/* * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe" * multifunction chip. Currently works with the Omnivision OV7670 * sensor. * * The data sheet for this device can be found at: * http://www.marvell.com/products/pcconn/88ALP01.jsp * * Copyright 2006 One Laptop Per Child Association, Inc. * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net> * * Written by Jonathan Corbet, corbet@lwn.net. * * v4l2_device/v4l2_subdev conversion by: * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl> * * Note: this conversion is untested! Please contact the linux-media * mailinglist if you can test this, together with the test results. * * This file may be distributed under the terms of the GNU General * Public License, version 2. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/videodev2.h> #include <linux/slab.h> #include <media/v4l2-device.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-chip-ident.h> #include <linux/device.h> #include <linux/wait.h> #include <linux/list.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> #include <asm/io.h> #include "cafe_ccic-regs.h" #define CAFE_VERSION 0x000002 /* * Parameters. */ MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>"); MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("Video"); /* * Internal DMA buffer management. Since the controller cannot do S/G I/O, * we must have physically contiguous buffers to bring frames into. * These parameters control how many buffers we use, whether we * allocate them at load time (better chance of success, but nails down * memory) or when somebody tries to use the camera (riskier), and, * for load-time allocation, how big they should be. * * The controller can cycle through three buffers. We could use * more by flipping pointers around, but it probably makes little * sense. */ #define MAX_DMA_BUFS 3 static int alloc_bufs_at_read; module_param(alloc_bufs_at_read, bool, 0444); MODULE_PARM_DESC(alloc_bufs_at_read, "Non-zero value causes DMA buffers to be allocated when the " "video capture device is read, rather than at module load " "time. This saves memory, but decreases the chances of " "successfully getting those buffers."); static int n_dma_bufs = 3; module_param(n_dma_bufs, uint, 0644); MODULE_PARM_DESC(n_dma_bufs, "The number of DMA buffers to allocate. Can be either two " "(saves memory, makes timing tighter) or three."); static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */ module_param(dma_buf_size, uint, 0444); MODULE_PARM_DESC(dma_buf_size, "The size of the allocated DMA buffers. If actual operating " "parameters require larger buffers, an attempt to reallocate " "will be made."); static int min_buffers = 1; module_param(min_buffers, uint, 0644); MODULE_PARM_DESC(min_buffers, "The minimum number of streaming I/O buffers we are willing " "to work with."); static int max_buffers = 10; module_param(max_buffers, uint, 0644); MODULE_PARM_DESC(max_buffers, "The maximum number of streaming I/O buffers an application " "will be allowed to allocate. These buffers are big and live " "in vmalloc space."); static int flip; module_param(flip, bool, 0444); MODULE_PARM_DESC(flip, "If set, the sensor will be instructed to flip the image " "vertically."); enum cafe_state { S_NOTREADY, /* Not yet initialized */ S_IDLE, /* Just hanging around */ S_FLAKED, /* Some sort of problem */ S_SINGLEREAD, /* In read() */ S_SPECREAD, /* Speculative read (for future read()) */ S_STREAMING /* Streaming data */ }; /* * Tracking of streaming I/O buffers. */ struct cafe_sio_buffer { struct list_head list; struct v4l2_buffer v4lbuf; char *buffer; /* Where it lives in kernel space */ int mapcount; struct cafe_camera *cam; }; /* * A description of one of our devices. * Locking: controlled by s_mutex. Certain fields, however, require * the dev_lock spinlock; they are marked as such by comments. * dev_lock is also required for access to device registers. */ struct cafe_camera { struct v4l2_device v4l2_dev; enum cafe_state state; unsigned long flags; /* Buffer status, mainly (dev_lock) */ int users; /* How many open FDs */ struct file *owner; /* Who has data access (v4l2) */ /* * Subsystem structures. */ struct pci_dev *pdev; struct video_device vdev; struct i2c_adapter i2c_adapter; struct v4l2_subdev *sensor; unsigned short sensor_addr; unsigned char __iomem *regs; struct list_head dev_list; /* link to other devices */ /* DMA buffers */ unsigned int nbufs; /* How many are alloc'd */ int next_buf; /* Next to consume (dev_lock) */ unsigned int dma_buf_size; /* allocated size */ void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */ dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */ unsigned int specframes; /* Unconsumed spec frames (dev_lock) */ unsigned int sequence; /* Frame sequence number */ unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */ /* Streaming buffers */ unsigned int n_sbufs; /* How many we have */ struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */ struct list_head sb_avail; /* Available for data (we own) (dev_lock) */ struct list_head sb_full; /* With data (user space owns) (dev_lock) */ struct tasklet_struct s_tasklet; /* Current operating parameters */ u32 sensor_type; /* Currently ov7670 only */ struct v4l2_pix_format pix_format; /* Locks */ struct mutex s_mutex; /* Access to this structure */ spinlock_t dev_lock; /* Access to device */ /* Misc */ wait_queue_head_t smbus_wait; /* Waiting on i2c events */ wait_queue_head_t iowait; /* Waiting on frame data */ }; /* * Status flags. Always manipulated with bit operations. */ #define CF_BUF0_VALID 0 /* Buffers valid - first three */ #define CF_BUF1_VALID 1 #define CF_BUF2_VALID 2 #define CF_DMA_ACTIVE 3 /* A frame is incoming */ #define CF_CONFIG_NEEDED 4 /* Must configure hardware */ #define sensor_call(cam, o, f, args...) \ v4l2_subdev_call(cam->sensor, o, f, ##args) static inline struct cafe_camera *to_cam(struct v4l2_device *dev) { return container_of(dev, struct cafe_camera, v4l2_dev); } /* * Start over with DMA buffers - dev_lock needed. */ static void cafe_reset_buffers(struct cafe_camera *cam) { int i; cam->next_buf = -1; for (i = 0; i < cam->nbufs; i++) clear_bit(i, &cam->flags); cam->specframes = 