/* Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver Copyright (C) 2005 Steven Toth Support for KWorld DVB-S 100 by Vadim Catana This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "dvb_frontend.h" #include "cx24123.h" #define XTAL 10111000 static int force_band; static int debug; #define dprintk(args...) \ do { \ if (debug) printk (KERN_DEBUG "cx24123: " args); \ } while (0) struct cx24123_state { struct i2c_adapter* i2c; const struct cx24123_config* config; struct dvb_frontend frontend; u32 lastber; u16 snr; /* Some PLL specifics for tuning */ u32 VCAarg; u32 VGAarg; u32 bandselectarg; u32 pllarg; u32 FILTune; /* The Demod/Tuner can't easily provide these, we cache them */ u32 currentfreq; u32 currentsymbolrate; }; /* Various tuner defaults need to be established for a given symbol rate Sps */ static struct { u32 symbolrate_low; u32 symbolrate_high; u32 VCAprogdata; u32 VGAprogdata; u32 FILTune; } cx24123_AGC_vals[] = { { .symbolrate_low = 1000000, .symbolrate_high = 4999999, /* the specs recommend other values for VGA offsets, but tests show they are wrong */ .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07, .FILTune = 0x27f /* 0.41 V */ }, { .symbolrate_low = 5000000, .symbolrate_high = 14999999, .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f, .FILTune = 0x317 /* 0.90 V */ }, { .symbolrate_low = 15000000, .symbolrate_high = 45000000, .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f, .FILTune = 0x145 /* 2.70 V */ }, }; /* * Various tuner defaults need to be established for a given frequency kHz. * fixme: The bounds on the bands do not match the doc in real life. * fixme: Some of them have been moved, other might need adjustment. */ static struct { u32 freq_low; u32 freq_high; u32 VCOdivider; u32 progdata; } cx24123_bandselect_vals[] = { /* band 1 */ { .freq_low = 950000, .freq_high = 1074999, .VCOdivider = 4, .progdata = (0 << 19) | (0 << 9) | 0x40, }, /* band 2 */ { .freq_low = 1075000, .freq_high = 1177999, .VCOdivider = 4, .progdata = (0 << 19) | (0 << 9) | 0x80, }, /* band 3 */ { .freq_low = 1178000, .freq_high = 1295999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x01, }, /* band 4 */ { .freq_low = 1296000, .freq_high = 1431999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x02, }, /* band 5 */ { .freq_low = 1432000, .freq_high = 1575999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x04, }, /* band 6 */ { .freq_low = 1576000, .freq_high = 1717999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x08, }, /* band 7 */ { .freq_low = 1718000, .freq_high = 1855999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x10, }, /* band 8 */ { .freq_low = 1856000, .freq_high = 2035999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x20, }, /* band 9 */ { .freq_low = 2036000, .freq_high = 2150000, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x40, }, }; static struct { u8 reg; u8 data; } cx24123_regdata[] = { {0x00, 0x03}, /* Reset system */ {0x00, 0x00}, /* Clear reset */ {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */ {0x04, 0x10}, /* MPEG */ {0x05, 0x04}, /* MPEG */ {0x06, 0x31}, /* MPEG (default) */ {0x0b, 0x00}, /* Freq search start point (default) */ {0x0c, 0x00}, /* Demodulator sample gain (default) */ {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */ {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */ {0x0f, 0xfe}, /* FEC search mask (all supported codes) */ {0x10, 0x01}, /* Default search inversion, no repeat (default) */ {0x16, 0x00}, /* Enable reading of frequency */ {0x17, 0x01}, /* Enable EsNO Ready Counter */ {0x1c, 0x80}, /* Enable error counter */ {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */ {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */ {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */ {0x29, 0x00}, /* DiSEqC LNB_DC off */ {0x2a, 0xb0}, /* DiSEqC Parameters (default) */ {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */ {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */ {0x2d, 0x00}, {0x2e, 0x00}, {0x2f, 0x00}, {0x30, 0x00}, {0x31, 0x00}, {0x32, 0x8c}, /* DiSEqC Parameters (default) */ {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */ {0x34, 0x00}, {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */ {0x36, 0x02}, /* DiSEqC Parameters (default) */ {0x37, 0x3a}, /* DiSEqC Parameters (default) */ {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */ {0x44, 0x00}, /* Constellation (default) */ {0x45, 0x00}, /* Symbol count (default) */ {0x46, 0x0d}, /* Symbol rate estimator on (default) */ {0x56, 0x41}, /* Various (default) */ {0x57, 0xff}, /* Error Counter Window (default) */ {0x67, 0x83}, /* Non-DCII symbol clock */ }; static int cx24123_writereg(struct cx24123_state* state, int reg, int