/* * IOMMU API for ARM architected SMMU implementations. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2013 ARM Limited * * Author: Will Deacon * * This driver currently supports: * - SMMUv1 and v2 implementations * - Stream-matching and stream-indexing * - v7/v8 long-descriptor format * - Non-secure access to the SMMU * - Context fault reporting */ #define pr_fmt(fmt) "arm-smmu: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "io-pgtable.h" /* Maximum number of stream IDs assigned to a single device */ #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS /* Maximum number of context banks per SMMU */ #define ARM_SMMU_MAX_CBS 128 /* Maximum number of mapping groups per SMMU */ #define ARM_SMMU_MAX_SMRS 128 /* SMMU global address space */ #define ARM_SMMU_GR0(smmu) ((smmu)->base) #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift)) /* * SMMU global address space with conditional offset to access secure * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448, * nsGFSYNR0: 0x450) */ #define ARM_SMMU_GR0_NS(smmu) \ ((smmu)->base + \ ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \ ? 0x400 : 0)) /* Configuration registers */ #define ARM_SMMU_GR0_sCR0 0x0 #define sCR0_CLIENTPD (1 << 0) #define sCR0_GFRE (1 << 1) #define sCR0_GFIE (1 << 2) #define sCR0_GCFGFRE (1 << 4) #define sCR0_GCFGFIE (1 << 5) #define sCR0_USFCFG (1 << 10) #define sCR0_VMIDPNE (1 << 11) #define sCR0_PTM (1 << 12) #define sCR0_FB (1 << 13) #define sCR0_BSU_SHIFT 14 #define sCR0_BSU_MASK 0x3 /* Identification registers */ #define ARM_SMMU_GR0_ID0 0x20 #define ARM_SMMU_GR0_ID1 0x24 #define ARM_SMMU_GR0_ID2 0x28 #define ARM_SMMU_GR0_ID3 0x2c #define ARM_SMMU_GR0_ID4 0x30 #define ARM_SMMU_GR0_ID5 0x34 #define ARM_SMMU_GR0_ID6 0x38 #define ARM_SMMU_GR0_ID7 0x3c #define ARM_SMMU_GR0_sGFSR 0x48 #define ARM_SMMU_GR0_sGFSYNR0 0x50 #define ARM_SMMU_GR0_sGFSYNR1 0x54 #define ARM_SMMU_GR0_sGFSYNR2 0x58 #define ID0_S1TS (1 << 30) #define ID0_S2TS (1 << 29) #define ID0_NTS (1 << 28) #define ID0_SMS (1 << 27) #define ID0_CTTW (1 << 14) #define ID0_NUMIRPT_SHIFT 16 #define ID0_NUMIRPT_MASK 0xff #define ID0_NUMSIDB_SHIFT 9 #define ID0_NUMSIDB_MASK 0xf #define ID0_NUMSMRG_SHIFT 0 #define ID0_NUMSMRG_MASK 0xff #define ID1_PAGESIZE (1 << 31) #define ID1_NUMPAGENDXB_SHIFT 28 #define ID1_NUMPAGENDXB_MASK 7 #define ID1_NUMS2CB_SHIFT 16 #define ID1_NUMS2CB_MASK 0xff #define ID1_NUMCB_SHIFT 0 #define ID1_NUMCB_MASK 0xff #define ID2_OAS_SHIFT 4 #define ID2_OAS_MASK 0xf #define ID2_IAS_SHIFT 0 #define ID2_IAS_MASK 0xf #define ID2_UBS_SHIFT 8 #define ID2_UBS_MASK 0xf #define ID2_PTFS_4K (1 << 12) #define ID2_PTFS_16K (1 << 13) #define ID2_PTFS_64K (1 << 14) /* Global TLB invalidation */ #define ARM_SMMU_GR0_TLBIVMID 0x64 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68 #define ARM_SMMU_GR0_TLBIALLH 0x6c #define ARM_SMMU_GR0_sTLBGSYNC 0x70 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74 #define sTLBGSTATUS_GSACTIVE (1 << 0) #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */ /* Stream mapping registers */ #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2)) #define SMR_VALID (1 << 31) #define SMR_MASK_SHIFT 16 #define SMR_MASK_MASK 0x7fff #define SMR_ID_SHIFT 0 #define SMR_ID_MASK 0x7fff #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2)) #define S2CR_CBNDX_SHIFT 0 #define S2CR_CBNDX_MASK 0xff #define S2CR_TYPE_SHIFT 16 #define S2CR_TYPE_MASK 0x3 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT) #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT) #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT) /* Context bank attribute registers */ #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2)) #define CBAR_VMID_SHIFT 0 #define CBAR_VMID_MASK 0xff #define CBAR_S1_BPSHCFG_SHIFT 8 #define CBAR_S1_BPSHCFG_MASK 3 #define CBAR_S1_BPSHCFG_NSH 3 #define CBAR_S1_MEMATTR_SHIFT 12 #define CBAR_S1_MEMATTR_MASK 0xf #define CBAR_S1_MEMATTR_WB 0xf #define CBAR_TYPE_SHIFT 16 #define