// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 SiFive * Copyright (C) 2018 Christoph Hellwig */ #define pr_fmt(fmt) "plic: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This driver implements a version of the RISC-V PLIC with the actual layout * specified in chapter 8 of the SiFive U5 Coreplex Series Manual: * * https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf * * The largest number supported by devices marked as 'sifive,plic-1.0.0', is * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged * Spec. */ #define MAX_DEVICES 1024 #define MAX_CONTEXTS 15872 /* * Each interrupt source has a priority register associated with it. * We always hardwire it to one in Linux. */ #define PRIORITY_BASE 0 #define PRIORITY_PER_ID 4 /* * Each hart context has a vector of interrupt enable bits associated with it. * There's one bit for each interrupt source. */ #define CONTEXT_ENABLE_BASE 0x2000 #define CONTEXT_ENABLE_SIZE 0x80 /* * Each hart context has a set of control registers associated with it. Right * now there's only two: a source priority threshold over which the hart will * take an interrupt, and a register to claim interrupts. */ #define CONTEXT_BASE 0x200000 #define CONTEXT_SIZE 0x1000 #define CONTEXT_THRESHOLD 0x00 #define CONTEXT_CLAIM 0x04 #define PLIC_DISABLE_THRESHOLD 0x7 #define PLIC_ENABLE_THRESHOLD 0 #define PLIC_QUIRK_EDGE_INTERRUPT 0 struct plic_priv { struct cpumask lmask; struct irq_domain *irqdomain; void __iomem *regs; unsigned long plic_quirks; }; struct plic_handler { bool present; void __iomem *hart_base; /* * Protect mask operations on the registers given that we can't * assume atomic memory operations work on them. */ raw_spinlock_t enable_lock; void __iomem *enable_base; struct plic_priv *priv; }; static int plic_parent_irq __ro_after_init; static bool plic_cpuhp_setup_done __ro_after_init; static DEFINE_PER_CPU(struct plic_handler, plic_handlers); static int plic_irq_set_type(struct irq_data *d, unsigned int type); static void __plic_toggle(void __iomem *enable_base, int hwirq, int enable) { u32 __iomem *reg = enable_base + (hwirq / 32) * sizeof(u32); u32 hwirq_mask = 1 << (hwirq % 32); if (enable) writel(readl(reg) | hwirq_mask, reg); else writel(readl(reg) & ~hwirq_mask, reg); } static void plic_toggle(struct plic_handler *handler, int hwirq, int enable) { raw_spin_lock(&handler->enable_lock); __plic_toggle(handler->enable_base, hwirq, enable); raw_spin_unlock(&handler->enable_lock); } static inline void plic_irq_toggle(const struct cpumask *mask, struct irq_data *d, int enable) { int cpu; struct plic_priv *priv = irq_data_get_irq_chip_data(d); writel(enable, priv->regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID); for_each_cpu(cpu, mask) { struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu); if (handler->present && cpumask_test_cpu(cpu, &handler->priv->lmask)) plic_toggle(handler, d->hwirq, enable); } } static void plic_irq_unmask(struct irq_data *d) { struct cpumask amask; unsigned int cpu; struct plic_priv *priv = irq_data_get_irq_chip_data(d); cpumask_and(&amask, &priv->lmask, cpu_online_mask); cpu = cpumask_any_and(irq_data_get_affinity_mask(d), &amask); if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) return; plic_irq_toggle(cpumask_of(cpu), d, 1); } static void plic_irq_mask(struct irq_data *d) { struct plic_priv *priv = irq_data_get_irq_chip_data(d); plic_irq_toggle(&priv->lmask, d, 0); } #ifdef CONFIG_SMP static int plic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { unsigned int cpu; struct cpumask amask; struct plic_priv *priv = irq_data_get_irq_chip_data(d); cpumask_and(&amask, &priv->lmask, mask_val); if (force) cpu = cpumask_first(&amask); else cpu = cpumask_any_and(&amask, cpu_online_mask); if (cpu >= nr_cpu_ids) return -EINVAL; plic_irq_toggle(&priv->lmask, d, 