/* * twl6030-irq.c - TWL6030 irq support * * Copyright (C) 2005-2009 Texas Instruments, Inc. * * Modifications to defer interrupt handling to a kernel thread: * Copyright (C) 2006 MontaVista Software, Inc. * * Based on tlv320aic23.c: * Copyright (c) by Kai Svahn * * Code cleanup and modifications to IRQ handler. * by syed khasim * * TWL6030 specific code and IRQ handling changes by * Jagadeesh Bhaskar Pakaravoor * Balaji T K * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include "twl-core.h" /* * TWL6030 (unlike its predecessors, which had two level interrupt handling) * three interrupt registers INT_STS_A, INT_STS_B and INT_STS_C. * It exposes status bits saying who has raised an interrupt. There are * three mask registers that corresponds to these status registers, that * enables/disables these interrupts. * * We set up IRQs starting at a platform-specified base. An interrupt map table, * specifies mapping between interrupt number and the associated module. */ #define TWL6030_NR_IRQS 20 static int twl6030_interrupt_mapping[24] = { PWR_INTR_OFFSET, /* Bit 0 PWRON */ PWR_INTR_OFFSET, /* Bit 1 RPWRON */ PWR_INTR_OFFSET, /* Bit 2 BAT_VLOW */ RTC_INTR_OFFSET, /* Bit 3 RTC_ALARM */ RTC_INTR_OFFSET, /* Bit 4 RTC_PERIOD */ HOTDIE_INTR_OFFSET, /* Bit 5 HOT_DIE */ SMPSLDO_INTR_OFFSET, /* Bit 6 VXXX_SHORT */ SMPSLDO_INTR_OFFSET, /* Bit 7 VMMC_SHORT */ SMPSLDO_INTR_OFFSET, /* Bit 8 VUSIM_SHORT */ BATDETECT_INTR_OFFSET, /* Bit 9 BAT */ SIMDETECT_INTR_OFFSET, /* Bit 10 SIM */ MMCDETECT_INTR_OFFSET, /* Bit 11 MMC */ RSV_INTR_OFFSET, /* Bit 12 Reserved */ MADC_INTR_OFFSET, /* Bit 13 GPADC_RT_EOC */ MADC_INTR_OFFSET, /* Bit 14 GPADC_SW_EOC */ GASGAUGE_INTR_OFFSET, /* Bit 15 CC_AUTOCAL */ USBOTG_INTR_OFFSET, /* Bit 16 ID_WKUP */ USBOTG_INTR_OFFSET, /* Bit 17 VBUS_WKUP */ USBOTG_INTR_OFFSET, /* Bit 18 ID */ USB_PRES_INTR_OFFSET, /* Bit 19 VBUS */ CHARGER_INTR_OFFSET, /* Bit 20 CHRG_CTRL */ CHARGERFAULT_INTR_OFFSET, /* Bit 21 EXT_CHRG */ CHARGERFAULT_INTR_OFFSET, /* Bit 22 INT_CHRG */ RSV_INTR_OFFSET, /* Bit 23 Reserved */ }; /*----------------------------------------------------------------------*/ struct twl6030_irq { unsigned int irq_base; int twl_irq; bool irq_wake_enabled; atomic_t wakeirqs; struct notifier_block pm_nb; struct irq_chip irq_chip; struct irq_domain *irq_domain; }; static struct twl6030_irq *twl6030_irq; static int twl6030_irq_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *unused) { int chained_wakeups; struct twl6030_irq *pdata = container_of(notifier, struct twl6030_irq, pm_nb); switch (pm_event) { case PM_SUSPEND_PREPARE: chained_wakeups = atomic_read(&pdata->wakeirqs); if (chained_wakeups && !pdata->irq_wake_enabled) { if (enable_irq_wake(pdata->twl_irq)) pr_err("twl6030 IRQ wake enable failed\n"); else pdata->irq_wake_enabled = true; } else if (!chained_wakeups && pdata->irq_wake_enabled) { disable_irq_wake(pdata->twl_irq); pdata->irq_wake_enabled = false; } disable_irq(pdata->twl_irq); break; case PM_POST_SUSPEND: enable_irq(pdata->twl_irq); break; default: break; } return NOTIFY_DONE; } /* * Threaded irq handler for the twl6030 interrupt. * We query the interrupt controller in the twl6030 to determine * which module is generating the interrupt request and call * handle_nested_irq for that module. */ static irqreturn_t twl6030_irq_thread(int irq, void *data) { int i, ret; union { u8 bytes[4]; u32 int_sts; } sts; struct twl6030_irq *pdata = data; /* read INT_STS_A, B and C in one shot using a burst read */ ret = twl_i2c_read(TWL_MODULE_PIH, sts.bytes, REG_INT_STS_A, 3); if (ret) { pr_warn("twl6030_irq: I2C error %d reading PIH