/* * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. * Author: Joerg Roedel * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define pr_fmt(fmt) "iommu: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct kset *iommu_group_kset; static struct ida iommu_group_ida; static struct mutex iommu_group_mutex; struct iommu_callback_data { const struct iommu_ops *ops; }; struct iommu_group { struct kobject kobj; struct kobject *devices_kobj; struct list_head devices; struct mutex mutex; struct blocking_notifier_head notifier; void *iommu_data; void (*iommu_data_release)(void *iommu_data); char *name; int id; struct iommu_domain *default_domain; struct iommu_domain *domain; }; struct iommu_device { struct list_head list; struct device *dev; char *name; }; struct iommu_group_attribute { struct attribute attr; ssize_t (*show)(struct iommu_group *group, char *buf); ssize_t (*store)(struct iommu_group *group, const char *buf, size_t count); }; #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ struct iommu_group_attribute iommu_group_attr_##_name = \ __ATTR(_name, _mode, _show, _store) #define to_iommu_group_attr(_attr) \ container_of(_attr, struct iommu_group_attribute, attr) #define to_iommu_group(_kobj) \ container_of(_kobj, struct iommu_group, kobj) static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, unsigned type); static int __iommu_attach_device(struct iommu_domain *domain, struct device *dev); static int __iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group); static void __iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group); static ssize_t iommu_group_attr_show(struct kobject *kobj, struct attribute *__attr, char *buf) { struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); struct iommu_group *group = to_iommu_group(kobj); ssize_t ret = -EIO; if (attr->show) ret = attr->show(group, buf); return ret; } static ssize_t iommu_group_attr_store(struct kobject *kobj, struct attribute *__attr, const char *buf, size_t count) { struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); struct iommu_group *group = to_iommu_group(kobj); ssize_t ret = -EIO; if (attr->store) ret = attr->store(group, buf, count); return ret; } static const struct sysfs_ops iommu_group_sysfs_ops = { .show = iommu_group_attr_show, .store = iommu_group_attr_store, }; static int iommu_group_create_file(struct iommu_group *group, struct iommu_group_attribute *attr) { return sysfs_create_file(&group->kobj, &attr->attr); } static void iommu_group_remove_file(struct iommu_group *group, struct iommu_group_attribute *attr) { sysfs_remove_file(&group->kobj, &attr->attr); } static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) { return sprintf(buf, "%s\n", group->name); } static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); static void iommu_group_release(struct kobject *kobj) { struct iommu_group *group = to_iommu_group(kobj); pr_debug("Releasing group %d\n", group->id); if (group->iommu_data_release) group->iommu_data_release(group->iommu_data); mutex_lock(&iommu_group_mutex); ida_remove(&iommu_group_ida, group->id); mutex_unlock(&iommu_group_mutex); if (group->default_domain) iommu_domain_free(group->default_domain); kfree(group->name); kfree(group); } static struct kobj_type iommu_group_ktype = { .sysfs_ops = &iommu_group_sysfs_ops, .release = iommu_group_release, }; /** * iommu_group_alloc - Allocate a new group * @name: Optional name to associate with group, visible in sysfs * * This function is called by an iommu driver to allocate a new iommu * group. The iommu group represents the minimum granularity of the iommu. * Upon successful return, the caller holds a reference to the supplied * group in order to hold the group until devices are added. Use * iommu_group_put() to release this extra reference count, allowing the * group to be automatically reclaimed once it has no devices or external * references. */ struct iommu_group *iommu_group_alloc(void) { struct iommu_group *group; int ret; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return ERR_PTR(-ENOMEM); group->kobj.kset = iommu_group_kset; mutex_init(&group->mutex); INIT_LIST_HEAD(&group->devices); BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); mutex_lock(&iommu_group_mutex); again: if (unlikely(0 == ida_pre_get(&iommu_group_ida, GFP_KERNEL))) { kfree(group); mutex_unlock(&iommu_group_mutex); return ERR_PTR(-ENOMEM); } if (-EAGAIN == ida_get_new(&iommu_group_ida, &group->id)) goto again; mutex_unlock(&iommu_group_mutex); ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, NULL, "%d", group->id); if (ret) { mutex_lock(&iommu_group_mutex); ida_remove(&iommu_group_ida, group->id); mutex_unlock(&iommu_group_mutex); kfree(group); return ERR_PTR(ret); } group->devices_kobj = kobject_create_and_add("devices", &group->kobj); if (!group->devices_kobj) { kobject_put(&group->kobj); /* triggers .release & free */ return ERR_PTR(-ENOMEM); } /* * The devices_kobj holds a reference on the group kobject, so * as long as that exists so will the group. We can therefore * use the devices_kobj for reference counting. */ kobject_put(&group->kobj); pr_debug("Allocated group %d\n", group->id); return group; } EXPORT_SYMBOL_GPL(iommu_group_alloc); struct iommu_group *iommu_group_get_by_id(int id) { struct kobject *group_kobj; struct iommu_group *group; const char *name; if (!iommu_group_kset) return NULL; name = kasprintf(GFP_KERNEL, "%d", id); if (!name) return NULL; group_kobj = kset_find_obj(iommu_group_kset, name); kfree(name); if (!group_kobj) return NULL; group = container_of(group_kobj, struct iommu_group, kobj); BUG_ON(group->id != id); kobject_get(group->devices_kobj); kobject_put(&group->kobj); return group; } EXPORT_SYMBOL_GPL(iommu_group_get_by_id); /** * iommu_group_get_iommudata - retrieve iommu_data registered for a group * @group: the group * * iommu drivers can store data in the group for use when doing iommu * operations. This function provides a way to retrieve it. Caller * should hold a group reference. */ void *iommu_group_get_iommudata(struct iommu_group *group) { return group->iommu_data; } EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); /** * iommu_group_set_iommudata - set iommu_data for a group * @group: the group * @iommu_data: new data * @release: release function for iommu_data * * iommu drivers can store data in the group for use when doing iommu * operations. This function provides a way to set the data after * the group has been allocated. Caller should hold a group reference. */ void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, void (*release)(void *iommu_data)) { group->iommu_data = iommu_data; group->iommu_data_release = release; } EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); /** * iommu_group_set_name - set name for a group * @group: the group * @name: name * * Allow iommu driver to set a name for a group. When set it will * appear in a name attribute file under the group in sysfs. */ int iommu_group_set_name(struct iommu_group *group, const char *name) { int ret; if (group->name) { iommu_group_remove_file(group, &iommu_group_attr_name); kfree(group->name); group->name = NULL; if (!name) return 0; } group->name = kstrdup(name, GFP_KERNEL); if (!group->name) return -ENOMEM; ret = iommu_group_create_file(group, &iommu_group_attr_name); if (ret) { kfree(group->name); group->name = NULL; return ret; } return 0; } EXPORT_SYMBOL_GPL(iommu_group_set_name); static int iommu_group_create_direct_mappings(struct iommu_group *group, struct device *dev) { struct iommu_domain *domain = group->default_domain; struct iommu_dm_region *entry; struct list_head mappings; unsigned long pg_size; int ret = 0; if (!domain || domain->type != IOMMU_DOMAIN_DMA) return 0; BUG_ON(!domain->ops->pgsize_bitmap); pg_size = 1UL << __ffs(domain->ops->pgsize_bitmap); INIT_LIST_HEAD(&mappings); iommu_get_dm_regions(dev, &mappings); /* We need to consider overlapping regions for different devices */ list_for_each_entry(entry, &mappings, list) { dma_addr_t start, end, addr; start = ALIGN(entry->start, pg_size); end = ALIGN(entry->start + entry->length, pg_size); for (addr = start; addr < end; addr += pg_size) { phys_addr_t phys_addr; phys_addr = iommu_iova_to_phys(domain, addr); if (phys_addr) continue; ret = iommu_map(domain, addr, addr, pg_size, entry->prot); if (ret) goto out; } } out: iommu_put_dm_regions(dev, &mappings); return ret; } /** * iommu_group_add_device - add a device to an iommu group * @group: the group into which to add the device (reference should be held) * @dev: the device * * This function is called by an iommu driver to add a device into a * group. Adding a device increments the group reference count. */ int iommu_group_add_device(struct iommu_group *group, struct device *dev) { int ret, i = 0; struct iommu_device *device; device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) return -ENOMEM; device->dev = dev; ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); if (ret) { kfree(device); return ret; } device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); rename: if (!device->name) { sysfs_remove_link(&dev->kobj, "iommu_group"); kfree(device); return -ENOMEM; } ret = sysfs_create_link_nowarn(group->devices_kobj, &dev->kobj, device->name); if (ret) { kfree(device->name); if (ret == -EEXIST && i >= 0) { /* * Account for the slim chance of collision * and append an instance to the name. */ device->name = kasprintf(GFP_KERNEL, "%s.