/* * Copyright (C) 2013 Boris BREZILLON * * Derived from: * https://github.com/yuq/sunxi-nfc-mtd * Copyright (C) 2013 Qiang Yu * * https://github.com/hno/Allwinner-Info * Copyright (C) 2013 Henrik Nordström * * Copyright (C) 2013 Dmitriy B. * Copyright (C) 2013 Sergey Lapin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFC_REG_CTL 0x0000 #define NFC_REG_ST 0x0004 #define NFC_REG_INT 0x0008 #define NFC_REG_TIMING_CTL 0x000C #define NFC_REG_TIMING_CFG 0x0010 #define NFC_REG_ADDR_LOW 0x0014 #define NFC_REG_ADDR_HIGH 0x0018 #define NFC_REG_SECTOR_NUM 0x001C #define NFC_REG_CNT 0x0020 #define NFC_REG_CMD 0x0024 #define NFC_REG_RCMD_SET 0x0028 #define NFC_REG_WCMD_SET 0x002C #define NFC_REG_IO_DATA 0x0030 #define NFC_REG_ECC_CTL 0x0034 #define NFC_REG_ECC_ST 0x0038 #define NFC_REG_DEBUG 0x003C #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) #define NFC_REG_SPARE_AREA 0x00A0 #define NFC_REG_PAT_ID 0x00A4 #define NFC_RAM0_BASE 0x0400 #define NFC_RAM1_BASE 0x0800 /* define bit use in NFC_CTL */ #define NFC_EN BIT(0) #define NFC_RESET BIT(1) #define NFC_BUS_WIDTH_MSK BIT(2) #define NFC_BUS_WIDTH_8 (0 << 2) #define NFC_BUS_WIDTH_16 (1 << 2) #define NFC_RB_SEL_MSK BIT(3) #define NFC_RB_SEL(x) ((x) << 3) #define NFC_CE_SEL_MSK GENMASK(26, 24) #define NFC_CE_SEL(x) ((x) << 24) #define NFC_CE_CTL BIT(6) #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) #define NFC_SAM BIT(12) #define NFC_RAM_METHOD BIT(14) #define NFC_DEBUG_CTL BIT(31) /* define bit use in NFC_ST */ #define NFC_RB_B2R BIT(0) #define NFC_CMD_INT_FLAG BIT(1) #define NFC_DMA_INT_FLAG BIT(2) #define NFC_CMD_FIFO_STATUS BIT(3) #define NFC_STA BIT(4) #define NFC_NATCH_INT_FLAG BIT(5) #define NFC_RB_STATE(x) BIT(x + 8) /* define bit use in NFC_INT */ #define NFC_B2R_INT_ENABLE BIT(0) #define NFC_CMD_INT_ENABLE BIT(1) #define NFC_DMA_INT_ENABLE BIT(2) #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ NFC_CMD_INT_ENABLE | \ NFC_DMA_INT_ENABLE) /* define bit use in NFC_TIMING_CTL */ #define NFC_TIMING_CTL_EDO BIT(8) /* define NFC_TIMING_CFG register layout */ #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ (((tCAD) & 0x7) << 8)) /* define bit use in NFC_CMD */ #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) #define NFC_CMD(x) (x) #define NFC_ADR_NUM_MSK GENMASK(18, 16) #define NFC_ADR_NUM(x) (((x) - 1) << 16) #define NFC_SEND_ADR BIT(19) #define NFC_ACCESS_DIR BIT(20) #define NFC_DATA_TRANS BIT(21) #define NFC_SEND_CMD1 BIT(22) #define NFC_WAIT_FLAG BIT(23) #define NFC_SEND_CMD2 BIT(24) #define NFC_SEQ BIT(25) #define NFC_DATA_SWAP_METHOD BIT(26) #define NFC_ROW_AUTO_INC BIT(27) #define NFC_SEND_CMD3 BIT(28) #define NFC_SEND_CMD4 BIT(29) #define NFC_CMD_TYPE_MSK GENMASK(31, 30) #define NFC_NORMAL_OP (0 << 30) #define NFC_ECC_OP (1 << 30) #define NFC_PAGE_OP (2 << 30) /* define bit use in NFC_RCMD_SET */ #define NFC_READ_CMD_MSK GENMASK(7, 0) #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) /* define bit use in NFC_WCMD_SET */ #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) #define NFC_READ_CMD0_MSK GENMASK(23, 16) #define NFC_READ_CMD1_MSK GENMASK(31, 24) /* define bit use in NFC_ECC_CTL */ #define NFC_ECC_EN BIT(0) #define NFC_ECC_PIPELINE BIT(3) #define NFC_ECC_EXCEPTION BIT(4) #define NFC_ECC_BLOCK_SIZE_MSK BIT(5) #define NFC_RANDOM_EN BIT(9) #define NFC_RANDOM_DIRECTION BIT(10) #define NFC_ECC_MODE_MSK GENMASK(15, 12) #define NFC_ECC_MODE(x) ((x) << 12) #define NFC_RANDOM_SEED_MSK GENMASK(30, 16) #define NFC_RANDOM_SEED(x) ((x) << 16) /* define bit use in NFC_ECC_ST */ #define NFC_ECC_ERR(x) BIT(x) #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) #define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) #define NFC_DEFAULT_TIMEOUT_MS 1000 #define NFC_SRAM_SIZE 1024 #define NFC_MAX_CS 7 /* * Ready/Busy detection type: describes the Ready/Busy detection modes * * @RB_NONE: no external detection available, rely on STATUS command * and software timeouts * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy * pin of the NAND flash chip must be connected to one of the * native NAND R/B pins (those which can be muxed to the NAND * Controller) * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy * pin of the NAND flash chip must be connected to a GPIO capable * pin. */ enum sunxi_nand_rb_type { RB_NONE, RB_NATIVE, RB_GPIO, }; /* * Ready/Busy structure: stores information related to Ready/Busy detection * * @type: the Ready/Busy detection mode * @info: information related to the R/B detection mode. Either a gpio * id or a native R/B id (those supported by the NAND controller). */ struct sunxi_nand_rb { enum sunxi_nand_rb_type type; union { int gpio; int nativeid; } info; }; /* * Chip Select structure: stores information related to NAND Chip Select * * @cs: the NAND CS id used to communicate with a NAND Chip * @rb: the Ready/Busy description */ struct sunxi_nand_chip_sel { u8 cs; struct sunxi_nand_rb rb; }; /* * sunxi HW ECC infos: stores information related to HW ECC support * * @mode: the sunxi ECC mode field deduced from ECC requirements * @layout: the OOB layout depending on the ECC requirements and the * selected ECC mode */ struct sunxi_nand_hw_ecc { int mode; struct nand_ecclayout layout; }; /* * NAND chip structure: stores NAND chip device related information * * @node: used to store NAND chips into a list * @nand: base NAND chip structure * @mtd: base MTD structure * @clk_rate: clk_rate required for this NAND chip * @timing_cfg TIMING_CFG register value for this NAND chip * @selected: current active CS * @nsels: number of CS lines required by the NAND chip * @sels: array of CS lines descriptions */ struct sunxi_nand_chip { struct list_head node; struct nand_chip nand; unsigned long clk_rate; u32 timing_cfg; u32 timing_ctl; int selected; int addr_cycles; u32 addr[2]; int cmd_cycles; u8 cmd[2]; int nsels; struct sunxi_nand_chip_sel sels[0]; }; static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) { return container_of(nand, struct sunxi_nand_chip, nand); } /* * NAND Controller structure: stores sunxi NAND controller information * * @controller: base controller structure * @dev: parent device (used to print error messages) * @regs: NAND controller registers * @ahb_clk: NAND Controller AHB clock * @mod_clk: NAND Controller mod clock * @assigned_cs: bitmask describing already assigned CS lines * @clk_rate: NAND controller current clock rate * @chips: a list containing all the NAND chips attached to * this NAND controller * @complete: a completion object used to wait for NAND * controller events */ struct sunxi_nfc { struct nand_hw_control controller; struct device *dev; void __iomem *regs; struct clk *ahb_clk; struct clk *mod_clk; unsigned long assigned_cs; unsigned long clk_rate; struct list_head chips; struct completion complete; }; static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) { return container_of(ctrl, struct sunxi_nfc, controller); } static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) { struct sunxi_nfc *nfc = dev_id; u32 st = readl(nfc->regs + NFC_REG_ST); u32 ien = readl(nfc->regs + NFC_REG_INT); if (!(ien & st)) return IRQ_NONE; if ((ien & st) == ien) complete(&nfc->complete); writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); return IRQ_HANDLED; } static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, bool use_polling, unsigned int timeout_ms) { int ret; if (events & ~NFC_INT_MASK) return -EINVAL; if (!timeout_ms) timeout_ms = NFC_DEFAULT_TIMEOUT_MS; if (!use_polling) { init_completion(&nfc->complete); writel(events, nfc->regs + NFC_REG_INT); ret = wait_for_completion_timeout(&nfc->complete, msecs_to_jiffies(timeout_ms)); writel(0, nfc->regs + NFC_REG_INT); } else { u32 status; ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, (status & events) == events, 1, timeout_ms * 1000); } writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); if (ret) dev_err(nfc->dev, "wait interrupt timedout\n"); return ret; } static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) { u32 status; int ret; ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, !(status & NFC_CMD_FIFO_STATUS), 1, NFC_DEFAULT_TIMEOUT_MS * 1000); if (ret) dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); return ret; } static int sunxi_nfc_rst(struct sunxi_nfc *nfc) { u32 ctl; int ret; writel(0, nfc->regs + NFC_REG_ECC_CTL); writel(NFC_RESET, nfc->regs + NFC_REG_CTL); ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, !(ctl & NFC_RESET), 1, NFC_DEFAULT_TIMEOUT_MS * 1000); if (ret) dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); return ret; } static int sunxi_nfc_dev_ready(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_rb *rb; int ret; if (sunxi_nand->selected < 0) return 0; rb = &sunxi_nand->sels[sunxi_nand->selected].rb; switch (rb->type) { case RB_NATIVE: ret = !!(readl(nfc->regs + NFC_REG_ST) & NFC_RB_STATE(rb->info.nativeid)); break; case RB_GPIO: ret = gpio_get_value(rb->info.gpio); break; case RB_NONE: default: ret = 0; dev_err(nfc->dev, "cannot check R/B NAND status!