1d, 0xff, 0 #define RG_MAN_ID_0 (0x1e) #define SR_MAN_ID_0 0x1e, 0xff, 0 #define RG_MAN_ID_1 (0x1f) #define SR_MAN_ID_1 0x1f, 0xff, 0 #define RG_SHORT_ADDR_0 (0x20) #define SR_SHORT_ADDR_0 0x20, 0xff, 0 #define RG_SHORT_ADDR_1 (0x21) #define SR_SHORT_ADDR_1 0x21, 0xff, 0 #define RG_PAN_ID_0 (0x22) #define SR_PAN_ID_0 0x22, 0xff, 0 #define RG_PAN_ID_1 (0x23) #define SR_PAN_ID_1 0x23, 0xff, 0 #define RG_IEEE_ADDR_0 (0x24) #define SR_IEEE_ADDR_0 0x24, 0xff, 0 #define RG_IEEE_ADDR_1 (0x25) #define SR_IEEE_ADDR_1 0x25, 0xff, 0 #define RG_IEEE_ADDR_2 (0x26) #define SR_IEEE_ADDR_2 0x26, 0xff, 0 #define RG_IEEE_ADDR_3 (0x27) #define SR_IEEE_ADDR_3 0x27, 0xff, 0 #define RG_IEEE_ADDR_4 (0x28) #define SR_IEEE_ADDR_4 0x28, 0xff, 0 #define RG_IEEE_ADDR_5 (0x29) #define SR_IEEE_ADDR_5 0x29, 0xff, 0 #define RG_IEEE_ADDR_6 (0x2a) #define SR_IEEE_ADDR_6 0x2a, 0xff, 0 #define RG_IEEE_ADDR_7 (0x2b) #define SR_IEEE_ADDR_7 0x2b, 0xff, 0 #define RG_XAH_CTRL_0 (0x2c) #define SR_SLOTTED_OPERATION 0x2c, 0x01, 0 #define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1 #define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4 #define RG_CSMA_SEED_0 (0x2d) #define SR_CSMA_SEED_0 0x2d, 0xff, 0 #define RG_CSMA_SEED_1 (0x2e) #define SR_CSMA_SEED_1 0x2e, 0x07, 0 #define SR_AACK_I_AM_COORD 0x2e, 0x08, 3 #define SR_AACK_DIS_ACK 0x2e, 0x10, 4 #define SR_AACK_SET_PD 0x2e, 0x20, 5 #define SR_AACK_FVN_MODE 0x2e, 0xc0, 6 #define RG_CSMA_BE (0x2f) #define SR_MIN_BE 0x2f, 0x0f, 0 #define SR_MAX_BE 0x2f, 0xf0, 4 #define CMD_REG 0x80 #define CMD_REG_MASK 0x3f #define CMD_WRITE 0x40 #define CMD_FB 0x20 #define IRQ_BAT_LOW (1 << 7) #define IRQ_TRX_UR (1 << 6) #define IRQ_AMI (1 << 5) #define IRQ_CCA_ED (1 << 4) #define IRQ_TRX_END (1 << 3) #define IRQ_RX_START (1 << 2) #define IRQ_PLL_UNL (1 << 1) #define IRQ_PLL_LOCK (1 << 0) #define IRQ_ACTIVE_HIGH 0 #define IRQ_ACTIVE_LOW 1 #define STATE_P_ON 0x00 /* BUSY */ #define STATE_BUSY_RX 0x01 #define STATE_BUSY_TX 0x02 #define STATE_FORCE_TRX_OFF 0x03 #define STATE_FORCE_TX_ON 0x04 /* IDLE */ /* 0x05 */ /* INVALID_PARAMETER */ #define STATE_RX_ON 0x06 /* 0x07 */ /* SUCCESS */ #define STATE_TRX_OFF 0x08 #define STATE_TX_ON 0x09 /* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */ #define STATE_SLEEP 0x0F #define STATE_PREP_DEEP_SLEEP 0x10 #define STATE_BUSY_RX_AACK 0x11 #define STATE_BUSY_TX_ARET 0x12 #define STATE_RX_AACK_ON 0x16 #define STATE_TX_ARET_ON 0x19 #define STATE_RX_ON_NOCLK 0x1C #define STATE_RX_AACK_ON_NOCLK 0x1D #define STATE_BUSY_RX_AACK_NOCLK 0x1E #define STATE_TRANSITION_IN_PROGRESS 0x1F #define AT86RF2XX_NUMREGS 0x3F static void at86rf230_async_state_change(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, const u8 state, void (*complete)(void *context), const bool irq_enable); static inline int __at86rf230_write(struct at86rf230_local *lp, unsigned int addr, unsigned int data) { return regmap_write(lp->regmap, addr, data); } static inline int __at86rf230_read(struct at86rf230_local *lp, unsigned int addr, unsigned int *data) { return regmap_read(lp->regmap, addr, data); } static inline int at86rf230_read_subreg(struct at86rf230_local *lp, unsigned int addr, unsigned int mask, unsigned int shift, unsigned int *data) { int rc; rc = __at86rf230_read(lp, addr, data); if (rc > 0) *data = (*data & mask) >> shift; return rc; } static inline int at86rf230_write_subreg(struct at86rf230_local *lp, unsigned int addr, unsigned int mask, unsigned int shift, unsigned int data) { return regmap_update_bits(lp->regmap, addr, mask, data << shift); } static bool at86rf230_reg_writeable(struct device *dev, unsigned int reg) { switch (reg) { case RG_TRX_STATE: case RG_TRX_CTRL_0: case RG_TRX_CTRL_1: case RG_PHY_TX_PWR: case RG_PHY_ED_LEVEL: case RG_PHY_CC_CCA: case RG_CCA_THRES: case RG_RX_CTRL: case RG_SFD_VALUE: case RG_TRX_CTRL_2: case RG_ANT_DIV: case RG_IRQ_MASK: case RG_VREG_CTRL: case RG_BATMON: case RG_XOSC_CTRL: case RG_RX_SYN: case RG_XAH_CTRL_1: case RG_FTN_CTRL: case RG_PLL_CF: case RG_PLL_DCU: case RG_SHORT_ADDR_0: case RG_SHORT_ADDR_1: case RG_PAN_ID_0: case RG_PAN_ID_1: case RG_IEEE_ADDR_0: case RG_IEEE_ADDR_1: case RG_IEEE_ADDR_2: case RG_IEEE_ADDR_3: case RG_IEEE_ADDR_4: case RG_IEEE_ADDR_5: case RG_IEEE_ADDR_6: case RG_IEEE_ADDR_7: case RG_XAH_CTRL_0: case RG_CSMA_SEED_0: case RG_CSMA_SEED_1: case RG_CSMA_BE: return true; default: return false; } } static bool at86rf230_reg_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = at86rf230_reg_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case RG_TRX_STATUS: case RG_PHY_RSSI: case RG_IRQ_STATUS: case RG_PART_NUM: case RG_VERSION_NUM: case RG_MAN_ID_1: case RG_MAN_ID_0: return true; default: return false; } } static bool at86rf230_reg_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case RG_TRX_STATUS: case RG_TRX_STATE: case RG_PHY_RSSI: case RG_PHY_ED_LEVEL: case RG_IRQ_STATUS: case RG_VREG_CTRL: return true; default: return false; } } static bool at86rf230_reg_precious(struct device *dev, unsigned int reg) { /* don't clear irq line on read */ switch (reg) { case RG_IRQ_STATUS: return true; default: return false; } } static const struct regmap_config at86rf230_regmap_spi_config = { .reg_bits = 8, .val_bits = 8, .write_flag_mask = CMD_REG | CMD_WRITE, .read_flag_mask = CMD_REG, .cache_type = REGCACHE_RBTREE, .max_register = AT86RF2XX_NUMREGS, .writeable_reg = at86rf230_reg_writeable, .readable_reg = at86rf230_reg_readable, .volatile_reg = at86rf230_reg_volatile, .precious_reg = at86rf230_reg_precious, }; static void at86rf230_async_error_recover(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false); ieee802154_wake_queue(lp->hw); } static inline void at86rf230_async_error(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, int rc) { dev_err(&lp->spi->dev, "spi_async error %d\n", rc); at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, at86rf230_async_error_recover, false); } /* Generic function to get some register value in async mode */ static void at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg, struct at86rf230_state_change *ctx, void (*complete)(void *context), const bool irq_enable) { int rc; u8 *tx_buf = ctx->buf; tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; ctx->trx.len = 2; ctx->msg.complete = complete; ctx->irq_enable = irq_enable; rc = spi_async(lp->spi, &ctx->msg); if (rc) { if (irq_enable) enable_irq(lp->spi->irq); at86rf230_async_error(lp, ctx, rc); } } static void at86rf230_async_state_assert(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = ctx->buf; const u8 trx_state = buf[1] & 0x1f; /* Assert state change */ if (trx_state != ctx->to_state) { /* Special handling if transceiver state is in * STATE_BUSY_RX_AACK and a SHR was detected. */ if (trx_state == STATE_BUSY_RX_AACK) { /* Undocumented race condition. If we send a state * change to STATE_RX_AACK_ON the transceiver could * change his state automatically to STATE_BUSY_RX_AACK * if a SHR was detected. This is not an error, but we * can't assert this. */ if (ctx->to_state == STATE_RX_AACK_ON) goto done; /* If we change to STATE_TX_ON without forcing and * transceiver state is STATE_BUSY_RX_AACK, we wait * 'tFrame + tPAck' receiving time. In this time the * PDU should be received. If the transceiver is still * in STATE_BUSY_RX_AACK, we run a force state change * to STATE_TX_ON. This is a timeout handling, if the * transceiver stucks in STATE_BUSY_RX_AACK. */ if (ctx->to_state == STATE_TX_ON) { at86rf230_async_state_change(lp, ctx, STATE_FORCE_TX_ON, ctx->complete, ctx->irq_enable); return; } } dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", ctx->from_state, ctx->to_state, trx_state); } done: if (ctx->complete) ctx->complete(context); } /* Do state change timing delay. */ static void at86rf230_async_state_delay(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; struct at86rf2xx_chip_data *c = lp->data; bool force = false; /* The force state changes are will show as normal states in the * state status subregister. We change the to_state to the * corresponding one and remember if it was a force change, this * differs if we do a state change from STATE_BUSY_RX_AACK. */ switch (ctx->to_state) { case STATE_FORCE_TX_ON: ctx->to_state = STATE_TX_ON; force = true; break; case STATE_FORCE_TRX_OFF: ctx->to_state = STATE_TRX_OFF; force = true; break; default: break; } switch (ctx->from_state) { case STATE_TRX_OFF: switch (ctx->to_state) { case STATE_RX_AACK_ON: usleep_range(c->t_off_to_aack, c->t_off_to_aack + 10); goto change; case STATE_TX_ON: usleep_range(c->t_off_to_tx_on, c->t_off_to_tx_on + 10); goto change; default: break; } break; case STATE_BUSY_RX_AACK: switch (ctx->to_state) { case STATE_TX_ON: /* Wait for worst case receiving time if we * didn't make a force change from BUSY_RX_AACK * to TX_ON. */ if (!force) { usleep_range(c->t_frame + c->t_p_ack, c->t_frame + c->t_p_ack + 1000); goto change; } break; default: break; } break; /* Default value, means RESET state */ case STATE_P_ON: switch (ctx->to_state) { case STATE_TRX_OFF: usleep_range(c->t_reset_to_off, c->t_reset_to_off + 10); goto change; default: break; } break; default: break; } /* Default delay is 1us in the most cases */ udelay(1); change: at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_assert, ctx->irq_enable); } static void at86rf230_async_state_change_start(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; u8 *buf = ctx->buf; const u8 trx_state = buf[1] & 0x1f; int rc; /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ if (trx_state == STATE_TRANSITION_IN_PROGRESS) { udelay(1); at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_change_start, ctx->irq_enable); return; } /* Check if we already are in the state which we change in */ if (trx_state == ctx->to_state) { if (ctx->complete) ctx->complete(context); return; } /* Set current state to the context of state change */ ctx->from_state = trx_state; /* Going into the next step for a state change which do a timing * relevant delay. */ buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; buf[1] = ctx->to_state; ctx->trx.len = 2; ctx->msg.complete = at86rf230_async_state_delay; rc = spi_async(lp->spi, &ctx->msg); if (rc) { if (ctx->irq_enable) enable_irq(lp->spi->irq); at86rf230_async_error(lp, ctx, rc); } } static void at86rf230_async_state_change(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, const u8 state, void (*complete)(void *context), const bool irq_enable) { /* Initialization for the state change context */ ctx->to_state = state; ctx->complete = complete; ctx->irq_enable = irq_enable; at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_change_start, irq_enable); } static void at86rf230_sync_state_change_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; complete(&lp->state_complete); } /* This function do a sync framework above the async state change. * Some callbacks of the IEEE 802.15.4 driver interface need to be * handled synchronously. */ static int at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) { int rc; at86rf230_async_state_change(lp, &lp->state, state, at86rf230_sync_state_change_complete, false); rc = wait_for_completion_timeout(&lp->state_complete, msecs_to_jiffies(100)); if (!rc) { at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); return -ETIMEDOUT; } return 0; } static void at86rf230_tx_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; struct sk_buff *skb = lp->tx_skb; enable_irq(lp->spi->irq); ieee802154_xmit_complete(lp->hw, skb, !lp->tx_aret); } static void