data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int err; if (debug>1) printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n", __FUNCTION__,reg, data); if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { printk("%s: writereg error(err == %i, reg == 0x%02x," " data == 0x%02x)\n", __FUNCTION__, err, reg, data); return -EREMOTEIO; } return 0; } static int cx24123_readreg(struct cx24123_state* state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret); return ret; } if (debug>1) printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret); return b1[0]; } static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion) { u8 nom_reg = cx24123_readreg(state, 0x0e); u8 auto_reg = cx24123_readreg(state, 0x10); switch (inversion) { case INVERSION_OFF: dprintk("%s: inversion off\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg & ~0x80); cx24123_writereg(state, 0x10, auto_reg | 0x80); break; case INVERSION_ON: dprintk("%s: inversion on\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x80); cx24123_writereg(state, 0x10, auto_reg | 0x80); break; case INVERSION_AUTO: dprintk("%s: inversion auto\n",__FUNCTION__); cx24123_writereg(state, 0x10, auto_reg & ~0x80); break; default: return -EINVAL; } return 0; } static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion) { u8 val; val = cx24123_readreg(state, 0x1b) >> 7; if (val == 0) { dprintk("%s: read inversion off\n",__FUNCTION__); *inversion = INVERSION_OFF; } else { dprintk("%s: read inversion on\n",__FUNCTION__); *inversion = INVERSION_ON; } return 0; } static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec) { u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07; if ( (fec < FEC_NONE) || (fec > FEC_AUTO) ) fec = FEC_AUTO; /* Set the soft decision threshold */ if(fec == FEC_1_2) cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01); else cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01); switch (fec) { case FEC_1_2: dprintk("%s: set FEC to 1/2\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x01); cx24123_writereg(state, 0x0f, 0x02); break; case FEC_2_3: dprintk("%s: set FEC to 2/3\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x02); cx24123_writereg(state, 0x0f, 0x04); break; case FEC_3_4: dprintk("%s: set FEC to 3/4\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x03); cx24123_writereg(state, 0x0f, 0x08); break; case FEC_4_5: dprintk("%s: set FEC to 4/5\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x04); cx24123_writereg(state, 0x0f, 0x10); break; case FEC_5_6: dprintk("%s: set FEC to 5/6\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x05); cx24123_writereg(state, 0x0f, 0x20); break; case FEC_6_7: dprintk("%s: set FEC to 6/7\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x06); cx24123_writereg(state, 0x0f, 0x40); break; case FEC_7_8: dprintk("%s: set FEC to 7/8\n",__FUNCTION__); cx24123_writereg(state, 0x0e, nom_reg | 0x07); cx24123_writereg(state, 0x0f, 0x80); break; case FEC_AUTO: dprintk("%s: set FEC to auto\n",__FUNCTION__); cx24123_writereg(state, 0x0f, 0xfe); break; default: return -EOPNOTSUPP; } return 0; } static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec) { int ret; ret = cx24123_readreg (state, 0x1b); if (ret < 0) return ret; ret = ret & 0x07; switch (ret) { case 1: *fec = FEC_1_2; break; case 2: *fec = FEC_2_3; break; case 3: *fec = FEC_3_4; break; case 4: *fec = FEC_4_5; break; case 5: *fec = FEC_5_6; break; case 6: *fec = FEC_6_7; break; case 7: *fec = FEC_7_8; break; default: /* this can happen when there's no lock */ *fec = FEC_NONE; } return 0; } /* Approximation of closest integer of log2(a/b). It actually gives the lowest integer i such that 2^i >= round(a/b) */ static u32 cx24123_int_log2(u32 a, u32 b) { u32 exp, nearest = 0; u32 div = a / b; if(a % b >= b / 2) ++div; if(div < (1 << 31)) { for(exp = 1; div > exp; nearest++) exp += exp; } return nearest; } static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate) { u32 tmp, sample_rate, ratio, sample_gain; u8 pll_mult; /* check if symbol rate is within limits */ if ((srate > state->frontend.ops.info.symbol_rate_max) || (srate < state->frontend.ops.info.symbol_rate_min)) return -EOPNOTSUPP;; /* choose the sampling rate high enough for the required operation, while optimizing the power consumed by the demodulator */ if (srate < (XTAL*2)/2) pll_mult = 2; else if (srate < (XTAL*3)/2) pll_mult = 3; else if (srate < (XTAL*4)/2) pll_mult = 4; else if (srate < (XTAL*5)/2) pll_mult = 5; else if (srate < (XTAL*6)/2) pll_mult = 6; else if (srate < (XTAL*7)/2) pll_mult = 7; else if (srate < (XTAL*8)/2) pll_mult = 8; else pll_mult = 9; sample_rate = pll_mult * XTAL; /* SYSSymbolRate[21:0] = (srate << 23) / sample_rate We have