\n"); break; } return ret; } static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_chip_sel *sel; u32 ctl; if (chip > 0 && chip >= sunxi_nand->nsels) return; if (chip == sunxi_nand->selected) return; ctl = readl(nfc->regs + NFC_REG_CTL) & ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); if (chip >= 0) { sel = &sunxi_nand->sels[chip]; ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift); if (sel->rb.type == RB_NONE) { nand->dev_ready = NULL; } else { nand->dev_ready = sunxi_nfc_dev_ready; if (sel->rb.type == RB_NATIVE) ctl |= NFC_RB_SEL(sel->rb.info.nativeid); } writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); if (nfc->clk_rate != sunxi_nand->clk_rate) { clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); nfc->clk_rate = sunxi_nand->clk_rate; } } writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); writel(ctl, nfc->regs + NFC_REG_CTL); sunxi_nand->selected = chip; } static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; int cnt; int offs = 0; u32 tmp; while (len > offs) { cnt = min(len - offs, NFC_SRAM_SIZE); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) break; writel(cnt, nfc->regs + NFC_REG_CNT); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); if (ret) break; if (buf) memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, cnt); offs += cnt; } } static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; int cnt; int offs = 0; u32 tmp; while (len > offs) { cnt = min(len - offs, NFC_SRAM_SIZE); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) break; writel(cnt, nfc->regs + NFC_REG_CNT); memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); if (ret) break; offs += cnt; } } static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) { uint8_t ret; sunxi_nfc_read_buf(mtd, &ret, 1); return ret; } static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return; if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) && !(ctrl & (NAND_CLE | NAND_ALE))) { u32 cmd = 0; if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles) return; if (sunxi_nand->cmd_cycles--) cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0]; if (sunxi_nand->cmd_cycles--) { cmd |= NFC_SEND_CMD2; writel(sunxi_nand->cmd[1], nfc->regs + NFC_REG_RCMD_SET); } sunxi_nand->cmd_cycles = 0; if (sunxi_nand->addr_cycles) { cmd |= NFC_SEND_ADR | NFC_ADR_NUM(sunxi_nand->addr_cycles); writel(sunxi_nand->addr[0], nfc->regs + NFC_REG_ADDR_LOW); } if (sunxi_nand->addr_cycles > 4) writel(sunxi_nand->addr[1], nfc->regs + NFC_REG_ADDR_HIGH); writel(cmd, nfc->regs + NFC_REG_CMD); sunxi_nand->addr[0] = 0; sunxi_nand->addr[1] = 0; sunxi_nand->addr_cycles = 0; sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); } if (ctrl & NAND_CLE) { sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat; } else if (ctrl & NAND_ALE) { sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |= dat << ((sunxi_nand->addr_cycles % 4) * 8); sunxi_nand->addr_cycles++; } } /* These seed values have been extracted from Allwinner's BSP */ static const u16 sunxi_nfc_randomizer_page_seeds[] = { 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, }; /* * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds * have been generated using * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what * the randomizer engine does internally before de/scrambling OOB data. * * Those tables are statically defined to avoid calculating randomizer state * at runtime. */ static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, }; static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, }; static u16 sunxi_nfc_randomizer_step(u16 state, int count) { state &= 0x7fff; /* * This loop is just a simple implementation of a Fibonacci LFSR using * the x16 + x15 + 1 polynomial. */ while (count--) state = ((state >> 1) | (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; return state; } static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc) { const u16 *seeds = sunxi_nfc_randomizer_page_seeds; int mod = mtd_div_by_ws(mtd->erasesize, mtd); if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); if (ecc) { if (mtd->ecc_step_size == 512) seeds = sunxi_nfc_randomizer_ecc512_seeds; else seeds = sunxi_nfc_randomizer_ecc1024_seeds; } return seeds[page % mod]; } static void sunxi_nfc_randomizer_config(struct mtd_info *mtd, int page, bool ecc) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); u16 state; if (!(nand->options & NAND_NEED_SCRAMBLING)) return; ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); state = sunxi_nfc_randomizer_state(mtd, page, ecc); ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); } static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); if (!(nand->options & NAND_NEED_SCRAMBLING)) return; writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, nfc->regs + NFC_REG_ECC_CTL); } static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); if (!