ISR\n", ret); return IRQ_HANDLED; } sts.bytes[3] = 0; /* Only 24 bits are valid*/ /* * Since VBUS status bit is not reliable for VBUS disconnect * use CHARGER VBUS detection status bit instead. */ if (sts.bytes[2] & 0x10) sts.bytes[2] |= 0x08; for (i = 0; sts.int_sts; sts.int_sts >>= 1, i++) if (sts.int_sts & 0x1) { int module_irq = irq_find_mapping(pdata->irq_domain, twl6030_interrupt_mapping[i]); if (module_irq) handle_nested_irq(module_irq); else pr_err("twl6030_irq: Unmapped PIH ISR %u detected\n", i); pr_debug("twl6030_irq: PIH ISR %u, virq%u\n", i, module_irq); } /* * NOTE: * Simulation confirms that documentation is wrong w.r.t the * interrupt status clear operation. A single *byte* write to * any one of STS_A to STS_C register results in all three * STS registers being reset. Since it does not matter which * value is written, all three registers are cleared on a * single byte write, so we just use 0x0 to clear. */ ret = twl_i2c_write_u8(TWL_MODULE_PIH, 0x00, REG_INT_STS_A); if (ret) pr_warn("twl6030_irq: I2C error in clearing PIH ISR\n"); return IRQ_HANDLED; } /*----------------------------------------------------------------------*/ static int twl6030_irq_set_wake(struct irq_data *d, unsigned int on) { struct twl6030_irq *pdata = irq_get_chip_data(d->irq); if (on) atomic_inc(&pdata->wakeirqs); else atomic_dec(&pdata->wakeirqs); return 0; } int twl6030_interrupt_unmask(u8 bit_mask, u8 offset) { int ret; u8 unmask_value; ret = twl_i2c_read_u8(TWL_MODULE_PIH, &unmask_value, REG_INT_STS_A + offset); unmask_value &= (~(bit_mask)); ret |= twl_i2c_write_u8(TWL_MODULE_PIH, unmask_value, REG_INT_STS_A + offset); /* unmask INT_MSK_A/B/C */ return ret; } EXPORT_SYMBOL(twl6030_interrupt_unmask); int twl6030_interrupt_mask(u8 bit_mask, u8 offset) { int ret; u8 mask_value; ret = twl_i2c_read_u8(TWL_MODULE_PIH, &mask_value, REG_INT_STS_A + offset); mask_value |= (bit_mask); ret |= twl_i2c_write_u8(TWL_MODULE_PIH, mask_value, REG_INT_STS_A + offset); /* mask INT_MSK_A/B/C */ return ret; } EXPORT_SYMBOL(twl6030_interrupt_mask); int twl6030_mmc_card_detect_config(void) { int ret; u8 reg_val = 0; /* Unmasking the Card detect Interrupt line for MMC1 from Phoenix */ twl6030_interrupt_unmask(TWL6030_MMCDETECT_INT_MASK, REG_INT_MSK_LINE_B); twl6030_interrupt_unmask(TWL6030_MMCDETECT_INT_MASK, REG_INT_MSK_STS_B); /* * Initially Configuring MMC_CTRL for receiving interrupts & * Card status on TWL6030 for MMC1 */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, ®_val, TWL6030_MMCCTRL); if (ret < 0) { pr_err("twl6030: Failed to read MMCCTRL, error %d\n", ret); return ret; } reg_val &= ~VMMC_AUTO_OFF; reg_val |= SW_FC; ret = twl_i2c_write_u8(TWL6030_MODULE_ID0, reg_val, TWL6030_MMCCTRL); if (ret < 0) { pr_err("twl6030: Failed to write MMCCTRL, error %d\n", ret); return ret; } /* Configuring PullUp-PullDown register */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, ®_val, TWL6030_CFG_INPUT_PUPD3); if (ret < 0) { pr_err("twl6030: Failed to read CFG_INPUT_PUPD3, error %d\n", ret); return ret; } reg_val &= ~(MMC_PU | MMC_PD); ret = twl_i2c_write_u8(TWL6030_MODULE_ID0, reg_val, TWL6030_CFG_INPUT_PUPD3); if (ret < 0) { pr_err("twl6030: Failed to write CFG_INPUT_PUPD3, error %d\n", ret); return ret; } return irq_find_mapping(twl6030_irq->irq_domain, MMCDETECT_INTR_OFFSET); } EXPORT_SYMBOL(twl6030_mmc_card_detect_config); int twl6030_mmc_card_detect(struct device *dev, int slot) { int ret = -EIO; u8 read_reg = 0; struct platform_device *pdev = to_platform_device(dev); if (pdev->id) { /* TWL6030 provide's Card detect support for * only MMC1 controller. */ pr_err("Unknown MMC