to use 32 bit unsigned arithmetic without precision loss. The maximum srate is 45000000 or 0x02AEA540. This number has only 6 clear bits on top, hence we can shift it left only 6 bits at a time. Borrowed from cx24110.c */ tmp = srate << 6; ratio = tmp / sample_rate; tmp = (tmp % sample_rate) << 6; ratio = (ratio << 6) + (tmp / sample_rate); tmp = (tmp % sample_rate) << 6; ratio = (ratio << 6) + (tmp / sample_rate); tmp = (tmp % sample_rate) << 5; ratio = (ratio << 5) + (tmp / sample_rate); cx24123_writereg(state, 0x01, pll_mult * 6); cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f ); cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff ); cx24123_writereg(state, 0x0a, (ratio ) & 0xff ); /* also set the demodulator sample gain */ sample_gain = cx24123_int_log2(sample_rate, srate); tmp = cx24123_readreg(state, 0x0c) & ~0xe0; cx24123_writereg(state, 0x0c, tmp | sample_gain << 5); dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain); return 0; } /* * Based on the required frequency and symbolrate, the tuner AGC has to be configured * and the correct band selected. Calculate those values */ static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct cx24123_state *state = fe->demodulator_priv; u32 ndiv = 0, adiv = 0, vco_div = 0; int i = 0; int pump = 2; int band = 0; int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]); /* Defaults for low freq, low rate */ state->VCAarg = cx24123_AGC_vals[0].VCAprogdata; state->VGAarg = cx24123_AGC_vals[0].VGAprogdata; state->bandselectarg = cx24123_bandselect_vals[0].progdata; vco_div = cx24123_bandselect_vals[0].VCOdivider; /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */ for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++) { if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) && (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) { state->VCAarg = cx24123_AGC_vals[i].VCAprogdata; state->VGAarg = cx24123_AGC_vals[i].VGAprogdata; state->FILTune = cx24123_AGC_vals[i].FILTune; } } /* determine the band to use */ if(force_band < 1 || force_band > num_bands) { for (i = 0; i < num_bands; i++) { if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) && (cx24123_bandselect_vals[i].freq_high >= p->frequency) ) band = i; } } else band = force_band - 1; state->bandselectarg = cx24123_bandselect_vals[band].progdata; vco_div = cx24123_bandselect_vals[band].VCOdivider; /* determine the charge pump current */ if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 ) pump = 0x01; else pump = 0x02; /* Determine the N/A dividers for the requested lband freq (in kHz). */ /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */ ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff; adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f; if (adiv == 0) ndiv++; /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */ state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv; return 0; } /* * Tuner data is 21 bits long, must be left-aligned in data. * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip. */ static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data) { struct cx24123_state *state = fe->demodulator_priv; unsigned long timeout; dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data); /* align the 21 bytes into to bit23 boundary */ data = data << 3; /* Reset the demod pll word length to 0x15 bits */ cx24123_writereg(state, 0x21, 0x15); /* write the msb 8 bits, wait for the send to be completed */ timeout = jiffies + msecs_to_jiffies(40); cx24123_writereg(state, 0x22, (data >> 16) & 0xff); while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { if (time_after(jiffies, timeout)) { printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); return -EREMOTEIO; } msleep(10); } /* send another 8 bytes, wait for the send to be completed */ timeout = jiffies + msecs_to_jiffies(40); cx24123_writereg(state, 0x22, (data>>8) & 0xff ); while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { if (time_after(jiffies, timeout)) { printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); return -EREMOTEIO; } msleep(10); } /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */ timeout = jiffies + msecs_to_jiffies(40); cx24123_writereg(state, 0x22, (data) & 0xff ); while ((cx24123_readreg(state, 0x20) & 0x80)) { if (time_after(jiffies, timeout)) { printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__); return -EREMOTEIO; } msleep(10); } /* Trigger the demod to configure the tuner */ cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2); cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd); return 0; } static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct cx24123_state *state = fe->demodulator_priv; u8 val; dprintk("frequency=%i\n", p->frequency); if (cx24123_pll_calculate(fe, p) != 0) { printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__); return -EINVAL; } /* Write the new VCO/VGA */ cx24123_pll_writereg(fe, p, state->VCAarg); cx24123_pll_writereg(fe, p, state->VGAarg); /* Write the new bandselect and pll args */ cx24123_pll_writereg(fe, p, state->bandselectarg); cx24123_pll_writereg(fe, p, state->pllarg); /* set the FILTUNE voltage */ val = cx24123_readreg(state, 0x28) & ~0x3; cx24123_writereg(state, 0x27, state->FILTune >> 2); cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3)); dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg, state->bandselectarg,state->pllarg); return 0; } static int cx24123_initfe(struct dvb_frontend* fe) { struct cx24123_state *state = fe->demodulator_priv; int i; dprintk("%s: init frontend\n",__FUNCTION__); /* Configure the demod to a good set of defaults */ for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++) cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data); return 0; } static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) { struct cx24123_state *state = fe->demodulator_priv; u8 val; val = cx24123_readreg(state, 0x29) & ~0x40; switch (voltage) { case SEC_VOLTAGE_13: dprintk("%s: setting voltage 13V\n", __FUNCTION__); return cx24123_writereg(state, 0x29, val & 0x7f); case SEC_VOLTAGE_18: dprintk("%s: setting voltage 18V\n", __FUNCTION__); return cx24123_writereg(state, 0x29, val | 0x80); default: return -EINVAL; }; return 0; } /* wait for diseqc queue to become ready (or timeout) */ static void cx24123_wait_for_diseqc(struct cx24123_state *state) { unsigned long timeout = jiffies + msecs_to_jiffies(200); while (!(cx24123_readreg(state, 0x29) & 0x40)) { if(time_after(jiffies, timeout)) { printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__); break; } msleep(10); } } static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd) { struct cx24123_state *state = fe->demodulator_priv; int i, val, tone; dprintk("%s:\n",__FUNCTION__); /* stop continuous tone if enabled */ tone = cx24123_readreg(state, 0x29); if (tone & 0x10) cx24123_writereg(state, 0x29, tone & ~0x50); /* wait for diseqc queue ready */ cx24123_wait_for_diseqc(state); /* select tone mode */ cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); for (i = 0; i < cmd->msg_len; i++) cx24123_writereg(state, 0x2C + i, cmd->msg[i]); val = cx24123_readreg(state, 0x29); cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); /* wait for diseqc message to finish sending */ cx24123_wait_for_diseqc(state); /* restart continuous tone if enabled */ if (tone & 0x10) { cx24123_writereg(state, 0x29, tone & ~0x40); } return 0; } static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst) { struct cx24123_state *state = fe->demodulator_priv; int val, tone; dprintk("%s:\n", __FUNCTION__); /* stop continuous tone if enabled */ tone = cx24123_readreg(state, 0x29); if (tone & 0x10) cx24123_writereg(state, 0x29, tone & ~0x50); /* wait for diseqc queue ready */ cx24123_wait_for_diseqc(state); /* select tone mode */ cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4); msleep(30); val = cx24123_readreg(state, 0x29); if (burst == SEC_MINI_A) cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00)); else if (burst == SEC_MINI_B) cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08)); else return -EINVAL; cx24123_wait_for_diseqc(state); cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); /* restart continuous tone if enabled */ if (tone & 0x10) { cx24123_writereg(state, 0x29, tone & ~0x40); } return 0; } static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct cx24123_state *state = fe->demodulator_priv; int sync = cx24123_readreg(state, 0x14); int lock = cx24123_readreg(state, 0x20); *status = 0; if (lock & 0x01) *status |= FE_HAS_SIGNAL; if (sync & 0x02) *status |= FE_HAS_CARRIER; if (sync & 0x04) *status |= FE_HAS_VITERBI; if (sync & 0x08) *status |= FE_HAS_SYNC; if (sync & 0x80) *status |= FE_HAS_LOCK; return 0; } /* * Configured to return the measurement of errors in blocks, because no UCBLOCKS value * is available, so this value doubles up to satisfy both measurements */ static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber) { struct cx24123_state *state = fe->demodulator_priv; state->lastber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) | (cx24123_readreg(state, 0x1d) << 8 | cx24123_readreg(state, 0x1e)); /* Do the signal quality processing here, it's derived from the BER. */ /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */ if (state->lastber < 5000) state->snr = 655*100; else if ( (state->lastber >= 5000) && (state->lastber < 55000) ) state->snr = 655*90; else if ( (state->lastber >= 