%d", kobject_name(&dev->kobj), i++); goto rename; } sysfs_remove_link(&dev->kobj, "iommu_group"); kfree(device); return ret; } kobject_get(group->devices_kobj); dev->iommu_group = group; iommu_group_create_direct_mappings(group, dev); mutex_lock(&group->mutex); list_add_tail(&device->list, &group->devices); if (group->domain) __iommu_attach_device(group->domain, dev); mutex_unlock(&group->mutex); /* Notify any listeners about change to group. */ blocking_notifier_call_chain(&group->notifier, IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); trace_add_device_to_group(group->id, dev); pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); return 0; } EXPORT_SYMBOL_GPL(iommu_group_add_device); /** * iommu_group_remove_device - remove a device from it's current group * @dev: device to be removed * * This function is called by an iommu driver to remove the device from * it's current group. This decrements the iommu group reference count. */ void iommu_group_remove_device(struct device *dev) { struct iommu_group *group = dev->iommu_group; struct iommu_device *tmp_device, *device = NULL; pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); /* Pre-notify listeners that a device is being removed. */ blocking_notifier_call_chain(&group->notifier, IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); mutex_lock(&group->mutex); list_for_each_entry(tmp_device, &group->devices, list) { if (tmp_device->dev == dev) { device = tmp_device; list_del(&device->list); break; } } mutex_unlock(&group->mutex); if (!device) return; sysfs_remove_link(group->devices_kobj, device->name); sysfs_remove_link(&dev->kobj, "iommu_group"); trace_remove_device_from_group(group->id, dev); kfree(device->name); kfree(device); dev->iommu_group = NULL; kobject_put(group->devices_kobj); } EXPORT_SYMBOL_GPL(iommu_group_remove_device); static int iommu_group_device_count(struct iommu_group *group) { struct iommu_device *entry; int ret = 0; list_for_each_entry(entry, &group->devices, list) ret++; return ret; } /** * iommu_group_for_each_dev - iterate over each device in the group * @group: the group * @data: caller opaque data to be passed to callback function * @fn: caller supplied callback function * * This function is called by group users to iterate over group devices. * Callers should hold a reference count to the group during callback. * The group->mutex is held across callbacks, which will block calls to * iommu_group_add/remove_device. */ static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, int (*fn)(struct device *, void *)) { struct iommu_device *device; int ret = 0; list_for_each_entry(device, &group->devices, list) { ret = fn(device->dev, data); if (ret) break; } return ret; } int iommu_group_for_each_dev(struct iommu_group *group, void *data, int (*fn)(struct device *, void *)) { int ret; mutex_lock(&group->mutex); ret = __iommu_group_for_each_dev(group, data, fn); mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); /** * iommu_group_get - Return the group for a device and increment reference * @dev: get the group that this device belongs to * * This function is called by iommu drivers and users to get the group * for the specified device. If found, the group is returned and the group * reference in incremented, else NULL. */ struct iommu_group *iommu_group_get(struct device *dev) { struct iommu_group *group = dev->iommu_group; if (group) kobject_get(group->devices_kobj); return group; } EXPORT_SYMBOL_GPL(iommu_group_get); /** * iommu_group_put - Decrement group reference * @group: the group to use * * This function is called by iommu drivers and users to release the * iommu group. Once the reference count is zero, the group is released. */ void iommu_group_put(struct iommu_group *group) { if (group) kobject_put(group->devices_kobj); } EXPORT_SYMBOL_GPL(iommu_group_put); /** * iommu_group_register_notifier - Register a notifier for group changes * @group: the group to watch * @nb: notifier block to signal * * This function allows iommu group users to track changes in a group. * See include/linux/iommu.h for actions sent via this notifier. Caller * should hold a reference to the group throughout notifier registration. */ int iommu_group_register_notifier(struct iommu_group *group, struct notifier_block *nb) { return blocking_notifier_chain_register(&group->notifier, nb); } EXPORT_SYMBOL_GPL(iommu_group_register_notifier); /** * iommu_group_unregister_notifier - Unregister a notifier * @group: the group to watch * @nb: notifier block to signal * * Unregister a previously registered group notifier block. */ int iommu_group_unregister_notifier(struct iommu_group *group, struct notifier_block *nb) { return blocking_notifier_chain_unregister(&group->notifier, nb); } EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); /** * iommu_group_id - Return ID for a group * @group: the group to ID * * Return the unique ID for the group matching the sysfs group number. */ int iommu_group_id(struct iommu_group *group) { return group->id; } EXPORT_SYMBOL_GPL(iommu_group_id); static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, unsigned long *devfns); /* * To consider a PCI device isolated, we require ACS to support Source * Validation, Request Redirection, Completer Redirection, and Upstream * Forwarding. This effectively means that devices cannot spoof their * requester ID, requests and completions cannot be redirected, and all * transactions are forwarded upstream, even as it passes through a * bridge where the target device is downstream. */ #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) /* * For multifunction devices which are not isolated from each other, find * all the other non-isolated functions and look for existing groups. For * each function, we also need to look for aliases to or from other devices * that may already have a group. */ static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, unsigned long *devfns) { struct pci_dev *tmp = NULL; struct iommu_group *group; if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) return NULL; for_each_pci_dev(tmp) { if (tmp == pdev || tmp->bus != pdev->bus || PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || pci_acs_enabled(tmp, REQ_ACS_FLAGS)) continue; group = get_pci_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } } return NULL; } /* * Look for aliases to or from the given device for exisiting groups. The * dma_alias_devfn only supports aliases on the same bus, therefore the search * space is quite small (especially since we're really only looking at pcie * device, and therefore only expect multiple slots on the root complex or * downstream switch ports). It's conceivable though that a pair of * multifunction devices could have aliases between them that would cause a * loop. To prevent this, we use a bitmap to track where we've been. */ static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, unsigned long *devfns) { struct pci_dev *tmp = NULL; struct iommu_group *group; if (test_and_set_bit(pdev->devfn & 0xff, devfns)) return NULL; group = iommu_group_get(&pdev->dev); if (group) return group; for_each_pci_dev(tmp) { if (tmp == pdev || tmp->bus != pdev->bus) continue; /* We alias them or they alias us */ if (((pdev->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN) && pdev->dma_alias_devfn == tmp->devfn) || ((tmp->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN) && tmp->dma_alias_devfn == pdev->devfn)) { group = get_pci_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } group = get_pci_function_alias_group(tmp, devfns); if (group) { pci_dev_put(tmp); return group; } } } return NULL; } struct group_for_pci_data { struct pci_dev *pdev; struct iommu_group *group; }; /* * DMA alias iterator callback, return the last seen device. Stop and return * the IOMMU group if we find one along the way. */ static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) { struct group_for_pci_data *data = opaque; data->pdev = pdev; data->group = iommu_group_get(&pdev->dev); return data->group != NULL; } /* * Use standard PCI bus topology, isolation features, and DMA alias quirks * to find or create an IOMMU group for a device. */ static struct iommu_group *iommu_group_get_for_pci_dev(struct pci_dev *pdev) { struct group_for_pci_data data; struct pci_bus *bus; struct iommu_group *group = NULL; u64 devfns[4] = { 0 }; /* * Find the upstream DMA alias for the device. A device must not * be aliased due to topology in order to have its own IOMMU group. * If we find an alias along the way that already belongs to a * group, use it. */ if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) return data.group; pdev = data.pdev; /* * Continue upstream from the point of minimum IOMMU granularity * due to aliases to the point where devices are protected from * peer-to-peer DMA by PCI ACS. Again, if we find an existing * group, use it. */ for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { if (!bus->self) continue; if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) break; pdev = bus->self; group = iommu_group_get(&pdev->dev); if (group) return