at86rf230_tx_on(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, &lp->irq, STATE_RX_AACK_ON, at86rf230_tx_complete, true); } static void at86rf230_tx_trac_error(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on, true); } static void at86rf230_tx_trac_check(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = ctx->buf; const u8 trac = (buf[1] & 0xe0) >> 5; /* If trac status is different than zero we need to do a state change * to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver * state to TX_ON. */ if (trac) at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, at86rf230_tx_trac_error, true); else at86rf230_tx_on(context); } static void at86rf230_tx_trac_status(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, at86rf230_tx_trac_check, true); } static void at86rf230_rx(struct at86rf230_local *lp, const u8 *data, const u8 len, const u8 lqi) { struct sk_buff *skb; u8 rx_local_buf[AT86RF2XX_MAX_BUF]; memcpy(rx_local_buf, data, len); enable_irq(lp->spi->irq); skb = dev_alloc_skb(IEEE802154_MTU); if (!skb) { dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); return; } memcpy(skb_put(skb, len), rx_local_buf, len); ieee802154_rx_irqsafe(lp->hw, skb, lqi); } static void at86rf230_rx_read_frame_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = lp->irq.buf; u8 len = buf[1]; if (!ieee802154_is_valid_psdu_len(len)) { dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); len = IEEE802154_MTU; } at86rf230_rx(lp, buf + 2, len, buf[2 + len]); } static void at86rf230_rx_read_frame(struct at86rf230_local *lp) { int rc; u8 *buf = lp->irq.buf; buf[0] = CMD_FB; lp->irq.trx.len = AT86RF2XX_MAX_BUF; lp->irq.msg.complete = at86rf230_rx_read_frame_complete; rc = spi_async(lp->spi, &lp->irq.msg); if (rc) { enable_irq(lp->spi->irq); at86rf230_async_error(lp, &lp->irq, rc); } } static void at86rf230_rx_trac_check(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; /* Possible check on trac status here. This could be useful to make * some stats why receive is failed. Not used at the moment, but it's * maybe timing relevant. Datasheet doesn't say anything about this. * The programming guide say do it so. */ at86rf230_rx_read_frame(lp); } static void at86rf230_irq_trx_end(struct at86rf230_local *lp) { spin_lock(&lp->lock); if (lp->is_tx) { lp->is_tx = 0; spin_unlock(&lp->lock); if (lp->tx_aret) at86rf230_async_state_change(lp, &lp->irq, STATE_FORCE_TX_ON, at86rf230_tx_trac_status, true); else at86rf230_async_state_change(lp, &lp->irq, STATE_RX_AACK_ON, at86rf230_tx_complete, true); } else { spin_unlock(&lp->lock); at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq, at86rf230_rx_trac_check, true); } } static void at86rf230_irq_status(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = lp->irq.buf; const u8 irq = buf[1]; if (irq & IRQ_TRX_END) { at86rf230_irq_trx_end(lp); } else { enable_irq(lp->spi->irq); dev_err(&lp->spi->dev, "not supported irq %02x received\n", irq); } } static irqreturn_t at86rf230_isr(int irq, void *data) { struct at86rf230_local *lp = data; struct at86rf230_state_change *ctx = &lp->irq; u8 *buf = ctx->buf; int rc; disable_irq_nosync(irq); buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; ctx->trx.len = 2; ctx->msg.complete = at86rf230_irq_status; rc = spi_async(lp->spi, &ctx->msg); if (rc) { enable_irq(irq); at86rf230_async_error(lp, ctx, rc); return IRQ_NONE; } return IRQ_HANDLED; } static void at86rf230_write_frame_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; u8 *buf = ctx->buf; int rc; buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE; buf[1] = STATE_BUSY_TX; ctx->trx.len = 2; ctx->msg.complete = NULL; rc = spi_async(lp->spi, &ctx->msg); if (rc) at86rf230_async_error(lp, ctx, rc); } static void at86rf230_write_frame(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; struct sk_buff *skb = lp->tx_skb; u8 *buf = lp->tx.buf; int rc; spin_lock(&lp->lock); lp->is_tx = 1; spin_unlock(&lp->lock); buf[0] = CMD_FB | CMD_WRITE; buf[1] = skb->len + 2; memcpy(buf + 2, skb->data, skb->len); lp->tx.trx.len = skb->len + 2; lp->tx.msg.complete = at86rf230_write_frame_complete; rc = spi_async(lp->spi, &lp->tx.msg); if (rc) at86rf230_async_error(lp, ctx, rc); } static void at86rf230_xmit_tx_on(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, at86rf230_write_frame, false); } static int at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct at86rf230_local *lp = hw->priv; struct at86rf230_state_change *ctx = &lp->tx; void (*tx_complete)(void *context) = at86rf230_write_frame; lp->tx_skb = skb; /* In ARET mode we need to go into STATE_TX_ARET_ON after we * are in STATE_TX_ON. The pfad differs here, so we change * the complete handler. */ if (lp->tx_aret) tx_complete = at86rf230_xmit_tx_on; at86rf230_async_state_change(lp, ctx, STATE_TX_ON, tx_complete, false); return 0; } static int at86rf230_ed(struct ieee802154_hw *hw, u8 *level) { BUG_ON(!level); *level = 0xbe; return 0; } static int at86rf230_start(struct ieee802154_hw *hw) { return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON); } static void at86rf230_stop(struct ieee802154_hw *hw) { at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF); } static int at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) { return at86rf230_write_subreg(lp, SR_CHANNEL, channel); } static int at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) { int rc; if (channel == 0) rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); else rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); if (rc < 0) return rc; if (page == 0) { rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); lp->data->rssi_base_val = -100; } else { rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); lp->data->rssi_base_val = -98; } if (rc < 0) return rc; /* This sets the symbol_duration according frequency on the 212. * TODO move this handling while set channel and page in cfg802154. * We can do that, this timings are according 802.15.4 standard. * If we do that in cfg802154, this is a more generic calculation. * * This should also protected from ifs_timer. Means cancel timer and * init with a new value. For now, this is okay. */ if (channel == 0) { if (page == 0) { /* SUB:0 and BPSK:0 -> BPSK-20 */ lp->hw->phy->symbol_duration = 50; } else { /* SUB:1 and BPSK:0 -> BPSK-40 */ lp->hw->phy->symbol_duration = 25; } } else { if (page == 0) /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */ lp->hw->phy->symbol_duration = 40; else /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */ lp->hw->phy->symbol_duration = 16; } lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD * lp->hw->phy->symbol_duration; lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD * lp->hw->phy->symbol_duration; return at86rf230_write_subreg(lp, SR_CHANNEL, channel); } static int at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct at86rf230_local *lp = hw->priv; int rc; rc = lp->data->set_channel(lp, page, channel); /* Wait for PLL */ usleep_range(lp->data->t_channel_switch, lp->data->t_channel_switch + 10); return rc; } static int at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct at86rf230_local *lp = hw->priv; if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); dev_vdbg(&lp->spi->dev, "at86rf230_set_hw_addr_filt called for saddr\n"); __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan = le16_to_cpu(filt->pan_id); dev_vdbg(&lp->spi->dev, "at86rf230_set_hw_addr_filt called for pan id\n"); __at86rf230_write(lp, RG_PAN_ID_0, pan); __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 i, addr[8]; memcpy(addr, &filt->ieee_addr, 8); dev_vdbg(&lp->spi->dev, "at86rf230_set_hw_addr_filt called for IEEE addr\n"); for (i = 0; i < 8; i++) __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { dev_vdbg(&lp->spi->dev, "at86rf230_set_hw_addr_filt called for panc change\n"); if (filt->pan_coord) at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); else at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); } return 0; } static int at86rf230_set_txpower(struct ieee802154_hw *hw, int db) { struct at86rf230_local *lp = hw->priv; /* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five * bits decrease power in 1dB steps. 