55000) && (state->lastber < 150000) ) state->snr = 655*80; else if ( (state->lastber >= 150000) && (state->lastber < 250000) ) state->snr = 655*70; else if ( (state->lastber >= 250000) && (state->lastber < 450000) ) state->snr = 655*65; else state->snr = 0; dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr); *ber = state->lastber; return 0; } static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) { struct cx24123_state *state = fe->demodulator_priv; *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */ dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength); return 0; } static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr) { struct cx24123_state *state = fe->demodulator_priv; *snr = state->snr; dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr); return 0; } static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct cx24123_state *state = fe->demodulator_priv; *ucblocks = state->lastber; dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks); return 0; } static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct cx24123_state *state = fe->demodulator_priv; dprintk("%s: set_frontend\n",__FUNCTION__); if (state->config->set_ts_params) state->config->set_ts_params(fe, 0); state->currentfreq=p->frequency; state->currentsymbolrate = p->u.qpsk.symbol_rate; cx24123_set_inversion(state, p->inversion); cx24123_set_fec(state, p->u.qpsk.fec_inner); cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate); cx24123_pll_tune(fe, p); /* Enable automatic aquisition and reset cycle */ cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07)); cx24123_writereg(state, 0x00, 0x10); cx24123_writereg(state, 0x00, 0); return 0; } static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct cx24123_state *state = fe->demodulator_priv; dprintk("%s: get_frontend\n",__FUNCTION__); if (cx24123_get_inversion(state, &p->inversion) != 0) { printk("%s: Failed to get inversion status\n",__FUNCTION__); return -EREMOTEIO; } if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) { printk("%s: Failed to get fec status\n",__FUNCTION__); return -EREMOTEIO; } p->frequency = state->currentfreq; p->u.qpsk.symbol_rate = state->currentsymbolrate; return 0; } static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) { struct cx24123_state *state = fe->demodulator_priv; u8 val; /* wait for diseqc queue ready */ cx24123_wait_for_diseqc(state); val = cx24123_readreg(state, 0x29) & ~0x40; switch (tone) { case SEC_TONE_ON: dprintk("%s: setting tone on\n", __FUNCTION__); return cx24123_writereg(state, 0x29, val | 0x10); case SEC_TONE_OFF: dprintk("%s: setting tone off\n",__FUNCTION__); return cx24123_writereg(state, 0x29, val & 0xef); default: printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone); return -EINVAL; } return 0; } static void cx24123_release(struct dvb_frontend* fe) { struct cx24123_state* state = fe->demodulator_priv; dprintk("%s\n",__FUNCTION__); kfree(state); } static struct dvb_frontend_ops cx24123_ops; struct dvb_frontend* cx24123_attach(const struct cx24123_config* config, struct i2c_adapter* i2c) { struct cx24123_state* state = NULL; int ret; dprintk("%s\n",__FUNCTION__); /* allocate memory for the internal state */ state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL); if (state == NULL) { printk("Unable to kmalloc\n"); goto error; } /* setup the state */ state->config = config; state->i2c = i2c; state->lastber = 0; state->snr = 0; state->VCAarg = 0; state->VGAarg = 0; state->bandselectarg = 0; state->pllarg = 0; state->currentfreq = 0; state->currentsymbolrate = 0; /* check if the demod is there */ ret = cx24123_readreg(state, 0x00); if ((ret != 0xd1) && (ret != 0xe1)) { printk("Version != d1 or e1\n"); goto error; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops cx24123_ops = { .info = { .name = "Conexant CX24123/CX24109", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 1011, /* kHz for QPSK frontends */ .frequency_tolerance = 5000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_RECOVER }, .release = cx24123_release, .init = cx24123_initfe, .set_frontend = cx24123_set_frontend, .get_frontend = cx24123_get_frontend, .read_status = cx24123_read_status, .read_ber = cx24123_read_ber, .read_signal_strength = cx24123_read_signal_strength, .read_snr = cx24123_read_snr, .read_ucblocks = cx24123_read_ucblocks, .diseqc_send_master_cmd = cx24123_send_diseqc_msg, .diseqc_send_burst = cx24123_diseqc_send_burst, .set_tone = cx24123_set_tone, .set_voltage = cx24123_set_voltage, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); module_param(force_band, int, 0644); MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off)."); MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(cx24123_attach);