CBAR_TYPE_MASK 0x3 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT) #define CBAR_IRPTNDX_SHIFT 24 #define CBAR_IRPTNDX_MASK 0xff #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2)) #define CBA2R_RW64_32BIT (0 << 0) #define CBA2R_RW64_64BIT (1 << 0) /* Translation context bank */ #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1)) #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift)) #define ARM_SMMU_CB_SCTLR 0x0 #define ARM_SMMU_CB_RESUME 0x8 #define ARM_SMMU_CB_TTBCR2 0x10 #define ARM_SMMU_CB_TTBR0_LO 0x20 #define ARM_SMMU_CB_TTBR0_HI 0x24 #define ARM_SMMU_CB_TTBR1_LO 0x28 #define ARM_SMMU_CB_TTBR1_HI 0x2c #define ARM_SMMU_CB_TTBCR 0x30 #define ARM_SMMU_CB_S1_MAIR0 0x38 #define ARM_SMMU_CB_S1_MAIR1 0x3c #define ARM_SMMU_CB_FSR 0x58 #define ARM_SMMU_CB_FAR_LO 0x60 #define ARM_SMMU_CB_FAR_HI 0x64 #define ARM_SMMU_CB_FSYNR0 0x68 #define ARM_SMMU_CB_S1_TLBIVA 0x600 #define ARM_SMMU_CB_S1_TLBIASID 0x610 #define ARM_SMMU_CB_S1_TLBIVAL 0x620 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638 #define SCTLR_S1_ASIDPNE (1 << 12) #define SCTLR_CFCFG (1 << 7) #define SCTLR_CFIE (1 << 6) #define SCTLR_CFRE (1 << 5) #define SCTLR_E (1 << 4) #define SCTLR_AFE (1 << 2) #define SCTLR_TRE (1 << 1) #define SCTLR_M (1 << 0) #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE) #define RESUME_RETRY (0 << 0) #define RESUME_TERMINATE (1 << 0) #define TTBCR2_SEP_SHIFT 15 #define TTBCR2_SEP_MASK 0x7 #define TTBCR2_ADDR_32 0 #define TTBCR2_ADDR_36 1 #define TTBCR2_ADDR_40 2 #define TTBCR2_ADDR_42 3 #define TTBCR2_ADDR_44 4 #define TTBCR2_ADDR_48 5 #define TTBRn_HI_ASID_SHIFT 16 #define FSR_MULTI (1 << 31) #define FSR_SS (1 << 30) #define FSR_UUT (1 << 8) #define FSR_ASF (1 << 7) #define FSR_TLBLKF (1 << 6) #define FSR_TLBMCF (1 << 5) #define FSR_EF (1 << 4) #define FSR_PF (1 << 3) #define FSR_AFF (1 << 2) #define FSR_TF (1 << 1) #define FSR_IGN (FSR_AFF | FSR_ASF | \ FSR_TLBMCF | FSR_TLBLKF) #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \ FSR_EF | FSR_PF | FSR_TF | FSR_IGN) #define FSYNR0_WNR (1 << 4) static int force_stage; module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(force_stage, "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation."); enum arm_smmu_arch_version { ARM_SMMU_V1 = 1, ARM_SMMU_V2, }; struct arm_smmu_smr { u8 idx; u16 mask; u16 id; }; struct arm_smmu_master_cfg { int num_streamids; u16 streamids[MAX_MASTER_STREAMIDS]; struct arm_smmu_smr *smrs; }; struct arm_smmu_master { struct device_node *of_node; struct rb_node node; struct arm_smmu_master_cfg cfg; }; struct arm_smmu_device { struct device *dev; void __iomem *base; unsigned long size; unsigned long pgshift; #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0) #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1) #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2) #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3) #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4) u32 features; #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0) u32 options; enum arm_smmu_arch_version version; u32 num_context_banks; u32 num_s2_context_banks; DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS); atomic_t irptndx; u32 num_mapping_groups; DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS); unsigned long va_size; unsigned long ipa_size; unsigned long pa_size; u32 num_global_irqs; u32 num_context_irqs; unsigned int *irqs; struct list_head list; struct rb_root masters; }; struct arm_smmu_cfg { u8 cbndx; u8 irptndx; u32 cbar; }; #define INVALID_IRPTNDX 0xff #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx) #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1) enum arm_smmu_domain_stage { ARM_SMMU_DOMAIN_S1 = 0, ARM_SMMU_DOMAIN_S2, ARM_SMMU_DOMAIN_NESTED, }; struct arm_smmu_domain { struct arm_smmu_device *smmu; struct io_pgtable_ops *pgtbl_ops; spinlock_t pgtbl_lock; struct arm_smmu_cfg cfg; enum arm_smmu_domain_stage stage; struct mutex init_mutex; /* Protects