(nand->options & NAND_NEED_SCRAMBLING)) return; writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, nfc->regs + NFC_REG_ECC_CTL); } static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm) { u16 state = sunxi_nfc_randomizer_state(mtd, page, true); bbm[0] ^= state; bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); } static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len, bool ecc, int page) { sunxi_nfc_randomizer_config(mtd, page, ecc); sunxi_nfc_randomizer_enable(mtd); sunxi_nfc_write_buf(mtd, buf, len); sunxi_nfc_randomizer_disable(mtd); } static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf, int len, bool ecc, int page) { sunxi_nfc_randomizer_config(mtd, page, ecc); sunxi_nfc_randomizer_enable(mtd); sunxi_nfc_read_buf(mtd, buf, len); sunxi_nfc_randomizer_disable(mtd); } static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); struct sunxi_nand_hw_ecc *data = nand->ecc.priv; u32 ecc_ctl; ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE_MSK); ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION | NFC_ECC_PIPELINE; writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); } static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, nfc->regs + NFC_REG_ECC_CTL); } static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) { buf[0] = user_data; buf[1] = user_data >> 8; buf[2] = user_data >> 16; buf[3] = user_data >> 24; } static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, u8 *data, int data_off, u8 *oob, int oob_off, int *cur_off, unsigned int *max_bitflips, bool bbm, int page) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); struct nand_ecc_ctrl *ecc = &nand->ecc; int raw_mode = 0; u32 status; int ret; if (*cur_off != data_off) nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page); if (data_off + ecc->size != oob_off) nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return ret; sunxi_nfc_randomizer_enable(mtd); writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); sunxi_nfc_randomizer_disable(mtd); if (ret) return ret; *cur_off = oob_off + ecc->bytes + 4; status = readl(nfc->regs + NFC_REG_ECC_ST); if (status & NFC_ECC_PAT_FOUND(0)) { u8 pattern = 0xff; if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) pattern = 0x0; memset(data, pattern, ecc->size); memset(oob, pattern, ecc->bytes + 4); return 1; } ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0))); memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page); if (status & NFC_ECC_ERR(0)) { /* * Re-read the data with the randomizer disabled to identify * bitflips in erased pages. */ if (nand->options & NAND_NEED_SCRAMBLING) { nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); nand->read_buf(mtd, data, ecc->size); nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); nand->read_buf(mtd, oob, ecc->bytes + 4); } ret = nand_check_erased_ecc_chunk(data, ecc->size, oob, ecc->bytes + 4, NULL, 0, ecc->strength); if (ret >= 0) raw_mode = 1; } else { /* * The engine protects 4 bytes of OOB data per chunk. * Retrieve the corrected OOB bytes. */ sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)), oob); /* De-randomize the Bad Block Marker. */ if (bbm && nand->options & NAND_NEED_SCRAMBLING) sunxi_nfc_randomize_bbm(mtd, page, oob); } if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; *max_bitflips = max_t(unsigned int, *max_bitflips, ret); } return raw_mode; } static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, u8 *oob, int *cur_off, bool randomize, int page) { struct nand_chip *nand = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &nand->ecc; int offset = ((ecc->bytes + 4) * ecc->steps); int len = mtd->oobsize - offset; if (len <= 0) return; if (*cur_off != offset) nand->cmdfunc(mtd, NAND_CMD_RNDOUT, offset + mtd->writesize, -1); if (!randomize) sunxi_nfc_read_buf(mtd, oob + offset, len); else sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len, false, page); *cur_off = mtd->oobsize + mtd->writesize; } static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) { return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); } static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, const u8 *data, int data_off, const u8 *oob, int oob_off, int *cur_off, bool bbm, int page) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); struct nand_ecc_ctrl *ecc = &nand->ecc; int ret; if (data_off != *cur_off) nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1); sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page); /* Fill OOB data in */ if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) { u8 user_data[4]; memcpy(user_data, oob, 4); sunxi_nfc_randomize_bbm(mtd, page, user_data); writel(sunxi_nfc_buf_to_user_data(user_data), nfc->regs + NFC_REG_USER_DATA(0)); } else { writel(sunxi_nfc_buf_to_user_data(oob), nfc->regs + NFC_REG_USER_DATA(0)); } if (data_off + ecc->size != oob_off) nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return ret; sunxi_nfc_randomizer_enable(mtd); writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | NFC_ECC_OP, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); sunxi_nfc_randomizer_disable(mtd); if (ret) return ret; *cur_off = oob_off + ecc->bytes + 4; return 0; } static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd, u8 *oob, int *cur_off, int page) { struct nand_chip *nand = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &nand->ecc; int offset = ((ecc->bytes + 4) * ecc->steps); int len = mtd->oobsize - offset; if (len <= 0) return; if (*cur_off != offset) nand->cmdfunc(mtd, NAND_CMD_RNDIN, offset + mtd->writesize, -1); sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page); *cur_off = mtd->oobsize + mtd->writesize; } static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct nand_ecc_ctrl *ecc = &chip->ecc; unsigned int max_bitflips = 0; int ret, i, cur_off = 0; bool raw_mode = false; sunxi_nfc_hw_ecc_enable(mtd); for (i = 0; i < ecc->steps; i++) { int data_off = i * ecc->size; int oob_off = i * (ecc->bytes + 4); u8 *data = buf + data_off; u8 *oob = chip->oob_poi + oob_off; ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, oob_off + mtd->writesize, &cur_off, &max_bitflips, !i, page); if (ret < 0) return ret; else if (ret) raw_mode = true; } if (oob_required) sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, !raw_mode, page); sunxi_nfc_hw_ecc_disable(mtd); return max_bitflips; } static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, u32 data_offs, u32 readlen, u8 *bufpoi, int page) { struct nand_ecc_ctrl *ecc = &chip->ecc; int ret, i, cur_off = 0; unsigned int max_bitflips = 0; sunxi_nfc_hw_ecc_enable(mtd); chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); for (i = data_offs / ecc->size; i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { int data_off = i * ecc->size; int oob_off = i * (ecc->bytes + 4); u8 *data = bufpoi + data_off; u8 *oob = chip->oob_poi + oob_off; ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, oob_off + mtd->writesize, &cur_off, &max_bitflips, !i, page); if (ret < 0) return ret; } sunxi_nfc_hw_ecc_disable(mtd); return max_bitflips; } static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct nand_ecc_ctrl *ecc = &chip->ecc; int ret, i, cur_off = 0; sunxi_nfc_hw_ecc_enable(mtd); for (i = 0; i < ecc->steps; i++) { int data_off = i * ecc->size; int oob_off = i * (ecc->bytes + 4); const u8 *data = buf + data_off; const u8 *oob = chip->oob_poi + oob_off; ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, oob_off + mtd->writesize, &cur_off, !i, page); if (ret) return ret; } if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off, page); sunxi_nfc_hw_ecc_disable(mtd); return 0; } static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct nand_ecc_ctrl *ecc = &chip->ecc; unsigned int max_bitflips = 0; int ret, i, cur_off = 0; bool raw_mode = false; sunxi_nfc_hw_ecc_enable(mtd); for (i = 0; i < ecc->steps; i++) { int data_off = i * (ecc->size + ecc->bytes + 4); int oob_off = data_off + ecc->size; u8 *data = buf + (i * ecc->size); u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, oob_off, &cur_off, &max_bitflips, !i, page); if (ret < 0) return ret; else if (ret) raw_mode = true; } if (oob_required) sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, !raw_mode, page); sunxi_nfc_hw_ecc_disable(mtd); return max_bitflips; } static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct nand_ecc_ctrl *ecc = &chip->ecc; int ret, i, cur_off = 0; sunxi_nfc_hw_ecc_enable(mtd); for (i = 0; i < ecc->steps; i++) { int data_off = i * (ecc->size + ecc->bytes + 4); int oob_off = data_off + ecc->size; const u8 *data = buf + (i * ecc->size); const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, oob_off, &cur_off, false, page); if (ret) return ret; } if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off, page); sunxi_nfc_hw_ecc_disable(mtd); return 0; } static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); chip->pagebuf = -1; return chip->ecc.read_page(mtd, chip, chip->buffers->databuf, 1, page); } static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { int ret, status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page); chip->pagebuf = -1; memset(chip->buffers->databuf, 0xff, mtd->writesize); ret = chip->ecc.write_page(mtd, chip, chip->buffers->databuf, 1, page); if (ret) return ret; /* Send command to program the OOB data */ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } static const s32 tWB_lut[] = {6, 12, 16, 20}; static const s32 tRHW_lut[] = {4, 8, 12, 20}; static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, u32 clk_period) { u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); int i; for (i = 0; i < lut_size; i++) { if (clk_cycles <= lut[i]) return i; } /* Doesn't fit */ return -EINVAL; } #define sunxi_nand_lookup_timing(l, p, c) \ _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, const