0); plic_irq_toggle(cpumask_of(cpu), d, !irqd_irq_masked(d)); irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK_DONE; } #endif static void plic_irq_eoi(struct irq_data *d) { struct plic_handler *handler = this_cpu_ptr(&plic_handlers); if (irqd_irq_masked(d)) { plic_irq_unmask(d); writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM); plic_irq_mask(d); } else { writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM); } } static struct irq_chip plic_edge_chip = { .name = "SiFive PLIC", .irq_ack = plic_irq_eoi, .irq_mask = plic_irq_mask, .irq_unmask = plic_irq_unmask, #ifdef CONFIG_SMP .irq_set_affinity = plic_set_affinity, #endif .irq_set_type = plic_irq_set_type, }; static struct irq_chip plic_chip = { .name = "SiFive PLIC", .irq_mask = plic_irq_mask, .irq_unmask = plic_irq_unmask, .irq_eoi = plic_irq_eoi, #ifdef CONFIG_SMP .irq_set_affinity = plic_set_affinity, #endif .irq_set_type = plic_irq_set_type, }; static int plic_irq_set_type(struct irq_data *d, unsigned int type) { struct plic_priv *priv = irq_data_get_irq_chip_data(d); if (!test_bit(PLIC_QUIRK_EDGE_INTERRUPT, &priv->plic_quirks)) return IRQ_SET_MASK_OK_NOCOPY; switch (type) { case IRQ_TYPE_EDGE_RISING: irq_set_chip_handler_name_locked(d, &plic_edge_chip, handle_edge_irq, NULL); break; case IRQ_TYPE_LEVEL_HIGH: irq_set_chip_handler_name_locked(d, &plic_chip, handle_fasteoi_irq, NULL); break; default: return -EINVAL; } return IRQ_SET_MASK_OK; } static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { struct plic_priv *priv = d->host_data; irq_domain_set_info(d, irq, hwirq, &plic_chip, d->host_data, handle_fasteoi_irq, NULL, NULL); irq_set_noprobe(irq); irq_set_affinity(irq, &priv->lmask); return 0; } static int plic_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { struct plic_priv *priv = d->host_data; if (test_bit(PLIC_QUIRK_EDGE_INTERRUPT, &priv->plic_quirks)) return irq_domain_translate_twocell(d, fwspec, hwirq, type); return irq_domain_translate_onecell(d, fwspec, hwirq, type); } static int plic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { int i, ret; irq_hw_number_t hwirq; unsigned int type; struct irq_fwspec *fwspec = arg; ret = plic_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) { ret = plic_irqdomain_map(domain, virq + i, hwirq + i); if (ret) return ret; } return 0; } static const struct irq_domain_ops plic_irqdomain_ops = { .translate = plic_irq_domain_translate, .alloc = plic_irq_domain_alloc, .free = irq_domain_free_irqs_top, }; /* * Handling an interrupt is a two-step process: first you claim the interrupt * by reading the claim register, then you complete the interrupt by writing * that source ID back to the same claim register. This automatically enables * and disables the interrupt, so there's nothing else to do. */ static void plic_handle_irq(struct irq_desc *desc) { struct plic_handler *handler = this_cpu_ptr(&plic_handlers); struct irq_chip *chip = irq_desc_get_chip(desc); void __iomem *claim = handler->hart_base + CONTEXT_CLAIM; irq_hw_number_t hwirq; WARN_ON_ONCE(!handler->present); chained_irq_enter(chip, desc); while ((hwirq = readl(claim))) { int err = generic_handle_domain_irq(handler->priv->irqdomain, hwirq); if (unlikely(err)) pr_warn_ratelimited("can't find mapping for hwirq %lu\n", hwirq); } chained_irq_exit(chip, desc); } static void plic_set_threshold(struct plic_handler *handler, u32 threshold) { /* priority must be > threshold to trigger an interrupt */ writel(threshold, handler->hart_base + CONTEXT_THRESHOLD); } static int plic_dying_cpu(unsigned int cpu) { if (plic_parent_irq) disable_percpu_irq(plic_parent_irq); return 0; } static int plic_starting_cpu(unsigned int cpu) { struct plic_handler *handler = this_cpu_ptr(&plic_handlers); if (plic_parent_irq) enable_percpu_irq(plic_parent_irq, irq_get_trigger_type(plic_parent_irq)); else