0; } static inline int cafe_needs_config(struct cafe_camera *cam) { return test_bit(CF_CONFIG_NEEDED, &cam->flags); } static void cafe_set_config_needed(struct cafe_camera *cam, int needed) { if (needed) set_bit(CF_CONFIG_NEEDED, &cam->flags); else clear_bit(CF_CONFIG_NEEDED, &cam->flags); } /* * Debugging and related. */ #define cam_err(cam, fmt, arg...) \ dev_err(&(cam)->pdev->dev, fmt, ##arg); #define cam_warn(cam, fmt, arg...) \ dev_warn(&(cam)->pdev->dev, fmt, ##arg); #define cam_dbg(cam, fmt, arg...) \ dev_dbg(&(cam)->pdev->dev, fmt, ##arg); /* ---------------------------------------------------------------------*/ /* * Device register I/O */ static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg, unsigned int val) { iowrite32(val, cam->regs + reg); } static inline unsigned int cafe_reg_read(struct cafe_camera *cam, unsigned int reg) { return ioread32(cam->regs + reg); } static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg, unsigned int val, unsigned int mask) { unsigned int v = cafe_reg_read(cam, reg); v = (v & ~mask) | (val & mask); cafe_reg_write(cam, reg, v); } static inline void cafe_reg_clear_bit(struct cafe_camera *cam, unsigned int reg, unsigned int val) { cafe_reg_write_mask(cam, reg, 0, val); } static inline void cafe_reg_set_bit(struct cafe_camera *cam, unsigned int reg, unsigned int val) { cafe_reg_write_mask(cam, reg, val, val); } /* -------------------------------------------------------------------- */ /* * The I2C/SMBUS interface to the camera itself starts here. The * controller handles SMBUS itself, presenting a relatively simple register * interface; all we have to do is to tell it where to route the data. */ #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */ static int cafe_smbus_write_done(struct cafe_camera *cam) { unsigned long flags; int c1; /* * We must delay after the interrupt, or the controller gets confused * and never does give us good status. Fortunately, we don't do this * often. */ udelay(20); spin_lock_irqsave(&cam->dev_lock, flags); c1 = cafe_reg_read(cam, REG_TWSIC1); spin_unlock_irqrestore(&cam->dev_lock, flags); return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT; } static int cafe_smbus_write_data(struct cafe_camera *cam, u16 addr, u8 command, u8 value) { unsigned int rval; unsigned long flags; DEFINE_WAIT(the_wait); spin_lock_irqsave(&cam->dev_lock, flags); rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ /* * Marvell sez set clkdiv to all 1's for now. */ rval |= TWSIC0_CLKDIV; cafe_reg_write(cam, REG_TWSIC0, rval); (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */ rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); cafe_reg_write(cam, REG_TWSIC1, rval); spin_unlock_irqrestore(&cam->dev_lock, flags); /* * Time to wait for the write to complete. THIS IS A RACY * WAY TO DO IT, but the sad fact is that reading the TWSIC1 * register too quickly after starting the operation sends * the device into a place that may be kinder and better, but * which is absolutely useless for controlling the sensor. In * practice we have plenty of time to get into our sleep state * before the interrupt hits, and the worst case is that we * time out and then see that things completed, so this seems * the best way for now. */ do { prepare_to_wait(&cam->smbus_wait, &the_wait, TASK_UNINTERRUPTIBLE); schedule_timeout(1); /* even 1 jiffy is too long */ finish_wait(&cam->smbus_wait, &the_wait); } while (!cafe_smbus_write_done(cam)); #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam), CAFE_SMBUS_TIMEOUT); #endif spin_lock_irqsave(&cam->dev_lock, flags); rval = cafe_reg_read(cam, REG_TWSIC1); spin_unlock_irqrestore(&cam->dev_lock, flags); if (rval & TWSIC1_WSTAT) { cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr, command, value); return -EIO; } if (rval & TWSIC1_ERROR) { cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr, command, value); return -EIO; } return 0; } static int cafe_smbus_read_done(struct cafe_camera *cam) { unsigned long flags; int c1; /* * We must delay after the interrupt, or the controller gets confused * and never does give us good status. Fortunately, we don't do this * often. */ udelay(20); spin_lock_irqsave(&cam->dev_lock, flags); c1 = cafe_reg_read(cam, REG_TWSIC1); spin_unlock_irqrestore(&cam->dev_lock, flags); return c1 & (TWSIC1_RVALID|TWSIC1_ERROR); } static int cafe_smbus_read_data(struct cafe_camera *cam, u16 addr, u8 command, u8 *value) { unsigned int rval; unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ /* * Marvel sez set clkdiv to all 1's for now. */ rval |= TWSIC0_CLKDIV; cafe_reg_write(cam, REG_TWSIC0, rval); (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */ rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); cafe_reg_write(cam, REG_TWSIC1, rval); spin_unlock_irqrestore(&cam->dev_lock, flags); wait_event_timeout(cam->smbus_wait, cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT); spin_lock_irqsave(&cam->dev_lock, flags); rval = cafe_reg_read(cam, REG_TWSIC1); spin_unlock_irqrestore(&cam->dev_lock, flags); if (rval & TWSIC1_ERROR) { cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command); return -EIO; } if (! (rval & TWSIC1_RVALID)) { cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr, command); return -EIO; } *value = rval & 0xff; return 0; } /* * Perform a transfer over SMBUS. This thing is called under * the i2c bus lock, so we shouldn't race with ourselves... */ static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags, char rw, u8 command, int size, union i2c_smbus_data *data) { struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter); struct cafe_camera *cam = to_cam(v4l2_dev); int ret = -EINVAL; /* * This interface would appear to only do byte data ops. OK * it can do word too, but the cam chip has no use for that. */ if (size != I2C_SMBUS_BYTE_DATA) { cam_err(cam, "funky xfer size %d\n", size); return -EINVAL; } if (rw == I2C_SMBUS_WRITE) ret = cafe_smbus_write_data(cam, addr, command, data->byte); else if (rw == I2C_SMBUS_READ) ret = cafe_smbus_read_data(cam, addr, command, &data->byte); return ret; } static void cafe_smbus_enable_irq(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS); spin_unlock_irqrestore(&cam->dev_lock, flags); } static