smmu pointer */ }; static struct iommu_ops arm_smmu_ops; static DEFINE_SPINLOCK(arm_smmu_devices_lock); static LIST_HEAD(arm_smmu_devices); struct arm_smmu_option_prop { u32 opt; const char *prop; }; static struct arm_smmu_option_prop arm_smmu_options[] = { { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" }, { 0, NULL}, }; static void parse_driver_options(struct arm_smmu_device *smmu) { int i = 0; do { if (of_property_read_bool(smmu->dev->of_node, arm_smmu_options[i].prop)) { smmu->options |= arm_smmu_options[i].opt; dev_notice(smmu->dev, "option %s\n", arm_smmu_options[i].prop); } } while (arm_smmu_options[++i].opt); } static struct device_node *dev_get_dev_node(struct device *dev) { if (dev_is_pci(dev)) { struct pci_bus *bus = to_pci_dev(dev)->bus; while (!pci_is_root_bus(bus)) bus = bus->parent; return bus->bridge->parent->of_node; } return dev->of_node; } static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu, struct device_node *dev_node) { struct rb_node *node = smmu->masters.rb_node; while (node) { struct arm_smmu_master *master; master = container_of(node, struct arm_smmu_master, node); if (dev_node < master->of_node) node = node->rb_left; else if (dev_node > master->of_node) node = node->rb_right; else return master; } return NULL; } static struct arm_smmu_master_cfg * find_smmu_master_cfg(struct device *dev) { struct arm_smmu_master_cfg *cfg = NULL; struct iommu_group *group = iommu_group_get(dev); if (group) { cfg = iommu_group_get_iommudata(group); iommu_group_put(group); } return cfg; } static int insert_smmu_master(struct arm_smmu_device *smmu, struct arm_smmu_master *master) { struct rb_node **new, *parent; new = &smmu->masters.rb_node; parent = NULL; while (*new) { struct arm_smmu_master *this = container_of(*new, struct arm_smmu_master, node); parent = *new; if (master->of_node < this->of_node) new = &((*new)->rb_left); else if (master->of_node > this->of_node) new = &((*new)->rb_right); else return -EEXIST; } rb_link_node(&master->node, parent, new); rb_insert_color(&master->node, &smmu->masters); return 0; } static int register_smmu_master(struct arm_smmu_device *smmu, struct device *dev, struct of_phandle_args *masterspec) { int i; struct arm_smmu_master *master; master = find_smmu_master(smmu, masterspec->np); if (master) { dev_err(dev, "rejecting multiple registrations for master device %s\n", masterspec->np->name); return -EBUSY; } if (masterspec->args_count > MAX_MASTER_STREAMIDS) { dev_err(dev, "reached maximum number (%d) of stream IDs for master device %s\n", MAX_MASTER_STREAMIDS, masterspec->np->name); return -ENOSPC; } master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->of_node = masterspec->np; master->cfg.num_streamids = masterspec->args_count; for (i = 0; i < master->cfg.num_streamids; ++i) { u16 streamid = masterspec->args[i]; if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && (streamid >= smmu->num_mapping_groups)) { dev_err(dev, "stream ID for master device %s greater than maximum allowed (%d)\n", masterspec->np->name, smmu->num_mapping_groups); return -ERANGE; } master->cfg.streamids[i] = streamid; } return insert_smmu_master(smmu, master); } static struct arm_smmu_device *find_smmu_for_device(struct device *dev) { struct arm_smmu_device *smmu; struct arm_smmu_master *master = NULL; struct device_node *dev_node = dev_get_dev_node(dev); spin_lock(&arm_smmu_devices_lock); list_for_each_entry(smmu, &arm_smmu_devices, list) { master = find_smmu_master(smmu, dev_node); if (master) break; } spin_unlock(&arm_smmu_devices_lock); return master ? smmu : NULL; } static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end) { int idx; do { idx = find_next_zero_bit(map, end, start); if (idx == end) return -ENOSPC; } while (test_and_set_bit(idx, map)); return idx; } static void __arm_smmu_free_bitmap(unsigned long *map, int idx) { clear_bit(idx, map); } /* Wait for any pending TLB invalidations to complete */ static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu) { int count = 0; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC); while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS) & sTLBGSTATUS_GSACTIVE) { cpu_relax(); if (++count == TLB_LOOP_TIMEOUT) { dev_err_ratelimited(smmu->dev, "TLB sync timed out -- SMMU may be deadlocked\n"); return; } udelay(1); } } static void arm_smmu_tlb_sync(void *cookie) { struct arm_smmu_domain *smmu_domain = cookie; __arm_smmu_tlb_sync(smmu_domain->smmu); } static void arm_smmu_tlb_inv_context(void *cookie) { struct arm_smmu_domain *smmu_domain = cookie; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_device *smmu = smmu_domain->smmu; bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; void __iomem *base; if (stage1) { base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); writel_relaxed(ARM_SMMU_CB_ASID(cfg), base + ARM_SMMU_CB_S1_TLBIASID); } else { base = ARM_SMMU_GR0(smmu); writel_relaxed(ARM_SMMU_CB_VMID(cfg), base + ARM_SMMU_GR0_TLBIVMID); } __arm_smmu_tlb_sync(smmu); } static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size, bool leaf, void *cookie) { struct arm_smmu_domain *smmu_domain = cookie; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_device *smmu = smmu_domain->smmu; bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; void __iomem *reg; if (stage1) { reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA; if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) { iova &= ~12UL; iova |= ARM_SMMU_CB_ASID(cfg); writel_relaxed(iova, reg); #ifdef CONFIG_64BIT } else { iova >>= 12; iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48; writeq_relaxed(iova, reg); #endif } #ifdef CONFIG_64BIT } else if (smmu->version == ARM_SMMU_V2) { reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L : ARM_SMMU_CB_S2_TLBIIPAS2; writeq_relaxed(iova >> 12, reg); #endif } else { reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID; writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg); } } static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie) { struct arm_smmu_domain *smmu_domain = cookie; struct arm_smmu_device *smmu = smmu_domain->smmu; unsigned long offset = (unsigned long)addr & ~PAGE_MASK; /* Ensure new page tables are visible to the hardware walker */ if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) { dsb(ishst); } else { /* * If the SMMU can't walk tables in the CPU caches, treat them * like non-coherent DMA since we need to flush the new entries * all the way out to memory. There's no possibility of * recursion here as the SMMU table walker will not be wired * through another SMMU. */ dma_map_page(smmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE); } } static struct iommu_gather_ops arm_smmu_gather_ops = { .tlb_flush_all = arm_smmu_tlb_inv_context, .tlb_add_flush = arm_smmu_tlb_inv_range_nosync, .tlb_sync = arm_smmu_tlb_sync, .flush_pgtable = arm_smmu_flush_pgtable, }; static irqreturn_t arm_smmu_context_fault(int irq, void *dev) { int flags, ret; u32 fsr, far, fsynr, resume; unsigned long iova; struct iommu_domain *domain = dev; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_device *smmu = smmu_domain->smmu; void __iomem *cb_base; cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR); if (!(fsr & FSR_FAULT)) return IRQ_NONE; if (fsr & FSR_IGN) dev_err_ratelimited(smmu->dev, "Unexpected context fault (fsr 0x%x)\n", fsr); fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0); flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO); iova = far; #ifdef CONFIG_64BIT far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI); iova |= ((unsigned long)far << 32); #endif if (!report_iommu_fault(domain, smmu->dev, iova, flags)) { ret = IRQ_HANDLED; resume = RESUME_RETRY; } else { dev_err_ratelimited(smmu->dev, "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n", iova, fsynr, cfg->cbndx); ret = IRQ_NONE; resume = RESUME_TERMINATE; } /* Clear the faulting FSR */ writel(fsr, cb_base + ARM_SMMU_CB_FSR); /* Retry or terminate any stalled transactions */ if (fsr & FSR_SS) writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME); return ret; } static irqreturn_t arm_smmu_global_fault(int irq, void *dev) { u32 gfsr, gfsynr0, gfsynr1, gfsynr2; struct arm_smmu_device *smmu = dev; void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu); gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR); gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0); gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1); gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2); if (!gfsr) return IRQ_NONE; dev_err_ratelimited(smmu->dev, "Unexpected global fault, this could be serious\n"); dev_err_ratelimited(smmu->dev, "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", gfsr, gfsynr0, gfsynr1, gfsynr2); writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR); return IRQ_HANDLED; } static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain, struct io_pgtable_cfg *pgtbl_cfg) { u32 reg; bool stage1; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_device *smmu = smmu_domain->smmu; void __iomem *cb_base, *gr0_base, *gr1_base; gr0_base = ARM_SMMU_GR0(smmu); gr1_base = ARM_SMMU_GR1(smmu); stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); /* CBAR */ reg = cfg->cbar; if (smmu->version == ARM_SMMU_V1) reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT; /* * Use the weakest shareability/memory types, so they are * overridden by the ttbcr/pte. */ if (stage1) { reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) | (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT); } else { reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT; } writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx)); if (smmu->version > ARM_SMMU_V1) { /* CBA2R */ #ifdef CONFIG_64BIT reg = CBA2R_RW64_64BIT; #else reg = CBA2R_RW64_32BIT; #endif writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx)); } /* TTBRs */ if (stage1) { reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0]; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO); reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32; reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI); reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1]; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO); reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32; reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI); } else { reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO); reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI); } /* TTBCR */ if (stage1) { reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR); if (smmu->version > ARM_SMMU_V1) { reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32; switch (smmu->va_size) { case 32: reg |= (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT); break; case 36: reg |= (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT); break; case 40: reg |= (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT); break; case 42: reg |= (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT); break; case 44: reg |= (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT); break; case 48: reg |= (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT); break; } writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2); } } else { reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR); } /* MAIRs (stage-1 only) */ if (stage1) { reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0]; writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0); reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1]; writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1); } /* SCTLR */ reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP; if (stage1) reg |= SCTLR_S1_ASIDPNE; #ifdef __BIG_ENDIAN reg |= SCTLR_E; #endif writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR); } static int arm_smmu_init_domain_context(struct