pr_warn("cpu%d: parent irq not available\n", cpu); plic_set_threshold(handler, PLIC_ENABLE_THRESHOLD); return 0; } static int __init __plic_init(struct device_node *node, struct device_node *parent, unsigned long plic_quirks) { int error = 0, nr_contexts, nr_handlers = 0, i; u32 nr_irqs; struct plic_priv *priv; struct plic_handler *handler; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->plic_quirks = plic_quirks; priv->regs = of_iomap(node, 0); if (WARN_ON(!priv->regs)) { error = -EIO; goto out_free_priv; } error = -EINVAL; of_property_read_u32(node, "riscv,ndev", &nr_irqs); if (WARN_ON(!nr_irqs)) goto out_iounmap; nr_contexts = of_irq_count(node); if (WARN_ON(!nr_contexts)) goto out_iounmap; error = -ENOMEM; priv->irqdomain = irq_domain_add_linear(node, nr_irqs + 1, &plic_irqdomain_ops, priv); if (WARN_ON(!priv->irqdomain)) goto out_iounmap; for (i = 0; i < nr_contexts; i++) { struct of_phandle_args parent; irq_hw_number_t hwirq; int cpu, hartid; if (of_irq_parse_one(node, i, &parent)) { pr_err("failed to parse parent for context %d.\n", i); continue; } /* * Skip contexts other than external interrupts for our * privilege level. */ if (parent.args[0] != RV_IRQ_EXT) { /* Disable S-mode enable bits if running in M-mode. */ if (IS_ENABLED(CONFIG_RISCV_M_MODE)) { void __iomem *enable_base = priv->regs + CONTEXT_ENABLE_BASE + i * CONTEXT_ENABLE_SIZE; for (hwirq = 1; hwirq <= nr_irqs; hwirq++) __plic_toggle(enable_base, hwirq, 0); } continue; } hartid = riscv_of_parent_hartid(parent.np); if (hartid < 0) { pr_warn("failed to parse hart ID for context %d.\n", i); continue; } cpu = riscv_hartid_to_cpuid(hartid); if (cpu < 0) { pr_warn("Invalid cpuid for context %d\n", i); continue; } /* Find parent domain and register chained handler */ if (!plic_parent_irq && irq_find_host(parent.np)) { plic_parent_irq = irq_of_parse_and_map(node, i); if (plic_parent_irq) irq_set_chained_handler(plic_parent_irq, plic_handle_irq); } /* * When running in M-mode we need to ignore the S-mode handler. * Here we assume it always comes later, but that might be a * little fragile. */ handler = per_cpu_ptr(&plic_handlers, cpu); if (handler->present) { pr_warn("handler already present for context %d.\n", i); plic_set_threshold(handler, PLIC_DISABLE_THRESHOLD); goto done; } cpumask_set_cpu(cpu, &priv->lmask); handler->present = true; handler->hart_base = priv->regs + CONTEXT_BASE + i * CONTEXT_SIZE; raw_spin_lock_init(&handler->enable_lock); handler->enable_base = priv->regs + CONTEXT_ENABLE_BASE + i * CONTEXT_ENABLE_SIZE; handler->priv = priv; done: for (hwirq = 1; hwirq <= nr_irqs; hwirq++) plic_toggle(handler, hwirq, 0); nr_handlers++; } /* * We can have multiple PLIC instances so setup cpuhp state only * when context handler for current/boot CPU is present. */ handler = this_cpu_ptr(&plic_handlers); if (handler->present && !plic_cpuhp_setup_done) { cpuhp_setup_state(CPUHP_AP_IRQ_SIFIVE_PLIC_STARTING, "irqchip/sifive/plic:starting", plic_starting_cpu, plic_dying_cpu); plic_cpuhp_setup_done = true; } pr_info("%pOFP: mapped %d interrupts with %d handlers for" " %d contexts.\n", node, nr_irqs, nr_handlers, nr_contexts); return 0; out_iounmap: iounmap(priv->regs); out_free_priv: kfree(priv); return error; } static int __init plic_init(struct device_node *node, struct device_node *parent) { return __plic_init(node, parent, 0); } IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init); IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */ static int __init plic_edge_init(struct device_node *node, struct device_node *parent) { return __plic_init(node, parent, BIT(PLIC_QUIRK_EDGE_INTERRUPT)); } IRQCHIP_DECLARE(andestech_nceplic100, "andestech,nceplic100", plic_edge_init); IRQCHIP_DECLARE(thead_c900_plic, "thead,c900-plic", plic_edge_init);