u32 cafe_smbus_func(struct i2c_adapter *adapter) { return I2C_FUNC_SMBUS_READ_BYTE_DATA | I2C_FUNC_SMBUS_WRITE_BYTE_DATA; } static struct i2c_algorithm cafe_smbus_algo = { .smbus_xfer = cafe_smbus_xfer, .functionality = cafe_smbus_func }; /* Somebody is on the bus */ static void cafe_ctlr_stop_dma(struct cafe_camera *cam); static void cafe_ctlr_power_down(struct cafe_camera *cam); static int cafe_smbus_setup(struct cafe_camera *cam) { struct i2c_adapter *adap = &cam->i2c_adapter; int ret; cafe_smbus_enable_irq(cam); adap->owner = THIS_MODULE; adap->algo = &cafe_smbus_algo; strcpy(adap->name, "cafe_ccic"); adap->dev.parent = &cam->pdev->dev; i2c_set_adapdata(adap, &cam->v4l2_dev); ret = i2c_add_adapter(adap); if (ret) printk(KERN_ERR "Unable to register cafe i2c adapter\n"); return ret; } static void cafe_smbus_shutdown(struct cafe_camera *cam) { i2c_del_adapter(&cam->i2c_adapter); } /* ------------------------------------------------------------------- */ /* * Deal with the controller. */ /* * Do everything we think we need to have the interface operating * according to the desired format. */ static void cafe_ctlr_dma(struct cafe_camera *cam) { /* * Store the first two Y buffers (we aren't supporting * planar formats for now, so no UV bufs). Then either * set the third if it exists, or tell the controller * to just use two. */ cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]); cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]); if (cam->nbufs > 2) { cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]); cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS); } else cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS); cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */ } static void cafe_ctlr_image(struct cafe_camera *cam) { int imgsz; struct v4l2_pix_format *fmt = &cam->pix_format; imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) | (fmt->bytesperline & IMGSZ_H_MASK); cafe_reg_write(cam, REG_IMGSIZE, imgsz); cafe_reg_write(cam, REG_IMGOFFSET, 0); /* YPITCH just drops the last two bits */ cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline, IMGP_YP_MASK); /* * Tell the controller about the image format we are using. */ switch (cam->pix_format.pixelformat) { case V4L2_PIX_FMT_YUYV: cafe_reg_write_mask(cam, REG_CTRL0, C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV, C0_DF_MASK); break; case V4L2_PIX_FMT_RGB444: cafe_reg_write_mask(cam, REG_CTRL0, C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB, C0_DF_MASK); /* Alpha value? */ break; case V4L2_PIX_FMT_RGB565: cafe_reg_write_mask(cam, REG_CTRL0, C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR, C0_DF_MASK); break; default: cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat); break; } /* * Make sure it knows we want to use hsync/vsync. */ cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK); } /* * Configure the controller for operation; caller holds the * device mutex. */ static int cafe_ctlr_configure(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); cafe_ctlr_dma(cam); cafe_ctlr_image(cam); cafe_set_config_needed(cam, 0); spin_unlock_irqrestore(&cam->dev_lock, flags); return 0; } static void cafe_ctlr_irq_enable(struct cafe_camera *cam) { /* * Clear any pending interrupts, since we do not * expect to have I/O active prior to enabling. */ cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS); } static void cafe_ctlr_irq_disable(struct cafe_camera *cam) { cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS); } /* * Make the controller start grabbing images. Everything must * be set up before doing this. */ static void cafe_ctlr_start(struct cafe_camera *cam) { /* set_bit performs a read, so no other barrier should be needed here */ cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE); } static void cafe_ctlr_stop(struct cafe_camera *cam) { cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE); } static void cafe_ctlr_init(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); /* * Added magic to bring up the hardware on the B-Test board */ cafe_reg_write(cam, 0x3038, 0x8); cafe_reg_write(cam, 0x315c, 0x80008); /* * Go through the dance needed to wake the device up. * Note that these registers are global and shared * with the NAND and SD devices. Interaction between the * three still needs to be examined. */ cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */ cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC); cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS); /* * Here we must wait a bit for the controller to come around. */ spin_unlock_irqrestore(&cam->dev_lock, flags); msleep(5); spin_lock_irqsave(&cam->dev_lock, flags); cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC); cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN); /* * Make sure it's not powered down. */ cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN); /* * Turn off the enable bit. It sure should be off anyway, * but it's good to be sure. */ cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE); /* * Mask all interrupts. */ cafe_reg_write(cam, REG_IRQMASK, 0); /* * Clock the sensor appropriately. Controller clock should * be 48MHz, sensor "typical" value is half that. */ cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK); spin_unlock_irqrestore(&cam->dev_lock, flags); } /* * Stop the controller, and don't return until we're really sure that no * further DMA is going on. */ static void cafe_ctlr_stop_dma(struct cafe_camera *cam) { unsigned long flags; /* * Theory: stop the camera controller (whether it is operating * or not). Delay briefly just in case we race with the SOF * interrupt, then wait until no DMA is active. */ spin_lock_irqsave(&cam->dev_lock, flags); cafe_ctlr_stop(cam); spin_unlock_irqrestore(&cam->dev_lock, flags); mdelay(1); wait_event_timeout(cam->iowait, !