struct nand_sdr_timings *timings) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller); u32 min_clk_period = 0; s32 tWB, tADL, tWHR, tRHW, tCAD; long real_clk_rate; /* T1 <=> tCLS */ if (timings->tCLS_min > min_clk_period) min_clk_period = timings->tCLS_min; /* T2 <=> tCLH */ if (timings->tCLH_min > min_clk_period) min_clk_period = timings->tCLH_min; /* T3 <=> tCS */ if (timings->tCS_min > min_clk_period) min_clk_period = timings->tCS_min; /* T4 <=> tCH */ if (timings->tCH_min > min_clk_period) min_clk_period = timings->tCH_min; /* T5 <=> tWP */ if (timings->tWP_min > min_clk_period) min_clk_period = timings->tWP_min; /* T6 <=> tWH */ if (timings->tWH_min > min_clk_period) min_clk_period = timings->tWH_min; /* T7 <=> tALS */ if (timings->tALS_min > min_clk_period) min_clk_period = timings->tALS_min; /* T8 <=> tDS */ if (timings->tDS_min > min_clk_period) min_clk_period = timings->tDS_min; /* T9 <=> tDH */ if (timings->tDH_min > min_clk_period) min_clk_period = timings->tDH_min; /* T10 <=> tRR */ if (timings->tRR_min > (min_clk_period * 3)) min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); /* T11 <=> tALH */ if (timings->tALH_min > min_clk_period) min_clk_period = timings->tALH_min; /* T12 <=> tRP */ if (timings->tRP_min > min_clk_period) min_clk_period = timings->tRP_min; /* T13 <=> tREH */ if (timings->tREH_min > min_clk_period) min_clk_period = timings->tREH_min; /* T14 <=> tRC */ if (timings->tRC_min > (min_clk_period * 2)) min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); /* T15 <=> tWC */ if (timings->tWC_min > (min_clk_period * 2)) min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); /* T16 - T19 + tCAD */ if (timings->tWB_max > (min_clk_period * 20)) min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); if (timings->tADL_min > (min_clk_period * 32)) min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); if (timings->tWHR_min > (min_clk_period * 32)) min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); if (timings->tRHW_min > (min_clk_period * 20)) min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, min_clk_period); if (tWB < 0) { dev_err(nfc->dev, "unsupported tWB\n"); return tWB; } tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; if (tADL > 3) { dev_err(nfc->dev, "unsupported tADL\n"); return -EINVAL; } tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; if (tWHR > 3) { dev_err(nfc->dev, "unsupported tWHR\n"); return -EINVAL; } tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, min_clk_period); if (tRHW < 0) { dev_err(nfc->dev, "unsupported tRHW\n"); return tRHW; } /* * TODO: according to ONFI specs this value only applies for DDR NAND, * but Allwinner seems to set this to 0x7. Mimic them for now. */ tCAD = 0x7; /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); /* Convert min_clk_period from picoseconds to nanoseconds */ min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); /* * Unlike what is stated in Allwinner datasheet, the clk_rate should * be set to (1 / min_clk_period), and not (2 / min_clk_period). * This new formula was verified with a scope and validated by * Allwinner engineers. */ chip->clk_rate = NSEC_PER_SEC / min_clk_period; real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate); /* * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data * output cycle timings shall be used if the host drives tRC less than * 30 ns. */ min_clk_period = NSEC_PER_SEC / real_clk_rate; chip->timing_ctl = ((min_clk_period * 2) < 30) ? NFC_TIMING_CTL_EDO : 0; return 0; } static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip, struct device_node *np) { struct mtd_info *mtd = nand_to_mtd(&chip->nand); const struct nand_sdr_timings *timings; int ret; int mode; mode = onfi_get_async_timing_mode(&chip->nand); if (mode == ONFI_TIMING_MODE_UNKNOWN) { mode = chip->nand.onfi_timing_mode_default; } else { uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; int i; mode = fls(mode) - 1; if (mode < 0) mode = 0; feature[0] = mode; for (i = 0; i < chip->nsels; i++) { chip->nand.select_chip(mtd, i); ret = chip->nand.onfi_set_features(mtd, &chip->nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); chip->nand.select_chip(mtd, -1); if (ret) return ret; } } timings = onfi_async_timing_mode_to_sdr_timings(mode); if (IS_ERR(timings)) return PTR_ERR(timings); return sunxi_nand_chip_set_timings(chip, timings); } static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_hw_ecc *data; struct nand_ecclayout *layout; int nsectors; int ret; int i; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; /* Add ECC info retrieval from DT */ for (i = 0; i < ARRAY_SIZE(strengths); i++) { if (ecc->strength <= strengths[i]) break; } if (i >= ARRAY_SIZE(strengths)) { dev_err(nfc->dev, "unsupported