/* * Block driver for media (i.e., flash cards) * * Copyright 2002 Hewlett-Packard Company * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS * FITNESS FOR ANY PARTICULAR PURPOSE. * * Many thanks to Alessandro Rubini and Jonathan Corbet! * * Author: Andrew Christian * 28 May 2002 */ #include <linux/moduleparam.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/hdreg.h> #include <linux/kdev_t.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include <linux/mmc/card.h> #include <linux/mmc/protocol.h> #include <asm/system.h> #include <asm/uaccess.h> #include "mmc_queue.h" /* * max 8 partitions per card */ #define MMC_SHIFT 3 static int major; /* * There is one mmc_blk_data per slot. */ struct mmc_blk_data { spinlock_t lock; struct gendisk *disk; struct mmc_queue queue; unsigned int usage; unsigned int block_bits; unsigned int read_only; }; static DEFINE_MUTEX(open_lock); static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) { struct mmc_blk_data *md; mutex_lock(&open_lock); md = disk->private_data; if (md && md->usage == 0) md = NULL; if (md) md->usage++; mutex_unlock(&open_lock); return md; } static void mmc_blk_put(struct mmc_blk_data *md) { mutex_lock(&open_lock); md->usage--; if (md->usage == 0) { put_disk(md->disk); mmc_cleanup_queue(&md->queue); kfree(md); } mutex_unlock(&open_lock); } static int mmc_blk_open(struct inode *inode, struct file *filp) { struct mmc_blk_data *md; int ret = -ENXIO; md = mmc_blk_get(inode->i_bdev->bd_disk); if (md) { if (md->usage == 2) check_disk_change(inode->i_bdev); ret = 0; if ((filp->f_mode & FMODE_WRITE) && md->read_only) ret = -EROFS; } return ret; } static int mmc_blk_release(struct inode *inode, struct file *filp) { struct mmc_blk_data *md = inode->i_bdev->bd_disk->private_data; mmc_blk_put(md); return 0; } static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); geo->heads = 4; geo->sectors = 16; return 0; } static struct block_device_operations mmc_bdops = { .open = mmc_blk_open, .release = mmc_blk_release, .getgeo = mmc_blk_getgeo, .owner = THIS_MODULE, }; struct mmc_blk_request { struct mmc_request mrq; struct mmc_command cmd; struct mmc_command stop; struct mmc_data data; }; static int mmc_blk_prep_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; int stat = BLKPREP_OK; /* * If we have no device, we haven't finished initialising. */ if (!md || !mq->card) { printk(KERN_ERR "%s: killing request - no device/host\n", req->rq_disk->disk_name); stat = BLKPREP_KILL; } return stat; } static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; int ret; if (mmc_card_claim_host(card)) goto cmd_err; do { struct mmc_blk_request brq; struct mmc_command cmd; memset(&brq, 0, sizeof(struct mmc_blk_request)); brq.mrq.cmd = &brq.cmd; brq.mrq.data = &brq.data; brq.cmd.arg = req->sector << 9; brq.cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; brq.data.timeout_ns = card->csd.tacc_ns * 10; brq.data.timeout_clks = card->csd.tacc_clks * 10; brq.data.blksz_bits = md->block_bits; brq.data.blksz = 1 << md->block_bits; brq.data.blocks = req->nr_sectors >> (md->block_bits - 9); brq.stop.opcode = MMC_STOP_TRANSMISSION; brq.stop.arg = 0; brq.stop.flags = MMC_RSP_R1B | MMC_CMD_AC; if (rq_data_dir(req) == READ) { brq.cmd.opcode = brq.data.blocks > 1 ? MMC_READ_MULTIPLE_BLOCK : MMC_READ_SINGLE_BLOCK; brq.data.flags |= MMC_DATA_READ; } else { brq.cmd.opcode = MMC_WRITE_BLOCK; brq.data.flags |= MMC_DATA_WRITE; brq.data.blocks = 1; /* * Scale up the timeout by the r2w factor */ brq.data.timeout_ns <<= card->csd.r2w_factor; brq.data.timeout_clks <<= card->csd.r2w_factor; } if (brq.data.blocks > 1) { brq.data.flags |= MMC_DATA_MULTI; brq.mrq.stop = &brq.stop; } else { brq.mrq.stop = NULL; } brq.data.sg = mq->sg; brq.data.sg_len = blk_rq_map_sg(req->q, req, brq.data.sg); mmc_wait_for_req(card->host, &brq.mrq); if (brq.cmd.error) { printk(KERN_ERR "%s: error %d sending read/write command\n", req->rq_disk->disk_name, brq.cmd.error); goto cmd_err; } if (brq.data.error) { printk(KERN_ERR "%s: error %d transferring data\n", req->rq_disk->disk_name, brq.data.error); goto cmd_err; } if (brq.stop.error) { printk(KERN_ERR "%s: error %d sending stop command\n", req->rq_disk->disk_name, brq.stop.error); goto cmd_err; } do { int err; cmd.opcode = MMC_SEND_STATUS; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 5); if (err) { printk(KERN_ERR "%s: error %d requesting status\n", req->rq_disk->disk_name, err); goto cmd_err; } } while (!(cmd.resp[0] & R1_READY_FOR_DATA)); #if 0 if (cmd.resp[0] & ~0x00000900) printk(KERN_ERR "%s: status = %08x\n", req->rq_disk->disk_name, cmd.resp[0]); if (mmc_decode_status(cmd.resp)) goto cmd_err; #endif /* * A block was successfully transferred. */ spin_lock_irq(&md->lock); ret = end_that_request_chunk(req, 1, brq.data.bytes_xfered); if (!ret) { /* * The whole request completed successfully. */ add_disk_randomness(req->rq_disk); blkdev_dequeue_request(req); end_that_request_last(req, 1); } spin_unlock_irq(&md->lock); } while (ret); mmc_card_release_host(card); return 1; cmd_err: mmc_card_release_host(card); /* * This is a little draconian, but until we get proper * error handling sorted out here, its the best we can * do - especially as some hosts have no idea how much * data was transferred before the error occurred. */ spin_lock_irq(&md->lock); do { ret = end_that_request_chunk(req, 0, req->current_nr_sectors << 9); } while (ret); add_disk_randomness(req->rq_disk); blkdev_dequeue_request(req); end_that_request_last(req, 0); spin_unlock_irq(&md->lock); return 0; } #define MMC_NUM_MINORS (256 >> MMC_SHIFT) static unsigned long dev_use[MMC_NUM_MINORS/(8*sizeof(unsigned long))]; static inline int mmc_blk_readonly(struct mmc_card *card) { return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE); } static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) { struct mmc_blk_data *md; int devidx, ret; devidx = find_first_zero_bit(dev_use, MMC_NUM_MINORS); if (devidx >= MMC_NUM_MINORS) return ERR_PTR(-ENOSPC); __set_bit(devidx, dev_use); md = kmalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); if (!md) { ret = -ENOMEM; goto out; } memset(md, 0, sizeof(struct mmc_blk_data)); /* * Set the read-only status based on the supported commands * and the write protect switch. */ md->read_only = mmc_blk_readonly(card); /* * Figure out a workable block size. MMC cards have: * - two block sizes, one for read and one for write. * - may support partial reads and/or writes * (allows block sizes smaller than specified) */ md->block_bits = card->csd.read_blkbits; if (card->csd.write_blkbits != card->csd.read_blkbits) { if (card->csd.write_blkbits < card->csd.read_blkbits && card->csd.read_partial) { /* * write block size is smaller than read block * size, but we support partial reads, so choose * the smaller write block size. */ md->block_bits = card->csd.write_blkbits; } else if (card->csd.write_blkbits > card->csd.read_blkbits && card->csd.write_partial) { /* * read block size is smaller than write block * size, but we support partial writes. Use read * block size. */ } else { /* * We don't support this configuration for writes. */ printk(KERN_ERR "%s: unable to select block size for " "writing (rb%u wb%u rp%u wp%u)\n", mmc_card_id(card), 1 << card->csd.read_blkbits, 1 << card->csd.write_blkbits, card->csd.read_partial, card->csd.write_partial); md->read_only = 1; } } /* * Refuse to allow block sizes smaller than 512 bytes. */ if (md->block_bits < 9) { printk(KERN_ERR "%s: unable to support block size %u\n", mmc_card_id(card), 1 << md->block_bits); ret = -EINVAL; goto err_kfree; } md->disk = alloc_disk(1 << MMC_SHIFT); if (md->disk == NULL) { ret = -ENOMEM; goto err_kfree; } spin_lock_init(&md->lock); md->usage = 1; ret = mmc_init_queue(&md->queue, card, &md->lock); if (ret) goto err_putdisk; md->queue.prep_fn = mmc_blk_prep_rq; md->queue.issue_fn = mmc_blk_issue_rq; md->queue.data = md; md->disk->major = major; md->disk->first_minor = devidx << MMC_SHIFT; md->disk->fops = &mmc_bdops; md->disk->private_data = md; md->disk->queue = md->queue.queue; md->disk->driverfs_dev = &card->dev; /* * As discussed on lkml, GENHD_FL_REMOVABLE should: * * - be set for removable media with permanent block devices * - be unset for removable block devices with permanent media * * Since MMC block devices clearly fall under the second * case, we do not set GENHD_FL_REMOVABLE. Userspace * should use the block device creation/destruction hotplug * messages to tell when the card is present. */ sprintf(md->disk->disk_name, "mmcblk%d", devidx); blk_queue_hardsect_size(md->queue.queue, 1 << md->block_bits); /* * The CSD capacity field is in units of read_blkbits. * set_capacity takes units of 512 bytes. */ set_capacity(md->disk, card->csd.capacity << (card->csd.read_blkbits - 9)); return md; err_putdisk: put_disk(md->disk); err_kfree: kfree(md); out: return ERR_PTR(ret); } static int mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card) { struct mmc_command cmd; int err; mmc_card_claim_host(card); cmd.opcode = MMC_SET_BLOCKLEN; cmd.arg = 1 << md->block_bits; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 5); mmc_card_release_host(card); if (err) { printk(KERN_ERR "%s: unable to set block size to %d: %d\n", md->disk->disk_name, cmd.arg, err); return -EINVAL; } return 0; } static int mmc_blk_probe(struct mmc_card *card) { struct mmc_blk_data *md; int err; /* * Check that the card supports the command class(es) we need. */ if (!(card->csd.cmdclass & CCC_BLOCK_READ)) return -ENODEV; md = mmc_blk_alloc(card); if (IS_ERR(md)) return PTR_ERR(md); err = mmc_blk_set_blksize(md, card); if (err) goto out; printk(KERN_INFO "%s: %s %s %lluKiB %s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), (unsigned long long)(get_capacity(md->disk) >> 1), md->read_only ? "(ro)" : ""); mmc_set_drvdata(card, md); add_disk(md->disk); return 0; out: mmc_blk_put(md); return err; } static void mmc_blk_remove(struct mmc_card *card) { struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { int devidx; del_gendisk(md->disk); /* * I think this is needed. */ md->disk->queue = NULL; devidx = md->disk->first_minor >> MMC_SHIFT; __clear_bit(devidx, dev_use); mmc_blk_put(md); } mmc_set_drvdata(card, NULL); } #ifdef CONFIG_PM static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state) { struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { mmc_queue_suspend(&md->queue); } return 0; } static int mmc_blk_resume(struct mmc_card *card) { struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { mmc_blk_set_blksize(md, card); mmc_queue_resume(&md->queue); } return 0; } #else #define mmc_blk_suspend NULL #define mmc_blk_resume NULL #endif static struct mmc_driver mmc_driver = { .drv = { .name = "mmcblk", }, .probe = mmc_blk_probe, .remove = mmc_blk_remove, .suspend = mmc_blk_suspend, .resume = mmc_blk_resume, }; static int __init mmc_blk_init(void) { int res = -ENOMEM; res = register_blkdev(major, "mmc"); if (res < 0) { printk(KERN_WARNING "Unable to get major %d for MMC media: %d\n", major, res); goto out; } if (major == 0) major = res; return mmc_register_driver(&mmc_driver); out: return res; } static void __exit mmc_blk_exit(void) { mmc_unregister_driver(&mmc_driver); unregister_blkdev(major, "mmc"); } module_init(mmc_blk_init); module_exit(mmc_blk_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); module_param(major, int, 0444); MODULE_PARM_DESC(major, "specify the major device number for MMC block driver");