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ); if (test_bit(CF_DMA_ACTIVE, &cam->flags)) cam_err(cam, "Timeout waiting for DMA to end\n"); /* This would be bad news - what now? */ spin_lock_irqsave(&cam->dev_lock, flags); cam->state = S_IDLE; cafe_ctlr_irq_disable(cam); spin_unlock_irqrestore(&cam->dev_lock, flags); } /* * Power up and down. */ static void cafe_ctlr_power_up(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN); /* * Part one of the sensor dance: turn the global * GPIO signal on. */ cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON); cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL); /* * Put the sensor into operational mode (assumes OLPC-style * wiring). Control 0 is reset - set to 1 to operate. * Control 1 is power down, set to 0 to operate. */ cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */ /* mdelay(1); */ /* Marvell says 1ms will do it */ cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0); /* mdelay(1); */ /* Enough? */ spin_unlock_irqrestore(&cam->dev_lock, flags); msleep(5); /* Just to be sure */ } static void cafe_ctlr_power_down(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1); cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON); cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT); cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN); spin_unlock_irqrestore(&cam->dev_lock, flags); } /* -------------------------------------------------------------------- */ /* * Communications with the sensor. */ static int __cafe_cam_reset(struct cafe_camera *cam) { return sensor_call(cam, core, reset, 0); } /* * We have found the sensor on the i2c. Let's try to have a * conversation. */ static int cafe_cam_init(struct cafe_camera *cam) { struct v4l2_dbg_chip_ident chip; int ret; mutex_lock(&cam->s_mutex); if (cam->state != S_NOTREADY) cam_warn(cam, "Cam init with device in funky state %d", cam->state); ret = __cafe_cam_reset(cam); if (ret) goto out; chip.ident = V4L2_IDENT_NONE; chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR; chip.match.addr = cam->sensor_addr; ret = sensor_call(cam, core, g_chip_ident, &chip); if (ret) goto out; cam->sensor_type = chip.ident; if (cam->sensor_type != V4L2_IDENT_OV7670) { cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type); ret = -EINVAL; goto out; } /* Get/set parameters? */ ret = 0; cam->state = S_IDLE; out: cafe_ctlr_power_down(cam); mutex_unlock(&cam->s_mutex); return ret; } /* * Configure the sensor to match the parameters we have. Caller should * hold s_mutex */ static int cafe_cam_set_flip(struct cafe_camera *cam) { struct v4l2_control ctrl; memset(&ctrl, 0, sizeof(ctrl)); ctrl.id = V4L2_CID_VFLIP; ctrl.value = flip; return sensor_call(cam, core, s_ctrl, &ctrl); } static int cafe_cam_configure(struct cafe_camera *cam) { struct v4l2_format fmt; int ret; if (cam->state != S_IDLE) return -EINVAL; fmt.fmt.pix = cam->pix_format; ret = sensor_call(cam, core, init, 0); if (ret == 0) ret = sensor_call(cam, video, s_fmt, &fmt); /* * OV7670 does weird things if flip is set *before* format... */ ret += cafe_cam_set_flip(cam); return ret; } /* -------------------------------------------------------------------- */ /* * DMA buffer management. These functions need s_mutex held. */ /* FIXME: this is inefficient as hell, since dma_alloc_coherent just * does a get_free_pages() call, and we waste a good chunk of an orderN * allocation. Should try to allocate the whole set in one chunk. */ static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime) { int i; cafe_set_config_needed(cam, 1); if (loadtime) cam->dma_buf_size = dma_buf_size; else cam->dma_buf_size = cam->pix_format.sizeimage; if (n_dma_bufs > 3) n_dma_bufs = 3; cam->nbufs = 0; for (i = 0; i < n_dma_bufs; i++) { cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev, cam->dma_buf_size, cam->dma_handles + i, GFP_KERNEL); if (cam->dma_bufs[i] == NULL) { cam_warn(cam, "Failed to allocate DMA buffer\n"); break; } /* For debug, remove eventually */ memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size); (cam->nbufs)++; } switch (cam->nbufs) { case 1: dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size, cam->dma_bufs[0], cam->dma_handles[0]); cam->nbufs = 0; case 0: cam_err(cam, "Insufficient DMA buffers, cannot operate\n"); return -ENOMEM; case 2: if (n_dma_bufs > 2) cam_warn(cam, "Will limp along with only 2 buffers\n"); break; } return 0; } static void cafe_free_dma_bufs(struct cafe_camera *cam) { int i; for (i = 0; i < cam->nbufs; i++) { dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size, cam->dma_bufs[i], cam->dma_handles[i]); cam->dma_bufs[i] = NULL; } cam->nbufs = 0; } /* ----------------------------------------------------------------------- */ /* * Here starts the V4L2 interface code. */ /* * Read an image from the device. */ static ssize_t cafe_deliver_buffer(struct cafe_camera *cam, char __user *buffer, size_t len, loff_t *pos) { int bufno; unsigned long flags; spin_lock_irqsave(&cam->dev_lock, flags); if (cam->next_buf < 0) { cam_err(cam, "deliver_buffer: No next buffer\n"); spin_unlock_irqrestore(&cam->dev_lock, flags); return -EIO; } bufno = cam->next_buf; clear_bit(bufno, &cam->flags); if (++(cam->next_buf) >= cam->nbufs) cam->next_buf = 0; if (! test_bit(cam->next_buf, &cam->flags)) cam->next_buf = -1; cam->specframes = 0; spin_unlock_irqrestore(&cam->dev_lock, flags); if (len > cam->pix_format.sizeimage) len = cam->pix_format.sizeimage; if (copy_to_user(buffer, cam->dma_bufs[bufno], len)) return -EFAULT; (*pos) += len; return len; } /* * Get everything ready, and start grabbing frames. */ static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state) { int ret; unsigned long flags; /* * Configuration. If we still don't have DMA buffers, * make one last, desperate attempt. */ if (cam->nbufs == 0) if (cafe_alloc_dma_bufs(cam, 0)) return -ENOMEM; if (cafe_needs_config(cam)) { cafe_cam_configure(cam); ret = cafe_ctlr_configure(cam); if (ret) return ret; } /* * Turn it loose. */ spin_lock_irqsave(&cam->dev_lock, flags); cafe_reset_buffers(cam); cafe_ctlr_irq_enable(cam); cam->state = state; cafe_ctlr_start(cam); spin_unlock_irqrestore(&cam->dev_lock, flags); return 0; } static ssize_t cafe_v4l_read(struct file *filp, char __user *buffer, size_t len, loff_t *pos) { struct cafe_camera *cam = filp->private_data; int ret = 0; /* * Perhaps we're in speculative read mode and already * have data? */ mutex_lock(&cam->s_mutex); if (cam->state == S_SPECREAD) { if (cam->next_buf >= 0) { ret = cafe_deliver_buffer(cam, buffer, len, pos); if (ret != 0) goto out_unlock; } } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) { ret = -EIO; goto out_unlock; } else if (cam->state != S_IDLE) { ret = -EBUSY; goto out_unlock; } /* * v4l2: multiple processes can open the device, but only * one gets to grab data from it. */ if (cam->owner && cam->owner != filp) { ret = -EBUSY; goto out_unlock; } cam->owner = filp; /* * Do setup if need be. */ if (cam->state != S_SPECREAD) { ret = cafe_read_setup(cam, S_SINGLEREAD); if (ret) goto out_unlock; } /* * Wait for something to happen. This should probably * be interruptible (FIXME). */ wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ); if (cam->next_buf < 0) { cam_err(cam, "read() operation timed out\n"); cafe_ctlr_stop_dma(cam); ret = -EIO; goto out_unlock; } /* * Give them their data and we should be done. */ ret = cafe_deliver_buffer(cam, buffer, len, pos); out_unlock: mutex_unlock(&cam->s_mutex); return ret; } /* * Streaming I/O support. */ static int cafe_vidioc_streamon(struct file *filp, void *priv, enum v4l2_buf_type type) { struct cafe_camera *cam = filp->private_data; int ret = -EINVAL; if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE) goto out; mutex_lock(&cam->s_mutex); if (cam->state != S_IDLE || cam->n_sbufs == 0) goto out_unlock; cam->sequence = 0; ret = cafe_read_setup(cam, S_STREAMING); out_unlock: mutex_unlock(&cam->s_mutex); out: return ret; } static int cafe_vidioc_streamoff(struct file *filp, void *priv, enum v4l2_buf_type type) { struct cafe_camera *cam = filp->private_data; int ret = -EINVAL; if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE) goto out; mutex_lock(&cam->s_mutex); if (cam->state != S_STREAMING) goto out_unlock; cafe_ctlr_stop_dma(cam); ret = 0; out_unlock: mutex_unlock(&cam->s_mutex); out: return ret; } static int cafe_setup_siobuf(struct cafe_camera *cam, int index) { struct cafe_sio_buffer *buf = cam->sb_bufs + index; INIT_LIST_HEAD(&buf->list); buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage); buf->buffer = vmalloc_user(buf->v4lbuf.length); if (buf->buffer == NULL) return -ENOMEM; buf->mapcount = 0; buf->cam = cam; buf->v4lbuf.index = index; buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf->v4lbuf.field = V4L2_FIELD_NONE; buf->v4lbuf.memory = V4L2_MEMORY_MMAP; /* * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg * just uses the length times the index, but the spec warns * against doing just that - vma merging problems. So we * leave a gap between each pair of buffers. */ buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length; return 0; } static int cafe_free_sio_buffers(struct cafe_camera *cam) { int i; /* * If any buffers are mapped, we cannot free them at all. */ for (i = 0; i < cam->n_sbufs; i++) if (cam->sb_bufs[i].mapcount > 0) return -EBUSY; /* * OK, let's do it. */ for (i = 0; i < cam->n_sbufs; i++) vfree(cam->sb_bufs[i].buffer); cam->n_sbufs = 0; kfree(cam->sb_bufs); cam->sb_bufs = NULL; INIT_LIST_HEAD(&cam->sb_avail); INIT_LIST_HEAD(&cam->sb_full); return 0; } static int cafe_vidioc_reqbufs(struct file *filp, void *priv, struct v4l2_requestbuffers *req) { struct cafe_camera *cam = filp->private_data; int ret = 0; /* Silence warning */ /* * Make sure it's something we can do. User pointers could be * implemented without great pain, but that's not been done yet. */ if (req->memory != V4L2_MEMORY_MMAP) return -EINVAL; /* * If they ask for zero buffers, they really want us to stop streaming * (if it's happening) and free everything. Should we check owner? */ mutex_lock(&cam->s_mutex); if (req->count == 0) { if (cam->state == S_STREAMING) cafe_ctlr_stop_dma(cam); ret = cafe_free_sio_buffers (cam); goto out; } /* * Device needs to be idle and working. We *could* try to do the * right thing in S_SPECREAD by shutting things down, but it * probably doesn't matter. */ if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) { ret = -EBUSY; goto out; } cam->owner = filp; if (req->count < min_buffers) req->count = min_buffers; else if (req->count > max_buffers) req->count = max_buffers; if (cam->n_sbufs > 0) { ret = cafe_free_sio_buffers(cam); if (ret) goto out; } cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer), GFP_KERNEL); if (cam->sb_bufs == NULL) { ret = -ENOMEM; goto out; } for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) { ret = cafe_setup_siobuf(cam, cam->n_sbufs); if (ret) break; } if (cam->n_sbufs == 0) /* no luck at all - ret already set */ kfree(cam->sb_bufs); req->count = cam->n_sbufs; /* In case of partial success */ out: mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_querybuf(struct file *filp, void *priv, struct v4l2_buffer *buf) { struct cafe_camera *cam = filp->private_data; int ret = -EINVAL; mutex_lock(&cam->s_mutex); if (buf->index >= cam->n_sbufs) goto out; *buf = cam->sb_bufs[buf->index].v4lbuf; ret = 0; out: mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_qbuf(struct file *filp, void *priv, struct v4l2_buffer *buf) { struct cafe_camera *cam = filp->private_data; struct cafe_sio_buffer *sbuf; int ret = -EINVAL; unsigned long flags; mutex_lock(&cam->s_mutex); if (buf->index >= cam->n_sbufs) goto out; sbuf = cam->sb_bufs + buf->index; if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) { ret = 0; /* Already queued?? */ goto out; } if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) { /* Spec doesn't say anything, seems appropriate tho */ ret = -EBUSY; goto out; } sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED; spin_lock_irqsave(&cam->dev_lock, flags); list_add(&sbuf->list, &cam->sb_avail); spin_unlock_irqrestore(&cam->dev_lock, flags); ret = 0; out: mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_dqbuf(struct file *filp, void *priv, struct v4l2_buffer *buf) { struct cafe_camera *cam = filp->private_data; struct cafe_sio_buffer *sbuf; int ret = -EINVAL; unsigned long flags; mutex_lock(&cam->s_mutex); if (cam->state != S_STREAMING) goto out_unlock; if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) { ret = -EAGAIN; goto out_unlock; } while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) { mutex_unlock(&cam->s_mutex); if (wait_event_interruptible(cam->iowait, !list_empty(&cam->sb_full))) { ret = -ERESTARTSYS; goto out; } mutex_lock(&cam->s_mutex); } if (cam->state != S_STREAMING) ret = -EINTR; else { spin_lock_irqsave(&cam->dev_lock, flags); /* Should probably recheck !list_empty() here */ sbuf = list_entry(cam->sb_full.next, struct cafe_sio_buffer, list); list_del_init(&sbuf->list); spin_unlock_irqrestore(&cam->dev_lock, flags); sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE; *buf = sbuf->v4lbuf; ret = 0; } out_unlock: mutex_unlock(&cam->s_mutex); out: return ret; } static void cafe_v4l_vm_open(struct vm_area_struct *vma) { struct cafe_sio_buffer *sbuf = vma->vm_private_data; /* * Locking: done under mmap_sem, so we don't need to * go back to the camera lock here. */ sbuf->mapcount++; } static void cafe_v4l_vm_close(struct vm_area_struct *vma) { struct cafe_sio_buffer *sbuf = vma->vm_private_data; mutex_lock(&sbuf->cam->s_mutex); sbuf->mapcount--; /* Docs say we should stop I/O too... */ if (sbuf->mapcount == 0) sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED; mutex_unlock(&sbuf->cam->s_mutex); } static const struct vm_operations_struct cafe_v4l_vm_ops = { .open = cafe_v4l_vm_open, .close = cafe_v4l_vm_close }; static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma) { struct cafe_camera *cam = filp->private_data; unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; int ret = -EINVAL; int i; struct cafe_sio_buffer *sbuf = NULL; if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED)) return -EINVAL; /* * Find the buffer they are looking for. */ mutex_lock(&cam->s_mutex); for (i = 0; i < cam->n_sbufs; i++) if (cam->sb_bufs[i].v4lbuf.m.offset == offset) { sbuf = cam->sb_bufs + i; break; } if (sbuf == NULL) goto out; ret = remap_vmalloc_range(vma, sbuf->buffer, 0); if (ret) goto out; vma->vm_flags |= VM_DONTEXPAND; vma->vm_private_data = sbuf; vma->vm_ops = &cafe_v4l_vm_ops; sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED; cafe_v4l_vm_open(vma); ret = 0; out: mutex_unlock(&cam->s_mutex); return ret; } static int cafe_v4l_open(struct file *filp) { struct cafe_camera *cam = video_drvdata(filp); filp->private_data = cam; mutex_lock(&cam->s_mutex); if (cam->users == 0) { cafe_ctlr_power_up(cam); __cafe_cam_reset(cam); cafe_set_config_needed(cam, 1); /* FIXME make sure this is complete */ } (cam->users)++; mutex_unlock(&cam->s_mutex); return 0; } static int cafe_v4l_release(struct file *filp) { struct cafe_camera *cam = filp->private_data; mutex_lock(&cam->s_mutex); (cam->users)--; if (filp == cam->owner) { cafe_ctlr_stop_dma(cam); cafe_free_sio_buffers(cam); cam->owner = NULL; } if (cam->users == 0) { cafe_ctlr_power_down(cam); if (alloc_bufs_at_read) cafe_free_dma_bufs(cam); } mutex_unlock(&cam->s_mutex); return 0; } static unsigned int cafe_v4l_poll(struct file *filp, struct poll_table_struct *pt) { struct cafe_camera *cam = filp->private_data; poll_wait(filp, &cam->iowait, pt); if (cam->next_buf >= 0) return POLLIN | POLLRDNORM; return 0; } static int cafe_vidioc_queryctrl(struct file *filp, void *priv, struct v4l2_queryctrl *qc) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, core, queryctrl, qc); mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_g_ctrl(struct file *filp, void *priv, struct v4l2_control *ctrl) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, core, g_ctrl, ctrl); mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_s_ctrl(struct file *filp, void *priv, struct v4l2_control *ctrl) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, core, s_ctrl, ctrl); mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { strcpy(cap->driver, "cafe_ccic"); strcpy(cap->card, "cafe_ccic"); cap->version = CAFE_VERSION; cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE | V4L2_CAP_STREAMING; return 0; } /* * The default format we use until somebody says otherwise. */ static struct v4l2_pix_format cafe_def_pix_format = { .width = VGA_WIDTH, .height = VGA_HEIGHT, .pixelformat = V4L2_PIX_FMT_YUYV, .field = V4L2_FIELD_NONE, .bytesperline = VGA_WIDTH*2, .sizeimage = VGA_WIDTH*VGA_HEIGHT*2, }; static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp, void *priv, struct v4l2_fmtdesc *fmt) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, video, enum_fmt, fmt); mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv, struct v4l2_format *fmt) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, video, try_fmt, fmt); mutex_unlock(&cam->s_mutex); return ret; } static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv, struct v4l2_format *fmt) { struct cafe_camera *cam = priv; int ret; /* * Can't do anything if the device is not idle * Also can't if there are streaming buffers in place. */ if (cam->state != S_IDLE || cam->n_sbufs > 0) return -EBUSY; /* * See if the formatting works in principle. */ ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt); if (ret) return ret; /* * Now we start to change things for real, so let's do it * under lock. */ mutex_lock(&cam->s_mutex); cam->pix_format = fmt->fmt.pix; /* * Make sure we have appropriate DMA buffers. */ ret = -ENOMEM; if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage) cafe_free_dma_bufs(cam); if (cam->nbufs == 0) { if (cafe_alloc_dma_bufs(cam, 0)) goto out; } /* * It looks like this might work, so let's program the sensor. */ ret = cafe_cam_configure(cam); if (! ret) ret = cafe_ctlr_configure(cam); out: mutex_unlock(&cam->s_mutex); return ret; } /* * Return our stored notion of how the camera is/should be configured. * The V4l2 spec wants us to be smarter, and actually get this from * the camera (and not mess with it at open time). Someday. */ static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv, struct v4l2_format *f) { struct cafe_camera *cam = priv; f->fmt.pix = cam->pix_format; return 0; } /* * We only have one input - the sensor - so minimize the nonsense here. */ static int cafe_vidioc_enum_input(struct file *filp, void *priv, struct v4l2_input *input) { if (input->index != 0) return -EINVAL; input->type = V4L2_INPUT_TYPE_CAMERA; input->std = V4L2_STD_ALL; /* Not sure what should go here */ strcpy(input->name, "Camera"); return 0; } static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i) { *i = 0; return 