group; } /* * Look for existing groups on device aliases. If we alias another * device or another device aliases us, use the same group. */ group = get_pci_alias_group(pdev, (unsigned long *)devfns); if (group) return group; /* * Look for existing groups on non-isolated functions on the same * slot and aliases of those funcions, if any. No need to clear * the search bitmap, the tested devfns are still valid. */ group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); if (group) return group; /* No shared group found, allocate new */ group = iommu_group_alloc(); if (IS_ERR(group)) return NULL; /* * Try to allocate a default domain - needs support from the * IOMMU driver. */ group->default_domain = __iommu_domain_alloc(pdev->dev.bus, IOMMU_DOMAIN_DMA); group->domain = group->default_domain; return group; } /** * iommu_group_get_for_dev - Find or create the IOMMU group for a device * @dev: target device * * This function is intended to be called by IOMMU drivers and extended to * support common, bus-defined algorithms when determining or creating the * IOMMU group for a device. On success, the caller will hold a reference * to the returned IOMMU group, which will already include the provided * device. The reference should be released with iommu_group_put(). */ struct iommu_group *iommu_group_get_for_dev(struct device *dev) { const struct iommu_ops *ops = dev->bus->iommu_ops; struct iommu_group *group; int ret; group = iommu_group_get(dev); if (group) return group; group = ERR_PTR(-EINVAL); if (ops && ops->device_group) group = ops->device_group(dev); else if (dev_is_pci(dev)) group = iommu_group_get_for_pci_dev(to_pci_dev(dev)); if (IS_ERR(group)) return group; ret = iommu_group_add_device(group, dev); if (ret) { iommu_group_put(group); return ERR_PTR(ret); } return group; } struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) { return group->default_domain; } static int add_iommu_group(struct device *dev, void *data) { struct iommu_callback_data *cb = data; const struct iommu_ops *ops = cb->ops; int ret; if (!ops->add_device) return 0; WARN_ON(dev->iommu_group); ret = ops->add_device(dev); /* * We ignore -ENODEV errors for now, as they just mean that the * device is not translated by an IOMMU. We still care about * other errors and fail to initialize when they happen. */ if (ret == -ENODEV) ret = 0; return ret; } static int remove_iommu_group(struct device *dev, void *data) { struct iommu_callback_data *cb = data; const struct iommu_ops *ops = cb->ops; if (ops->remove_device && dev->iommu_group) ops->remove_device(dev); return 0; } static int iommu_bus_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; const struct iommu_ops *ops = dev->bus->iommu_ops; struct iommu_group *group; unsigned long group_action = 0; /* * ADD/DEL call into iommu driver ops if provided, which may * result in ADD/DEL notifiers to group->notifier */ if (action == BUS_NOTIFY_ADD_DEVICE) { if (ops->add_device) return ops->add_device(dev); } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { if (ops->remove_device && dev->iommu_group) { ops->remove_device(dev); return 0; } } /* * Remaining BUS_NOTIFYs get filtered and republished to the * group, if anyone is listening */ group = iommu_group_get(dev); if (!group) return 0; switch (action) { case BUS_NOTIFY_BIND_DRIVER: group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; break; case BUS_NOTIFY_BOUND_DRIVER: group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; break; case BUS_NOTIFY_UNBIND_DRIVER: group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; break; case BUS_NOTIFY_UNBOUND_DRIVER: group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; break; } if (group_action) blocking_notifier_call_chain(&group->notifier, group_action, dev); iommu_group_put(group); return 0; } static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) { int err; struct notifier_block *nb; struct iommu_callback_data cb = { .ops = ops, }; nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); if (!nb) return -ENOMEM; nb->notifier_call = iommu_bus_notifier; err = bus_register_notifier(bus, nb); if (err) goto out_free; err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); if (err) goto out_err; return 0; out_err: /* Clean up */ bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); bus_unregister_notifier(bus, nb); out_free: kfree(nb); return err; } /** * bus_set_iommu - set iommu-callbacks for the bus * @bus: bus. * @ops: the callbacks provided by the iommu-driver * * This function is called by an iommu driver to set the iommu methods * used for a particular bus. Drivers for devices on that bus can use * the