0x60 represents extra PA gain of * 0dB. * thus, supported values for db range from -26 to 5, for 31dB of * reduction to 0dB of reduction. */ if (db > 5 || db < -26) return -EINVAL; db = -(db - 5); return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db); } static int at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) { struct at86rf230_local *lp = hw->priv; return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); } static int at86rf230_set_cca_mode(struct ieee802154_hw *hw, const struct wpan_phy_cca *cca) { struct at86rf230_local *lp = hw->priv; u8 val; /* mapping 802.15.4 to driver spec */ switch (cca->mode) { case NL802154_CCA_ENERGY: val = 1; break; case NL802154_CCA_CARRIER: val = 2; break; case NL802154_CCA_ENERGY_CARRIER: switch (cca->opt) { case NL802154_CCA_OPT_ENERGY_CARRIER_AND: val = 3; break; case NL802154_CCA_OPT_ENERGY_CARRIER_OR: val = 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return at86rf230_write_subreg(lp, SR_CCA_MODE, val); } static int at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level) { return (level - lp->data->rssi_base_val) * 100 / 207; } static int at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level) { return (level - lp->data->rssi_base_val) / 2; } static int at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level) { struct at86rf230_local *lp = hw->priv; if (level < lp->data->rssi_base_val || level > 30) return -EINVAL; return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, lp->data->get_desense_steps(lp, level)); } static int at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct at86rf230_local *lp = hw->priv; int rc; rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); if (rc) return rc; return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); } static int at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { struct at86rf230_local *lp = hw->priv; int rc = 0; lp->tx_aret = retries >= 0; lp->max_frame_retries = retries; if (retries >= 0) rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); return rc; } static int at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { struct at86rf230_local *lp = hw->priv; int rc; if (on) { rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); if (rc < 0) return rc; rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); if (rc < 0) return rc; } else { rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); if (rc < 0) return rc; rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); if (rc < 0) return rc; } return 0; } static const struct ieee802154_ops at86rf230_ops = { .owner = THIS_MODULE, .xmit_async = at86rf230_xmit, .ed = at86rf230_ed, .set_channel = at86rf230_channel, .start = at86rf230_start, .stop = at86rf230_stop, .set_hw_addr_filt = at86rf230_set_hw_addr_filt, .set_txpower = at86rf230_set_txpower, .set_lbt = at86rf230_set_lbt, .set_cca_mode = at86rf230_set_cca_mode, .set_cca_ed_level = at86rf230_set_cca_ed_level, .set_csma_params = at86rf230_set_csma_params, .set_frame_retries = at86rf230_set_frame_retries, .set_promiscuous_mode = at86rf230_set_promiscuous_mode, }; static struct at86rf2xx_chip_data at86rf233_data = { .t_sleep_cycle = 330, .t_channel_switch = 11, .t_reset_to_off = 26, .t_off_to_aack = 80, .t_off_to_tx_on = 80, .t_frame = 4096, .t_p_ack = 545, .t_tx_timeout = 2000, .rssi_base_val = -91, .set_channel = at86rf23x_set_channel, .get_desense_steps = at86rf23x_get_desens_steps }; static struct at86rf2xx_chip_data at86rf231_data = { .t_sleep_cycle = 330, .t_channel_switch = 24, .t_reset_to_off = 37, .t_off_to_aack = 110, .t_off_to_tx_on = 110, .t_frame = 4096, .t_p_ack = 545, .t_tx_timeout = 2000, .rssi_base_val = -91, .set_channel = at86rf23x_set_channel, .get_desense_steps = at86rf23x_get_desens_steps }; static struct at86rf2xx_chip_data at86rf212_data = { .t_sleep_cycle = 330, .t_channel_switch = 11, .t_reset_to_off = 26, .t_off_to_aack = 200, .t_off_to_tx_on = 200, .t_frame = 4096, .t_p_ack = 545, .t_tx_timeout = 2000, .rssi_base_val = -100, .set_channel = at86rf212_set_channel, .get_desense_steps = at86rf212_get_desens_steps }; static int at86rf230_hw_init(struct at86rf230_local *lp) { int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; unsigned int dvdd; u8 csma_seed[2]; rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); if (rc) return rc; irq_type = irq_get_trigger_type(lp->spi->irq); if (irq_type == IRQ_TYPE_EDGE_FALLING) irq_pol = IRQ_ACTIVE_LOW; rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); if (rc) return rc; get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); if (rc) return rc; /* CLKM changes are applied immediately */ rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); if (rc) return rc; /* Turn CLKM Off */ rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); if (rc) return rc; /* Wait the next SLEEP cycle */ usleep_range(lp->data->t_sleep_cycle, lp->data->t_sleep_cycle + 100); rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); if (rc) return rc; if (!dvdd) { dev_err(&lp->spi->dev, "DVDD error\n"); return -EINVAL; } /* Force setting slotted operation bit to 0. Sometimes the atben * sets this bit and I don't know why. We set this always force * to zero while probing. */ return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); } static struct at86rf230_platform_data * at86rf230_get_pdata(struct spi_device *spi) { struct at86rf230_platform_data *pdata; if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) return spi->dev.platform_data; pdata = devm_kzalloc(&spi->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) goto done; pdata->rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); pdata->slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); spi->dev.platform_data = pdata; done: return pdata; } static int at86rf230_detect_device(struct at86rf230_local *lp) { unsigned int part, version, val; u16 man_id = 0; const char *chip; int rc; rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); if (rc) return rc; man_id |= val; rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); if (rc) return rc; man_id |= (val << 8); rc = __at86rf230_read(lp, RG_PART_NUM, &part); if (rc) return rc; rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); if (rc) return rc; if (man_id != 0x001f) { dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", man_id >> 8, man_id & 0xFF); return -EINVAL; } lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK | IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS; lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; switch (part) { case 2: chip = "at86rf230"; rc = -ENOTSUPP; break; case 3: chip = "at86rf231"; lp->data = &at86rf231_data; lp->hw->phy->channels_supported[0] = 0x7FFF800; lp->hw->phy->current_channel = 11; lp->hw->phy->symbol_duration = 16; break; case 7: chip = "at86rf212"; lp->data = &at86rf212_data; lp->hw->flags |= IEEE802154_HW_LBT; lp->hw->phy->channels_supported[0] = 0x00007FF; lp->hw->phy->channels_supported[2] = 0x00007FF; lp->hw->phy->current_channel = 5; lp->hw->phy->symbol_duration = 25; break; case 11: chip = "at86rf233"; lp->data = &at86rf233_data; lp->hw->phy->channels_supported[0] = 0x7FFF800; lp->hw->phy->current_channel = 