0; } static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i) { if (i != 0) return -EINVAL; return 0; } /* from vivi.c */ static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a) { return 0; } /* * G/S_PARM. Most of this is done by the sensor, but we are * the level which controls the number of read buffers. */ static int cafe_vidioc_g_parm(struct file *filp, void *priv, struct v4l2_streamparm *parms) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, video, g_parm, parms); mutex_unlock(&cam->s_mutex); parms->parm.capture.readbuffers = n_dma_bufs; return ret; } static int cafe_vidioc_s_parm(struct file *filp, void *priv, struct v4l2_streamparm *parms) { struct cafe_camera *cam = priv; int ret; mutex_lock(&cam->s_mutex); ret = sensor_call(cam, video, s_parm, parms); mutex_unlock(&cam->s_mutex); parms->parm.capture.readbuffers = n_dma_bufs; return ret; } static int cafe_vidioc_g_chip_ident(struct file *file, void *priv, struct v4l2_dbg_chip_ident *chip) { struct cafe_camera *cam = priv; chip->ident = V4L2_IDENT_NONE; chip->revision = 0; if (v4l2_chip_match_host(&chip->match)) { chip->ident = V4L2_IDENT_CAFE; return 0; } return sensor_call(cam, core, g_chip_ident, chip); } #ifdef CONFIG_VIDEO_ADV_DEBUG static int cafe_vidioc_g_register(struct file *file, void *priv, struct v4l2_dbg_register *reg) { struct cafe_camera *cam = priv; if (v4l2_chip_match_host(®->match)) { reg->val = cafe_reg_read(cam, reg->reg); reg->size = 4; return 0; } return sensor_call(cam, core, g_register, reg); } static int cafe_vidioc_s_register(struct file *file, void *priv, struct v4l2_dbg_register *reg) { struct cafe_camera *cam = priv; if (v4l2_chip_match_host(®->match)) { cafe_reg_write(cam, reg->reg, reg->val); return 0; } return sensor_call(cam, core, s_register, reg); } #endif /* * This template device holds all of those v4l2 methods; we * clone it for specific real devices. */ static const struct v4l2_file_operations cafe_v4l_fops = { .owner = THIS_MODULE, .open = cafe_v4l_open, .release = cafe_v4l_release, .read = cafe_v4l_read, .poll = cafe_v4l_poll, .mmap = cafe_v4l_mmap, .ioctl = video_ioctl2, }; static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = { .vidioc_querycap = cafe_vidioc_querycap, .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap, .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap, .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap, .vidioc_enum_input = cafe_vidioc_enum_input, .vidioc_g_input = cafe_vidioc_g_input, .vidioc_s_input = cafe_vidioc_s_input, .vidioc_s_std = cafe_vidioc_s_std, .vidioc_reqbufs = cafe_vidioc_reqbufs, .vidioc_querybuf = cafe_vidioc_querybuf, .vidioc_qbuf = cafe_vidioc_qbuf, .vidioc_dqbuf = cafe_vidioc_dqbuf, .vidioc_streamon = cafe_vidioc_streamon, .vidioc_streamoff = cafe_vidioc_streamoff, .vidioc_queryctrl = cafe_vidioc_queryctrl, .vidioc_g_ctrl = cafe_vidioc_g_ctrl, .vidioc_s_ctrl = cafe_vidioc_s_ctrl, .vidioc_g_parm = cafe_vidioc_g_parm, .vidioc_s_parm = cafe_vidioc_s_parm, .vidioc_g_chip_ident = cafe_vidioc_g_chip_ident, #ifdef CONFIG_VIDEO_ADV_DEBUG .vidioc_g_register = cafe_vidioc_g_register, .vidioc_s_register = cafe_vidioc_s_register, #endif }; static struct video_device cafe_v4l_template = { .name = "cafe", .tvnorms = V4L2_STD_NTSC_M, .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */ .fops = &cafe_v4l_fops, .ioctl_ops = &cafe_v4l_ioctl_ops, .release = video_device_release_empty, }; /* ---------------------------------------------------------------------- */ /* * Interrupt handler stuff */ static void cafe_frame_tasklet(unsigned long data) { struct cafe_camera *cam = (struct cafe_camera *) data; int i; unsigned long flags; struct cafe_sio_buffer *sbuf; spin_lock_irqsave(&cam->dev_lock, flags); for (i = 0; i < cam->nbufs; i++) { int bufno = cam->next_buf; if (bufno < 0) { /* "will never happen" */ cam_err(cam, "No valid bufs in tasklet!\n"); break; } if (++(cam->next_buf) >= cam->nbufs) cam->next_buf = 0; if (! test_bit(bufno, &cam->flags)) continue; if (list_empty(&cam->sb_avail)) break; /* Leave it valid, hope for better later */ clear_bit(bufno, &cam->flags); sbuf = list_entry(cam->sb_avail.next, struct cafe_sio_buffer, list); /* * Drop the lock during the big copy. This *should* be safe... */ spin_unlock_irqrestore(&cam->dev_lock, flags); memcpy(sbuf->buffer, cam->dma_bufs[bufno], cam->pix_format.sizeimage); sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage; sbuf->v4lbuf.sequence = cam->buf_seq[bufno]; sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED; sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE; spin_lock_irqsave(&cam->dev_lock, flags); list_move_tail(&sbuf->list, &cam->sb_full); } if (! list_empty(&cam->sb_full)) wake_up(&cam->iowait); spin_unlock_irqrestore(&cam->dev_lock, flags); } static void cafe_frame_complete(struct cafe_camera *cam, int frame) { /* * Basic frame housekeeping. */ if (test_bit(frame, &cam->flags) && printk_ratelimit()) cam_err(cam, "Frame overrun on %d, frames lost\n", frame); set_bit(frame, &cam->flags); clear_bit(CF_DMA_ACTIVE, &cam->flags); if (cam->next_buf < 0) cam->next_buf = frame; cam->buf_seq[frame] = ++(cam->sequence); switch (cam->state) { /* * If in single read mode, try going speculative. */ case S_SINGLEREAD: cam->state = S_SPECREAD; cam->specframes = 0; wake_up(&cam->iowait); break; /* * If we are already doing speculative reads, and nobody is * reading them, just stop. */ case S_SPECREAD: if (++(cam->specframes) >= cam->nbufs) { cafe_ctlr_stop(cam); cafe_ctlr_irq_disable(cam); cam->state = S_IDLE; } wake_up(&cam->iowait); break; /* * For the streaming case, we defer the real work to the * camera tasklet. * * FIXME: if the application is not consuming the buffers, * we should eventually put things on hold and restart in * vidioc_dqbuf(). */ case S_STREAMING: tasklet_schedule(&cam->s_tasklet); break; default: cam_err(cam, "Frame interrupt in non-operational state\n"); break; } } static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs) { unsigned int frame; cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */ /* * Handle any frame completions. There really should * not be more than one of these, or we have fallen * far behind. */ for (frame = 0; frame < cam->nbufs; frame++) if (irqs & (IRQ_EOF0 << frame)) cafe_frame_complete(cam, frame); /* * If a frame starts, note that we have DMA active. This * code assumes that we won't get multiple frame interrupts * at once; may want to rethink that. */ if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2)) set_bit(CF_DMA_ACTIVE, &cam->flags); } static irqreturn_t cafe_irq(int irq, void *data) { struct cafe_camera *cam = data; unsigned int irqs; spin_lock(&cam->dev_lock); irqs = cafe_reg_read(cam, REG_IRQSTAT); if ((irqs & ALLIRQS) == 0) { spin_unlock(&cam->dev_lock); return IRQ_NONE; } if (irqs & FRAMEIRQS) cafe_frame_irq(cam, irqs); if (irqs & TWSIIRQS) { cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS); wake_up(&cam->smbus_wait); } spin_unlock(&cam->dev_lock); return IRQ_HANDLED; } /* -------------------------------------------------------------------------- */ /* * PCI interface stuff. */ static int cafe_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; struct cafe_camera *cam; /* * Start putting together one of our big camera structures. */ ret = -ENOMEM; cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL); if (cam == NULL) goto out; ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev); if (ret) goto out_free; mutex_init(&cam->s_mutex); spin_lock_init(&cam->dev_lock); cam->state = S_NOTREADY; cafe_set_config_needed(cam, 1); init_waitqueue_head(&cam->smbus_wait); init_waitqueue_head(&cam->iowait); cam->pdev = pdev; cam->pix_format = cafe_def_pix_format; INIT_LIST_HEAD(&cam->dev_list); INIT_LIST_HEAD(&cam->sb_avail); INIT_LIST_HEAD(&cam->sb_full); tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam); /* * Get set up on the PCI bus. */ ret = pci_enable_device(pdev); if (ret) goto out_unreg; pci_set_master(pdev); ret = -EIO; cam->regs = pci_iomap(pdev, 0, 0); if (! cam->regs) { printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n"); goto out_unreg; } ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam); if (ret) goto out_iounmap; /* * Initialize the controller and leave it powered up. It will * stay that way until the sensor driver shows up. */ cafe_ctlr_init(cam); cafe_ctlr_power_up(cam); /* * Set up I2C/SMBUS communications. We have to drop the mutex here * because the sensor could attach in this call chain, leading to * unsightly deadlocks. */ ret = cafe_smbus_setup(cam); if (ret) goto out_freeirq; cam->sensor_addr = 0x42; cam->sensor = v4l2_i2c_new_subdev(&cam->v4l2_dev, &cam->i2c_adapter, "ov7670", "ov7670", cam->sensor_addr, NULL); if (cam->sensor == NULL) { ret = -ENODEV; goto out_smbus; } ret = cafe_cam_init(cam); if (ret) goto out_smbus; /* * Get the v4l2 setup done. */ mutex_lock(&cam->s_mutex); cam->vdev = cafe_v4l_template; cam->vdev.debug = 0; /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/ cam->vdev.v4l2_dev = &cam->v4l2_dev; ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1); if (ret) goto out_unlock; video_set_drvdata(&cam->vdev, cam); /* * If so requested, try to get our DMA buffers now. */ if (!alloc_bufs_at_read) { if (cafe_alloc_dma_bufs(cam, 1)) cam_warn(cam, "Unable to alloc DMA buffers at load" " will try again later."); } mutex_unlock(&cam->s_mutex); return 0; out_unlock: mutex_unlock(&cam->s_mutex); out_smbus: cafe_smbus_shutdown(cam); out_freeirq: cafe_ctlr_power_down(cam); free_irq(pdev->irq, cam); out_iounmap: pci_iounmap(pdev, cam->regs); out_free: v4l2_device_unregister(&cam->v4l2_dev); out_unreg: kfree(cam); out: return ret; } /* * Shut down an initialized device */ static void cafe_shutdown(struct cafe_camera *cam) { /* FIXME: Make sure we take care of everything here */ if (cam->n_sbufs > 0) /* What if they are still mapped? Shouldn't be, but... */ cafe_free_sio_buffers(cam); cafe_ctlr_stop_dma(cam); cafe_ctlr_power_down(cam); cafe_smbus_shutdown(cam); cafe_free_dma_bufs(cam); free_irq(cam->pdev->irq, cam); pci_iounmap(cam->pdev, cam->regs); video_unregister_device(&cam->vdev); } static void cafe_pci_remove(struct pci_dev *pdev) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); if (cam == NULL) { printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev); return; } mutex_lock(&cam->s_mutex); if (cam->users > 0) cam_warn(cam, "Removing a device with users!\n"); cafe_shutdown(cam); v4l2_device_unregister(&cam->v4l2_dev); kfree(cam); /* No unlock - it no longer exists */ } #ifdef CONFIG_PM /* * Basic power management. */ static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); int ret; enum cafe_state cstate; ret = pci_save_state(pdev); if (ret) return ret; cstate = cam->state; /* HACK - stop_dma sets to idle */ cafe_ctlr_stop_dma(cam); cafe_ctlr_power_down(cam); pci_disable_device(pdev); cam->state = cstate; return 0; } static int cafe_pci_resume(struct pci_dev *pdev) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); int ret = 0; ret = pci_restore_state(pdev); if (ret) return ret; ret = pci_enable_device(pdev); if (ret) { cam_warn(cam, "Unable to re-enable device on resume!\n"); return ret; } cafe_ctlr_init(cam); cafe_ctlr_power_down(cam); mutex_lock(&cam->s_mutex); if (cam->users > 0) { cafe_ctlr_power_up(cam); __cafe_cam_reset(cam); } mutex_unlock(&cam->s_mutex); set_bit(CF_CONFIG_NEEDED, &cam->flags); if (cam->state == S_SPECREAD) cam->state = S_IDLE; /* Don't bother restarting */ else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING) ret = cafe_read_setup(cam, cam->state); return ret; } #endif /* CONFIG_PM */ static struct pci_device_id cafe_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) }, { 0, } }; MODULE_DEVICE_TABLE(pci, cafe_ids); static struct pci_driver cafe_pci_driver = { .name = "cafe1000-ccic", .id_table = cafe_ids, .probe = cafe_pci_probe, .remove = cafe_pci_remove, #ifdef CONFIG_PM .suspend = cafe_pci_suspend, .resume = cafe_pci_resume, #endif }; static int __init cafe_init(void) { int ret; printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n", CAFE_VERSION); ret = pci_register_driver(&cafe_pci_driver); if (ret) { printk(KERN_ERR "Unable to register cafe_ccic driver\n"); goto out; } ret = 0; out: return ret; } static void __exit cafe_exit(void) { pci_unregister_driver(&cafe_pci_driver); } module_init(cafe_init); module_exit(cafe_exit);