iommu-api after these ops are registered. * This special function is needed because IOMMUs are usually devices on * the bus itself, so the iommu drivers are not initialized when the bus * is set up. With this function the iommu-driver can set the iommu-ops * afterwards. */ int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) { int err; if (bus->iommu_ops != NULL) return -EBUSY; bus->iommu_ops = ops; /* Do IOMMU specific setup for this bus-type */ err = iommu_bus_init(bus, ops); if (err) bus->iommu_ops = NULL; return err; } EXPORT_SYMBOL_GPL(bus_set_iommu); bool iommu_present(struct bus_type *bus) { return bus->iommu_ops != NULL; } EXPORT_SYMBOL_GPL(iommu_present); bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) { if (!bus->iommu_ops || !bus->iommu_ops->capable) return false; return bus->iommu_ops->capable(cap); } EXPORT_SYMBOL_GPL(iommu_capable); /** * iommu_set_fault_handler() - set a fault handler for an iommu domain * @domain: iommu domain * @handler: fault handler * @token: user data, will be passed back to the fault handler * * This function should be used by IOMMU users which want to be notified * whenever an IOMMU fault happens. * * The fault handler itself should return 0 on success, and an appropriate * error code otherwise. */ void iommu_set_fault_handler(struct iommu_domain *domain, iommu_fault_handler_t handler, void *token) { BUG_ON(!domain); domain->handler = handler; domain->handler_token = token; } EXPORT_SYMBOL_GPL(iommu_set_fault_handler); static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, unsigned type) { struct iommu_domain *domain; if (bus == NULL || bus->iommu_ops == NULL) return NULL; domain = bus->iommu_ops->domain_alloc(type); if (!domain) return NULL; domain->ops = bus->iommu_ops; domain->type = type; return domain; } struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) { return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); } EXPORT_SYMBOL_GPL(iommu_domain_alloc); void iommu_domain_free(struct iommu_domain *domain) { domain->ops->domain_free(domain); } EXPORT_SYMBOL_GPL(iommu_domain_free); static int __iommu_attach_device(struct iommu_domain *domain, struct device *dev) { int ret; if (unlikely(domain->ops->attach_dev == NULL)) return -ENODEV; ret = domain->ops->attach_dev(domain, dev); if (!ret) trace_attach_device_to_domain(dev); return ret; } int iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct iommu_group *group; int ret; group = iommu_group_get(dev); /* FIXME: Remove this when groups a mandatory for iommu drivers */ if (group == NULL) return __iommu_attach_device(domain, dev); /* * We have a group - lock it to make sure the device-count doesn't * change while we are attaching */ mutex_lock(&group->mutex); ret = -EINVAL; if (iommu_group_device_count(group) != 1) goto out_unlock; ret = __iommu_attach_group(domain, group); out_unlock: mutex_unlock(&group->mutex); iommu_group_put(group); return ret; } EXPORT_SYMBOL_GPL(iommu_attach_device); static void __iommu_detach_device(struct iommu_domain *domain, struct device *dev) { if (unlikely(domain->ops->detach_dev == NULL)) return; domain->ops->detach_dev(domain, dev); trace_detach_device_from_domain(dev); } void iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct iommu_group *group; group = iommu_group_get(dev); /* FIXME: Remove this when groups a mandatory for iommu drivers */ if (group == NULL) return __iommu_detach_device(domain, dev); mutex_lock(&group->mutex); if (iommu_group_device_count(group) != 1) { WARN_ON(1); goto out_unlock; } __iommu_detach_group(domain, group); out_unlock: mutex_unlock(&group->mutex); iommu_group_put(group); } EXPORT_SYMBOL_GPL(iommu_detach_device); struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) { struct iommu_domain *domain; struct iommu_group *group; group = iommu_group_get(dev); /* FIXME: Remove this when groups a mandatory for iommu drivers */ if (group == NULL) return NULL; domain = group->domain; iommu_group_put(group); return domain; } EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); /* * IOMMU groups are really the natrual working unit of the IOMMU, but * the IOMMU API works on domains and devices. Bridge that gap by * iterating over the devices in a group. Ideally we'd have a single * device which represents the requestor ID of the group, but we also * allow IOMMU drivers to create policy defined minimum sets, where * the physical hardware may be able to distiguish members, but we * wish to group them at a higher level (ex. untrusted multi-function * PCI devices). Thus we attach each device. */ static int iommu_group_do_attach_device(struct device *dev, void *data) { struct iommu_domain *domain = data; return __iommu_attach_device(domain, dev); } static int __iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) { int ret; if (group->default_domain && group->domain != group->default_domain) return -EBUSY; ret = __iommu_group_for_each_dev(group, domain, iommu_group_do_attach_device); if (ret == 0) group->domain = domain; return ret; } int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) { int ret; mutex_lock(&group->mutex); ret = __iommu_attach_group(domain, group); mutex_unlock(&group->mutex); return ret; } EXPORT_SYMBOL_GPL(iommu_attach_group); static int iommu_group_do_detach_device(struct device *dev, void *data) { struct iommu_domain *domain = data; __iommu_detach_device(domain, dev); return 0; } static void __iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) { int ret; if (!group->default_domain) { __iommu_group_for_each_dev(group, domain, iommu_group_do_detach_device); group->domain = NULL; return; } if (group->domain == group->default_domain) return; /* Detach by re-attaching to the default domain */ ret = __iommu_group_for_each_dev(group, group->default_domain, iommu_group_do_attach_device); if (ret != 0) WARN_ON(1); else group->domain = group->default_domain; } void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) { mutex_lock(&group->mutex); __iommu_detach_group(domain, group); mutex_unlock(&group->mutex); } EXPORT_SYMBOL_GPL(iommu_detach_group); phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { if (unlikely(domain->ops->iova_to_phys == NULL)) return 0; return domain->ops->iova_to_phys(domain, iova); } EXPORT_SYMBOL_GPL(iommu_iova_to_phys); static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long addr_merge, size_t size) { unsigned int pgsize_idx; size_t pgsize; /* Max page size that still fits into 'size' */ pgsize_idx = __fls(size); /* need to consider alignment requirements ? */ if (likely(addr_merge)) { /* Max page size allowed by address */ unsigned int align_pgsize_idx = __ffs(addr_merge); pgsize_idx = min(pgsize_idx, align_pgsize_idx); } /* build a mask of acceptable page sizes */ pgsize = (1UL << (pgsize_idx + 1)) - 1; /* throw away page sizes not supported by the hardware */ pgsize &= domain->ops->pgsize_bitmap; /* make sure we're still sane */ BUG_ON(!pgsize); /* pick the biggest page */ pgsize_idx = __fls(pgsize); pgsize = 1UL << pgsize_idx; return pgsize; } int iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { unsigned long orig_iova = iova; unsigned int min_pagesz; size_t orig_size = size; int ret = 0; if (unlikely(domain->ops->map == NULL || domain->ops->pgsize_bitmap == 0UL)) return -ENODEV; if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) return -EINVAL; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap); /* * both the virtual address and the physical one, as well as * the size of the mapping, must be aligned (at least) to the * size of the smallest page supported by the hardware */ if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", iova, &paddr, size, min_pagesz); return -EINVAL; } pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); while (size) { size_t pgsize = iommu_pgsize(domain, iova | paddr, size); pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", iova, &paddr, pgsize); ret = domain->ops->map(domain, iova, paddr, pgsize, prot); if (ret) break; iova += pgsize; paddr += pgsize; size -= pgsize; } /* unroll mapping in case something went wrong */ if (ret) iommu_unmap(domain, orig_iova, orig_size - size); else trace_map(orig_iova, paddr, orig_size); return ret; } EXPORT_SYMBOL_GPL(iommu_map); size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { size_t unmapped_page, unmapped = 0; unsigned int min_pagesz; unsigned long orig_iova = iova; if (unlikely(domain->ops->unmap == NULL || domain->ops->pgsize_bitmap == 0UL)) return -ENODEV; if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) return -EINVAL; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap); /* * The virtual address, as well as the size of the mapping, must be * aligned (at least) to the size of the smallest page supported * by the hardware */ if (!IS_ALIGNED(iova | size, min_pagesz)) { pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", iova, size, min_pagesz); return -EINVAL; } pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); /* * Keep iterating until we either unmap 'size' bytes (or more) * or we hit an area that isn't mapped. */ while (unmapped < size) { size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); unmapped_page = domain->ops->unmap(domain, iova, pgsize); if (!unmapped_page) break; pr_debug("unmapped: iova 