controller %d in %s\n", pdev->id, __func__); return ret; } /* * BIT0 of MMC_CTRL on TWL6030 provides card status for MMC1 * 0 - Card not present ,1 - Card present */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, &read_reg, TWL6030_MMCCTRL); if (ret >= 0) ret = read_reg & STS_MMC; return ret; } EXPORT_SYMBOL(twl6030_mmc_card_detect); static int twl6030_irq_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hwirq) { struct twl6030_irq *pdata = d->host_data; irq_set_chip_data(virq, pdata); irq_set_chip_and_handler(virq, &pdata->irq_chip, handle_simple_irq); irq_set_nested_thread(virq, true); irq_set_parent(virq, pdata->twl_irq); #ifdef CONFIG_ARM /* * ARM requires an extra step to clear IRQ_NOREQUEST, which it * sets on behalf of every irq_chip. Also sets IRQ_NOPROBE. */ set_irq_flags(virq, IRQF_VALID); #else /* same effect on other architectures */ irq_set_noprobe(virq); #endif return 0; } static void twl6030_irq_unmap(struct irq_domain *d, unsigned int virq) { #ifdef CONFIG_ARM set_irq_flags(virq, 0); #endif irq_set_chip_and_handler(virq, NULL, NULL); irq_set_chip_data(virq, NULL); } static struct irq_domain_ops twl6030_irq_domain_ops = { .map = twl6030_irq_map, .unmap = twl6030_irq_unmap, .xlate = irq_domain_xlate_onetwocell, }; int twl6030_init_irq(struct device *dev, int irq_num) { struct device_node *node = dev->of_node; int nr_irqs; int status; u8 mask[3]; nr_irqs = TWL6030_NR_IRQS; twl6030_irq = devm_kzalloc(dev, sizeof(*twl6030_irq), GFP_KERNEL); if (!twl6030_irq) { dev_err(dev, "twl6030_irq: Memory allocation failed\n"); return -ENOMEM; } mask[0] = 0xFF; mask[1] = 0xFF; mask[2] = 0xFF; /* mask all int lines */ status = twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_MSK_LINE_A, 3); /* mask all int sts */ status |= twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_MSK_STS_A, 3); /* clear INT_STS_A,B,C */ status |= twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_STS_A, 3); if (status < 0) { dev_err(dev, "I2C err writing TWL_MODULE_PIH: %d\n", status); return status; } /* * install an irq handler for each of the modules; * clone dummy irq_chip since PIH can't *do* anything */ twl6030_irq->irq_chip = dummy_irq_chip; twl6030_irq->irq_chip.name = "twl6030"; twl6030_irq->irq_chip.irq_set_type = NULL; twl6030_irq->irq_chip.irq_set_wake = twl6030_irq_set_wake; twl6030_irq->pm_nb.notifier_call = twl6030_irq_pm_notifier; atomic_set(&twl6030_irq->wakeirqs, 0); twl6030_irq->irq_domain = irq_domain_add_linear(node, nr_irqs, &twl6030_irq_domain_ops, twl6030_irq); if (!twl6030_irq->irq_domain) { dev_err(dev, "Can't add irq_domain\n"); return -ENOMEM; } dev_info(dev, "PIH (irq %d) nested IRQs\n", irq_num); /* install an irq handler to demultiplex the TWL6030 interrupt */ status = request_threaded_irq(irq_num, NULL, twl6030_irq_thread, IRQF_ONESHOT, "TWL6030-PIH", twl6030_irq); if (status < 0) { dev_err(dev, "could not claim irq %d: %d\n", irq_num, status); goto fail_irq; } twl6030_irq->twl_irq = irq_num; register_pm_notifier(&twl6030_irq->pm_nb); return 0; fail_irq: irq_domain_remove(twl6030_irq->irq_domain); return status; } int twl6030_exit_irq(void) { if (twl6030_irq && twl6030_irq->twl_irq) { unregister_pm_notifier(&twl6030_irq->pm_nb); free_irq(twl6030_irq->twl_irq, NULL); /* * TODO: IRQ domain and allocated nested IRQ descriptors * should be freed somehow here. Now It can't be done, because * child devices will not be deleted during removing of * TWL Core driver and they will still contain allocated * virt IRQs in their Resources tables. * The same prevents us from using devm_request_threaded_irq() * in this module. */ } return 0; }