/* * Copyright (C) 2006-2007 Nokia Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; see the file COPYING. If not, write to the Free Software * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Test sub-page read and write on MTD device. * Author: Adrian Hunter * */ #include #include #include #include #include #include #include #define PRINT_PREF KERN_INFO "mtd_subpagetest: " static int dev; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); static struct mtd_info *mtd; static unsigned char *writebuf; static unsigned char *readbuf; static unsigned char *bbt; static int subpgsize; static int bufsize; static int ebcnt; static int pgcnt; static int errcnt; static unsigned long next = 1; static inline unsigned int simple_rand(void) { next = next * 1103515245 + 12345; return (unsigned int)((next / 65536) % 32768); } static inline void simple_srand(unsigned long seed) { next = seed; } static void set_random_data(unsigned char *buf, size_t len) { size_t i; for (i = 0; i < len; ++i) buf[i] = simple_rand(); } static inline void clear_data(unsigned char *buf, size_t len) { memset(buf, 0, len); } static int erase_eraseblock(int ebnum) { int err; struct erase_info ei; loff_t addr = ebnum * mtd->erasesize; memset(&ei, 0, sizeof(struct erase_info)); ei.mtd = mtd; ei.addr = addr; ei.len = mtd->erasesize; err = mtd->erase(mtd, &ei); if (err) { printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); return err; } if (ei.state == MTD_ERASE_FAILED) { printk(PRINT_PREF "some erase error occurred at EB %d\n", ebnum); return -EIO; } return 0; } static int erase_whole_device(void) { int err; unsigned int i; printk(PRINT_PREF "erasing whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = erase_eraseblock(i); if (err) return err; cond_resched(); } printk(PRINT_PREF "erased %u eraseblocks\n", i); return 0; } static int write_eraseblock(int ebnum) { size_t written = 0; int err = 0; loff_t addr = ebnum * mtd->erasesize; set_random_data(writebuf, subpgsize); err = mtd->write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { printk(PRINT_PREF "error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { printk(PRINT_PREF " write size: %#x\n", subpgsize); printk(PRINT_PREF " written: %#zx\n", written); } return err ? err : -1; } addr += subpgsize; set_random_data(writebuf, subpgsize); err = mtd->write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { printk(PRINT_PREF "error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { printk(PRINT_PREF " write size: %#x\n", subpgsize); printk(PRINT_PREF " written: %#zx\n", written); } return err ? err : -1; } return err; } static int write_eraseblock2(int ebnum) { size_t written = 0; int err = 0, k; loff_t addr = ebnum * mtd->erasesize; for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; set_random_data(writebuf, subpgsize * k); err = mtd->write(mtd, addr, subpgsize * k, &written, writebuf); if (unlikely(err || written != subpgsize * k)) { printk(PRINT_PREF "error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { printk(PRINT_PREF " write size: %#x\n", subpgsize * k); printk(PRINT_PREF " written: %#08zx\n", written); } return err ? err : -1; } addr += subpgsize * k; } return err; } static void print_subpage(unsigned char *p) { int i, j; for (i = 0; i < subpgsize; ) { for (j = 0; i < subpgsize && j < 32; ++i, ++j) printk("%02x", *p++); printk("\n"); } } static int verify_eraseblock(int ebnum) { size_t read = 0; int err = 0; loff_t addr = ebnum * mtd->erasesize; set_random_data(writebuf, subpgsize); clear_data(readbuf, subpgsize); read = 0; err = mtd->read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { printk(PRINT_PREF "ECC correction at %#llx\n", (long long)addr); err = 0; } else { printk(PRINT_PREF "error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { printk(PRINT_PREF "error: verify failed at %#llx\n", (long long)addr); printk(PRINT_PREF "------------- written----------------\n"); print_subpage(writebuf); printk(PRINT_PREF "------------- read ------------------\n"); print_subpage(readbuf); printk(PRINT_PREF "-------------------------------------\n"); errcnt += 1; } addr += subpgsize; set_random_data(writebuf, subpgsize); clear_data(readbuf, subpgsize); read = 0; err = mtd->read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { printk(PRINT_PREF "ECC correction at %#llx\n", (long long)addr); err = 0; } else { printk(PRINT_PREF "error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { printk(PRINT_PREF "error: verify failed at %#llx\n", (long long)addr); printk(PRINT_PREF "------------- written----------------\n"); print_subpage(writebuf); printk(PRINT_PREF "------------- read ------------------\n"); print_subpage(readbuf); printk(PRINT_PREF "-------------------------------------\n"); errcnt += 1; } return err; } static int verify_eraseblock2(int ebnum) { size_t read = 0; int err = 0, k; loff_t addr = ebnum * mtd->erasesize; for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; set_random_data(writebuf, subpgsize * k); clear_data(readbuf, subpgsize * k); read = 0; err = mtd->read(mtd, addr, subpgsize * k, &read, readbuf); if (unlikely(err || read != subpgsize * k)) { if (mtd_is_bitflip(err) && read == subpgsize * k) { printk(PRINT_PREF "ECC correction at %#llx\n", (long long)addr); err = 0; } else { printk(PRINT_PREF "error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize * k))) { printk(PRINT_PREF "error: verify failed at %#llx\n", (long long)addr); errcnt += 1; } addr += subpgsize * k; } return err; } static int verify_eraseblock_ff(int ebnum) { uint32_t j; size_t read = 0; int err = 0; loff_t addr = ebnum * mtd->erasesize; memset(writebuf, 0xff, subpgsize); for (j = 0; j < mtd->erasesize / subpgsize; ++j) { clear_data(readbuf, subpgsize); read = 0; err = mtd->read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { printk(PRINT_PREF "ECC correction at %#llx\n", (long long)addr); err = 0; } else { printk(PRINT_PREF "error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { printk(PRINT_PREF "error: verify 0xff failed at " "%#llx\n", (long long)addr); errcnt += 1; } addr += subpgsize; } return err; } static int verify_all_eraseblocks_ff(void) { int err; unsigned int i; printk(PRINT_PREF "verifying all eraseblocks for 0xff\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = verify_eraseblock_ff(i); if (err) return err; if (i % 256 == 0) printk(PRINT_PREF "verified up to eraseblock %u\n", i); cond_resched(); } printk(PRINT_PREF "verified %u eraseblocks\n", i); return 0; } static int is_block_bad(int ebnum) { loff_t addr = ebnum * mtd->erasesize; int ret; ret = mtd->block_isbad(mtd, addr); if (ret) printk(PRINT_PREF "block %d is bad\n", ebnum); return ret; } static int scan_for_bad_eraseblocks(void) { int i, bad = 0; bbt = kzalloc(ebcnt, GFP_KERNEL); if (!bbt) { printk(PRINT_PREF "error: cannot allocate memory\n"); return -ENOMEM; } printk(PRINT_PREF "scanning for bad eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { bbt[i] = is_block_bad(i) ? 1 : 0; if (bbt[i]) bad += 1; cond_resched(); } printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); return 0; } static int __init mtd_subpagetest_init(void) { int err = 0; uint32_t i; uint64_t tmp; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); printk(PRINT_PREF "MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); printk(PRINT_PREF "error: cannot get MTD device\n"); return err; } if (mtd->type != MTD_NANDFLASH) { printk(PRINT_PREF "this test requires NAND flash\n"); goto out; } subpgsize = mtd->writesize >> mtd->subpage_sft; tmp = mtd->size; do_div(tmp, mtd->erasesize); ebcnt = tmp; pgcnt = mtd->erasesize / mtd->writesize; printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " "page size %u, subpage size %u, count of eraseblocks %u, " "pages per eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, mtd->writesize, subpgsize, ebcnt, pgcnt, mtd->oobsize); err = -ENOMEM; bufsize = subpgsize * 32; writebuf = kmalloc(bufsize, GFP_KERNEL); if (!writebuf) { printk(PRINT_PREF "error: cannot allocate memory\n"); goto out; } readbuf = kmalloc(bufsize, GFP_KERNEL); if (!readbuf) { printk(PRINT_PREF "error: cannot allocate memory\n"); goto out; } err = scan_for_bad_eraseblocks(); if (err) goto out; err = erase_whole_device(); if (err) goto out; printk(PRINT_PREF "writing whole device\n"); simple_srand(1); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = write_eraseblock(i); if (unlikely(err)) goto out; if (i % 256 == 0) printk(PRINT_PREF "written up to eraseblock %u\n", i); cond_resched(); } printk(PRINT_PREF "written %u eraseblocks\n", i); simple_srand(1); printk(PRINT_PREF "verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = verify_eraseblock(i); if (unlikely(err)) goto out; if (i % 256 == 0) printk(PRINT_PREF "verified up to eraseblock %u\n", i); cond_resched(); } printk(PRINT_PREF "verified %u eraseblocks\n", i); err = erase_whole_device(); if (err) goto out; err = verify_all_eraseblocks_ff(); if (err) goto out; /* Write all eraseblocks */ simple_srand(3); printk(PRINT_PREF "writing whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = write_eraseblock2(i); if (unlikely(err)) goto out; if (i % 256 == 0) printk(PRINT_PREF "written up to eraseblock %u\n", i); cond_resched(); } printk(PRINT_PREF "written %u eraseblocks\n", i); /* Check all eraseblocks */ simple_srand(3); printk(PRINT_PREF "verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; err = verify_eraseblock2(i); if (unlikely(err)) goto out; if (i % 256 == 0) printk(PRINT_PREF "verified up to eraseblock %u\n", i); cond_resched(); } printk(PRINT_PREF "verified %u eraseblocks\n", i); err = erase_whole_device(); if (err) goto out; err = verify_all_eraseblocks_ff(); if (err) goto out; printk(PRINT_PREF "finished with %d errors\n", errcnt); out: kfree(bbt); kfree(readbuf); kfree(writebuf); put_mtd_device(mtd); if (err) printk(PRINT_PREF "error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } module_init(mtd_subpagetest_init); static void __exit mtd_subpagetest_exit(void) { return; } module_exit(mtd_subpagetest_exit); MODULE_DESCRIPTION("Subpage test module"); MODULE_AUTHOR("Adrian Hunter"); MODULE_LICENSE("GPL");