strength\n"); ret = -ENOTSUPP; goto err; } data->mode = i; /* HW ECC always request ECC bytes for 1024 bytes blocks */ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); /* HW ECC always work with even numbers of ECC bytes */ ecc->bytes = ALIGN(ecc->bytes, 2); layout = &data->layout; nsectors = mtd->writesize / ecc->size; if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { ret = -EINVAL; goto err; } layout->eccbytes = (ecc->bytes * nsectors); ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob; ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob; ecc->layout = layout; ecc->priv = data; return 0; err: kfree(data); return ret; } static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) { kfree(ecc->priv); } static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_ecclayout *layout; int nsectors; int i, j; int ret; ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; ecc->read_page = sunxi_nfc_hw_ecc_read_page; ecc->write_page = sunxi_nfc_hw_ecc_write_page; ecc->read_oob_raw = nand_read_oob_std; ecc->write_oob_raw = nand_write_oob_std; ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; layout = ecc->layout; nsectors = mtd->writesize / ecc->size; for (i = 0; i < nsectors; i++) { if (i) { layout->oobfree[i].offset = layout->oobfree[i - 1].offset + layout->oobfree[i - 1].length + ecc->bytes; layout->oobfree[i].length = 4; } else { /* * The first 2 bytes are used for BB markers, hence we * only have 2 bytes available in the first user data * section. */ layout->oobfree[i].length = 2; layout->oobfree[i].offset = 2; } for (j = 0; j < ecc->bytes; j++) layout->eccpos[(ecc->bytes * i) + j] = layout->oobfree[i].offset + layout->oobfree[i].length + j; } if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { layout->oobfree[nsectors].offset = layout->oobfree[nsectors - 1].offset + layout->oobfree[nsectors - 1].length + ecc->bytes; layout->oobfree[nsectors].length = mtd->oobsize - ((ecc->bytes + 4) * nsectors); } return 0; } static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_ecclayout *layout; int nsectors; int i; int ret; ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; ecc->prepad = 4; ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; ecc->read_oob_raw = nand_read_oob_syndrome; ecc->write_oob_raw = nand_write_oob_syndrome; layout = ecc->layout; nsectors = mtd->writesize / ecc->size; for (i = 0; i < (ecc->bytes * nsectors); i++) layout->eccpos[i] = i; layout->oobfree[0].length = mtd->oobsize - i; layout->oobfree[0].offset = i; return 0; } static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) { switch (ecc->mode) { case NAND_ECC_HW: case NAND_ECC_HW_SYNDROME: sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); break; case NAND_ECC_NONE: kfree(ecc->layout); default: break; } } static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_chip *nand = mtd_to_nand(mtd); int ret; if (!ecc->size) { ecc->size = nand->ecc_step_ds; ecc->strength = nand->ecc_strength_ds; } if (!ecc->size || !ecc->strength) return -EINVAL; switch (ecc->mode) { case NAND_ECC_SOFT_BCH: break; case NAND_ECC_HW: ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; break; case NAND_ECC_HW_SYNDROME: ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; break; case NAND_ECC_NONE: ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); if (!ecc->layout) return -ENOMEM; ecc->layout->oobfree[0].length = mtd->oobsize; case NAND_ECC_SOFT: break; default: return -EINVAL; } return 0; } static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, struct device_node *np) { const struct nand_sdr_timings *timings; struct sunxi_nand_chip *chip; struct mtd_info *mtd; struct nand_chip *nand; int nsels; int ret; int i; u32 tmp; if (!of_get_property(np, "reg", &nsels)) return -EINVAL; nsels /= sizeof(u32); if (!nsels) { dev_err(dev, "invalid reg property size\n"); return -EINVAL; } chip = devm_kzalloc(dev, sizeof(*chip) + (nsels * sizeof(struct sunxi_nand_chip_sel)), GFP_KERNEL); if (!chip) { dev_err(dev, "could not allocate chip\n"); return -ENOMEM; } chip->nsels = nsels; chip->selected = -1; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &tmp); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); return ret; } if (tmp > NFC_MAX_CS) { dev_err(dev, "invalid reg value: %u (max CS = 7)\n", tmp); return -EINVAL; } if (test_and_set_bit(tmp, &nfc->assigned_cs)) { dev_err(dev, "CS %d already assigned\n", tmp); return -EINVAL; } chip->sels[i].cs = tmp; if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && tmp < 2) { chip->sels[i].rb.type = RB_NATIVE; chip->sels[i].rb.info.nativeid = tmp; } else { ret = of_get_named_gpio(np, "rb-gpios", i); if (ret >= 0) { tmp = ret; chip->sels[i].rb.type = RB_GPIO; chip->sels[i].rb.info.gpio = tmp; ret = devm_gpio_request(dev, tmp, "nand-rb"); if (ret) return ret; ret = gpio_direction_input(tmp); if (ret) return ret; } else { chip->sels[i].rb.type = RB_NONE; } } } nand = &chip->nand; /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ nand->chip_delay = 200; nand->controller = &nfc->controller; /* * Set the ECC mode to the default value in case nothing is specified * in the DT. */ nand->ecc.mode = NAND_ECC_HW; nand_set_flash_node(nand, np); nand->select_chip = sunxi_nfc_select_chip; nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; nand->read_buf = sunxi_nfc_read_buf; nand->write_buf = sunxi_nfc_write_buf; nand->read_byte = sunxi_nfc_read_byte; mtd = nand_to_mtd(nand); mtd->dev.parent = dev; timings = onfi_async_timing_mode_to_sdr_timings(0); if (IS_ERR(timings)) { ret = PTR_ERR(timings); dev_err(dev, "could not retrieve timings for ONFI mode 0: %d\n", ret); return ret; } ret = sunxi_nand_chip_set_timings(chip, timings); if (ret) { dev_err(dev, "could not configure chip timings: %d\n", ret); return ret; } ret = nand_scan_ident(mtd, nsels, NULL); if (ret) return ret; if (nand->bbt_options & NAND_BBT_USE_FLASH) nand->bbt_options |= NAND_BBT_NO_OOB; if (nand->options & NAND_NEED_SCRAMBLING) nand->options |= NAND_NO_SUBPAGE_WRITE; nand->options |= NAND_SUBPAGE_READ; ret = sunxi_nand_chip_init_timings(chip, np); if (ret) { dev_err(dev, "could not configure chip timings: %d\n", ret); return ret; } ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); if (ret) { dev_err(dev, "ECC init failed: %d\n", ret); return ret; } ret = nand_scan_tail(mtd); if (ret) { dev_err(dev, "nand_scan_tail failed: %d\n", ret); return ret; } ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "failed to register mtd device: %d\n", ret); nand_release(mtd); return ret; } list_add_tail(&chip->node, &nfc->chips); return 0; } static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) { struct device_node *np = dev->of_node; struct device_node *nand_np; int nchips = of_get_child_count(np); int ret; if (nchips > 8) { dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = sunxi_nand_chip_init(dev, nfc, nand_np); if (ret) { of_node_put(nand_np); return ret; } } return 0; } static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) { struct sunxi_nand_chip *chip; while (!list_empty(&nfc->chips)) { chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, node); nand_release(nand_to_mtd(&chip->nand)); sunxi_nand_ecc_cleanup(&chip->nand.ecc); list_del(&chip->node); } } static int sunxi_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *r; struct sunxi_nfc *nfc; int irq; int ret; nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = dev; spin_lock_init(&nfc->controller.lock); init_waitqueue_head(&nfc->controller.wq); INIT_LIST_HEAD(&nfc->chips); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); nfc->regs = devm_ioremap_resource(dev, r); if (IS_ERR(nfc->regs)) return PTR_ERR(nfc->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "failed to retrieve irq\n"); return irq; } nfc->ahb_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(nfc->ahb_clk)) { dev_err(dev, "failed to retrieve ahb clk\n"); return PTR_ERR(nfc->ahb_clk); } ret = clk_prepare_enable(nfc->ahb_clk); if (ret) return ret; nfc->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(nfc->mod_clk)) { dev_err(dev, "failed to retrieve mod clk\n"); ret = PTR_ERR(nfc->mod_clk); goto out_ahb_clk_unprepare; } ret = clk_prepare_enable(nfc->mod_clk); if (ret) goto out_ahb_clk_unprepare; ret = sunxi_nfc_rst(nfc); if (ret) goto out_mod_clk_unprepare; writel(0, nfc->regs + NFC_REG_INT); ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, 0, "sunxi-nand", nfc); if (ret) goto out_mod_clk_unprepare; platform_set_drvdata(pdev, nfc); ret = sunxi_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init nand chips\n"); goto out_mod_clk_unprepare; } return 0; out_mod_clk_unprepare: clk_disable_unprepare(nfc->mod_clk); out_ahb_clk_unprepare: clk_disable_unprepare(nfc->ahb_clk); return ret; } static int sunxi_nfc_remove(struct platform_device *pdev) { struct sunxi_nfc *nfc = platform_get_drvdata(pdev); sunxi_nand_chips_cleanup(nfc); clk_disable_unprepare(nfc->mod_clk); clk_disable_unprepare(nfc->ahb_clk); return 0; } static const struct of_device_id sunxi_nfc_ids[] = { { .compatible = "allwinner,sun4i-a10-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); static struct platform_driver sunxi_nfc_driver = { .driver = { .name = "sunxi_nand", .of_match_table = sunxi_nfc_ids, }, .probe = sunxi_nfc_probe, .remove = sunxi_nfc_remove, }; module_platform_driver(sunxi_nfc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Boris BREZILLON"); MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); MODULE_ALIAS("platform:sunxi_nand");