13; lp->hw->phy->symbol_duration = 16; break; default: chip = "unknown"; rc = -ENOTSUPP; break; } dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); return rc; } static void at86rf230_setup_spi_messages(struct at86rf230_local *lp) { lp->state.lp = lp; spi_message_init(&lp->state.msg); lp->state.msg.context = &lp->state; lp->state.trx.tx_buf = lp->state.buf; lp->state.trx.rx_buf = lp->state.buf; spi_message_add_tail(&lp->state.trx, &lp->state.msg); lp->irq.lp = lp; spi_message_init(&lp->irq.msg); lp->irq.msg.context = &lp->irq; lp->irq.trx.tx_buf = lp->irq.buf; lp->irq.trx.rx_buf = lp->irq.buf; spi_message_add_tail(&lp->irq.trx, &lp->irq.msg); lp->tx.lp = lp; spi_message_init(&lp->tx.msg); lp->tx.msg.context = &lp->tx; lp->tx.trx.tx_buf = lp->tx.buf; lp->tx.trx.rx_buf = lp->tx.buf; spi_message_add_tail(&lp->tx.trx, &lp->tx.msg); } static int at86rf230_probe(struct spi_device *spi) { struct at86rf230_platform_data *pdata; struct ieee802154_hw *hw; struct at86rf230_local *lp; unsigned int status; int rc, irq_type; if (!spi->irq) { dev_err(&spi->dev, "no IRQ specified\n"); return -EINVAL; } pdata = at86rf230_get_pdata(spi); if (!pdata) { dev_err(&spi->dev, "no platform_data\n"); return -EINVAL; } if (gpio_is_valid(pdata->rstn)) { rc = devm_gpio_request_one(&spi->dev, pdata->rstn, GPIOF_OUT_INIT_HIGH, "rstn"); if (rc) return rc; } if (gpio_is_valid(pdata->slp_tr)) { rc = devm_gpio_request_one(&spi->dev, pdata->slp_tr, GPIOF_OUT_INIT_LOW, "slp_tr"); if (rc) return rc; } /* Reset */ if (gpio_is_valid(pdata->rstn)) { udelay(1); gpio_set_value(pdata->rstn, 0); udelay(1); gpio_set_value(pdata->rstn, 1); usleep_range(120, 240); } hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); if (!hw) return -ENOMEM; lp = hw->priv; lp->hw = hw; lp->spi = spi; hw->parent = &spi->dev; hw->vif_data_size = sizeof(*lp); ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); if (IS_ERR(lp->regmap)) { rc = PTR_ERR(lp->regmap); dev_err(&spi->dev, "Failed to allocate register map: %d\n", rc); goto free_dev; } at86rf230_setup_spi_messages(lp); rc = at86rf230_detect_device(lp); if (rc < 0) goto free_dev; spin_lock_init(&lp->lock); init_completion(&lp->state_complete); spi_set_drvdata(spi, lp); rc = at86rf230_hw_init(lp); if (rc) goto free_dev; /* Read irq status register to reset irq line */ rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); if (rc) goto free_dev; irq_type = irq_get_trigger_type(spi->irq); if (!irq_type) irq_type = IRQF_TRIGGER_RISING; rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); if (rc) goto free_dev; rc = ieee802154_register_hw(lp->hw); if (rc) goto free_dev; return rc; free_dev: ieee802154_free_hw(lp->hw); return rc; } static int at86rf230_remove(struct spi_device *spi) { struct at86rf230_local *lp = spi_get_drvdata(spi); /* mask all at86rf230 irq's */ at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); ieee802154_unregister_hw(lp->hw); ieee802154_free_hw(lp->hw); dev_dbg(&spi->dev, "unregistered at86rf230\n"); return 0; } static const struct of_device_id at86rf230_of_match[] = { { .compatible = "atmel,at86rf230", }, { .compatible = "atmel,at86rf231", }, { .compatible = "atmel,at86rf233", }, { .compatible = "atmel,at86rf212", }, { }, }; MODULE_DEVICE_TABLE(of, at86rf230_of_match); static const struct spi_device_id at86rf230_device_id[] = { { .name = "at86rf230", }, { .name = "at86rf231", }, { .name = "at86rf233", }, { .name = "at86rf212", }, { }, }; MODULE_DEVICE_TABLE(spi, at86rf230_device_id); static struct spi_driver at86rf230_driver = { .id_table = at86rf230_device_id, .driver = { .of_match_table = of_match_ptr(at86rf230_of_match), .name = "at86rf230", .owner = THIS_MODULE, }, .probe = at86rf230_probe, .remove = at86rf230_remove, }; module_spi_driver(at86rf230_driver); MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); MODULE_LICENSE("GPL v2");