0x%lx size 0x%zx\n", iova, unmapped_page); iova += unmapped_page; unmapped += unmapped_page; } trace_unmap(orig_iova, size, unmapped); return unmapped; } EXPORT_SYMBOL_GPL(iommu_unmap); size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova, struct scatterlist *sg, unsigned int nents, int prot) { struct scatterlist *s; size_t mapped = 0; unsigned int i, min_pagesz; int ret; if (unlikely(domain->ops->pgsize_bitmap == 0UL)) return 0; min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap); for_each_sg(sg, s, nents, i) { phys_addr_t phys = sg_phys(s); /* * We are mapping on IOMMU page boundaries, so offset within * the page must be 0. However, the IOMMU may support pages * smaller than PAGE_SIZE, so s->offset may still represent * an offset of that boundary within the CPU page. */ if (!IS_ALIGNED(s->offset, min_pagesz)) goto out_err; ret = iommu_map(domain, iova + mapped, phys, s->length, prot); if (ret) goto out_err; mapped += s->length; } return mapped; out_err: /* undo mappings already done */ iommu_unmap(domain, iova, mapped); return 0; } EXPORT_SYMBOL_GPL(default_iommu_map_sg); int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, phys_addr_t paddr, u64 size, int prot) { if (unlikely(domain->ops->domain_window_enable == NULL)) return -ENODEV; return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, prot); } EXPORT_SYMBOL_GPL(iommu_domain_window_enable); void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) { if (unlikely(domain->ops->domain_window_disable == NULL)) return; return domain->ops->domain_window_disable(domain, wnd_nr); } EXPORT_SYMBOL_GPL(iommu_domain_window_disable); static int __init iommu_init(void) { iommu_group_kset = kset_create_and_add("iommu_groups", NULL, kernel_kobj); ida_init(&iommu_group_ida); mutex_init(&iommu_group_mutex); BUG_ON(!iommu_group_kset); return 0; } core_initcall(iommu_init); int iommu_domain_get_attr(struct iommu_domain *domain, enum iommu_attr attr, void *data) { struct iommu_domain_geometry *geometry; bool *paging; int ret = 0; u32 *count; switch (attr) { case DOMAIN_ATTR_GEOMETRY: geometry = data; *geometry = domain->geometry; break; case DOMAIN_ATTR_PAGING: paging = data; *paging = (domain->ops->pgsize_bitmap != 0UL); break; case DOMAIN_ATTR_WINDOWS: count = data; if (domain->ops->domain_get_windows != NULL) *count = domain->ops->domain_get_windows(domain); else ret = -ENODEV; break; default: if (!domain->ops->domain_get_attr) return -EINVAL; ret = domain->ops->domain_get_attr(domain, attr, data); } return ret; } EXPORT_SYMBOL_GPL(iommu_domain_get_attr); int iommu_domain_set_attr(struct iommu_domain *domain, enum iommu_attr attr, void *data) { int ret = 0; u32 *count; switch (attr) { case DOMAIN_ATTR_WINDOWS: count = data; if (domain->ops->domain_set_windows != NULL) ret = domain->ops->domain_set_windows(domain, *count); else ret = -ENODEV; break; default: if (domain->ops->domain_set_attr == NULL) return -EINVAL; ret = domain->ops->domain_set_attr(domain, attr, data); } return ret; } EXPORT_SYMBOL_GPL(iommu_domain_set_attr); void iommu_get_dm_regions(struct device *dev, struct list_head *list) { const struct iommu_ops *ops = dev->bus->iommu_ops; if (ops && ops->get_dm_regions) ops->get_dm_regions(dev, list); } void iommu_put_dm_regions(struct device *dev, struct list_head *list) { const struct iommu_ops *ops = dev->bus->iommu_ops; if (ops && ops->put_dm_regions) ops->put_dm_regions(dev, list); } /* Request that a device is direct mapped by the IOMMU */ int iommu_request_dm_for_dev(struct device *dev) { struct iommu_domain *dm_domain; struct iommu_group *group; int ret; /* Device must already be in a group before calling this function */ group = iommu_group_get_for_dev(dev); if (IS_ERR(group)) return PTR_ERR(group); mutex_lock(&group->mutex); /* Check if the default domain is already direct mapped */ ret = 0; if (group->default_domain && group->default_domain->type == IOMMU_DOMAIN_IDENTITY) goto out; /* Don't change mappings of existing devices */ ret = -EBUSY; if (iommu_group_device_count(group) != 1) goto out; /* Allocate a direct mapped domain */ ret = -ENOMEM; dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); if (!dm_domain) goto out; /* Attach the device to the domain */ ret = __iommu_attach_group(dm_domain, group); if (ret) { iommu_domain_free(dm_domain); goto out; } /* Make the direct mapped domain the default for this group */ if (group->default_domain) iommu_domain_free(group->default_domain); group->default_domain = dm_domain; pr_info("Using direct mapping for device %s\n", dev_name(dev)); ret = 0; out: mutex_unlock(&group->mutex); iommu_group_put(group); return ret; }