iommu_domain *domain, struct arm_smmu_device *smmu) { int irq, start, ret = 0; unsigned long ias, oas; struct io_pgtable_ops *pgtbl_ops; struct io_pgtable_cfg pgtbl_cfg; enum io_pgtable_fmt fmt; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; mutex_lock(&smmu_domain->init_mutex); if (smmu_domain->smmu) goto out_unlock; /* * Mapping the requested stage onto what we support is surprisingly * complicated, mainly because the spec allows S1+S2 SMMUs without * support for nested translation. That means we end up with the * following table: * * Requested Supported Actual * S1 N S1 * S1 S1+S2 S1 * S1 S2 S2 * S1 S1 S1 * N N N * N S1+S2 S2 * N S2 S2 * N S1 S1 * * Note that you can't actually request stage-2 mappings. */ if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) smmu_domain->stage = ARM_SMMU_DOMAIN_S2; if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) smmu_domain->stage = ARM_SMMU_DOMAIN_S1; switch (smmu_domain->stage) { case ARM_SMMU_DOMAIN_S1: cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; start = smmu->num_s2_context_banks; ias = smmu->va_size; oas = smmu->ipa_size; if (IS_ENABLED(CONFIG_64BIT)) fmt = ARM_64_LPAE_S1; else fmt = ARM_32_LPAE_S1; break; case ARM_SMMU_DOMAIN_NESTED: /* * We will likely want to change this if/when KVM gets * involved. */ case ARM_SMMU_DOMAIN_S2: cfg->cbar = CBAR_TYPE_S2_TRANS; start = 0; ias = smmu->ipa_size; oas = smmu->pa_size; if (IS_ENABLED(CONFIG_64BIT)) fmt = ARM_64_LPAE_S2; else fmt = ARM_32_LPAE_S2; break; default: ret = -EINVAL; goto out_unlock; } ret = __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks); if (IS_ERR_VALUE(ret)) goto out_unlock; cfg->cbndx = ret; if (smmu->version == ARM_SMMU_V1) { cfg->irptndx = atomic_inc_return(&smmu->irptndx); cfg->irptndx %= smmu->num_context_irqs; } else { cfg->irptndx = cfg->cbndx; } pgtbl_cfg = (struct io_pgtable_cfg) { .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap, .ias = ias, .oas = oas, .tlb = &arm_smmu_gather_ops, }; smmu_domain->smmu = smmu; pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); if (!pgtbl_ops) { ret = -ENOMEM; goto out_clear_smmu; } /* Update our support page sizes to reflect the page table format */ arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; /* Initialise the context bank with our page table cfg */ arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg); /* * Request context fault interrupt. Do this last to avoid the * handler seeing a half-initialised domain state. */ irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx]; ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED, "arm-smmu-context-fault", domain); if (IS_ERR_VALUE(ret)) { dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n", cfg->irptndx, irq); cfg->irptndx = INVALID_IRPTNDX; } mutex_unlock(&smmu_domain->init_mutex); /* Publish page table ops for map/unmap */ smmu_domain->pgtbl_ops = pgtbl_ops; return 0; out_clear_smmu: smmu_domain->smmu = NULL; out_unlock: mutex_unlock(&smmu_domain->init_mutex); return ret; } static void arm_smmu_destroy_domain_context(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_device *smmu = smmu_domain->smmu; struct arm_smmu_cfg *cfg = &smmu_domain->cfg; void __iomem *cb_base; int irq; if (!smmu) return; /* * Disable the context bank and free the page tables before freeing * it. */ cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR); if (cfg->irptndx != INVALID_IRPTNDX) { irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx]; free_irq(irq, domain); } if (smmu_domain->pgtbl_ops) free_io_pgtable_ops(smmu_domain->pgtbl_ops); __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); } static int arm_smmu_domain_init(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain; /* * Allocate the domain and initialise some of its data structures. * We can't really do anything meaningful until we've added a * master. */ smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); if (!smmu_domain) return -ENOMEM; mutex_init(&smmu_domain->init_mutex); spin_lock_init(&smmu_domain->pgtbl_lock); domain->priv = smmu_domain; return 0; } static void arm_smmu_domain_destroy(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain = domain->priv; /* * Free the domain resources. We assume that all devices have * already been detached. */ arm_smmu_destroy_domain_context(domain); kfree(smmu_domain); } static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu, struct arm_smmu_master_cfg *cfg) { int i; struct arm_smmu_smr *smrs; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)) return 0; if (cfg->smrs) return -EEXIST; smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL); if (!smrs) { dev_err(smmu->dev, "failed to allocate %d SMRs\n", cfg->num_streamids); return -ENOMEM; } /* Allocate the SMRs on the SMMU */ for (i = 0; i < cfg->num_streamids; ++i) { int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0, smmu->num_mapping_groups); if (IS_ERR_VALUE(idx)) { dev_err(smmu->dev, "failed to allocate free SMR\n"); goto err_free_smrs; } smrs[i] = (struct arm_smmu_smr) { .idx = idx, .mask = 0, /* We don't currently share SMRs */ .id = cfg->streamids[i], }; } /* It worked! Now, poke the actual hardware */ for (i = 0; i < cfg->num_streamids; ++i) { u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT | smrs[i].mask << SMR_MASK_SHIFT; writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx)); } cfg->smrs = smrs; return 0; err_free_smrs: while (--i >= 0) __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx); kfree(smrs); return -ENOSPC; } static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu, struct arm_smmu_master_cfg *cfg) { int i; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); struct arm_smmu_smr *smrs = cfg->smrs; if (!smrs) return; /* Invalidate the SMRs before freeing back to the allocator */ for (i = 0; i < cfg->num_streamids; ++i) { u8 idx = smrs[i].idx; writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx)); __arm_smmu_free_bitmap(smmu->smr_map, idx); } cfg->smrs = NULL; kfree(smrs); } static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain, struct arm_smmu_master_cfg *cfg) { int i, ret; struct arm_smmu_device *smmu = smmu_domain->smmu; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); /* Devices in an IOMMU group may already be configured */ ret = arm_smmu_master_configure_smrs(smmu, cfg); if (ret) return ret == -EEXIST ? 0 : ret; for (i = 0; i < cfg->num_streamids; ++i) { u32 idx, s2cr; idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i]; s2cr = S2CR_TYPE_TRANS | (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT); writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx)); } return 0; } static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain, struct arm_smmu_master_cfg *cfg) { int i; struct arm_smmu_device *smmu = smmu_domain->smmu; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); /* An IOMMU group is torn down by the first device to be removed */ if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs) return; /* * We *must* clear the S2CR first, because freeing the SMR means * that it can be re-allocated immediately. */ for (i = 0; i < cfg->num_streamids; ++i) { u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i]; writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(idx)); } arm_smmu_master_free_smrs(smmu, cfg); } static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) { int ret; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_device *smmu; struct arm_smmu_master_cfg *cfg; smmu = find_smmu_for_device(dev); if (!smmu) { dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n"); return -ENXIO; } if (dev->archdata.iommu) { dev_err(dev, "already attached to IOMMU domain\n"); return -EEXIST; } /* Ensure that the domain is finalised */ ret = arm_smmu_init_domain_context(domain, smmu); if (IS_ERR_VALUE(ret)) return ret; /* * Sanity check the domain. We don't support domains across * different SMMUs. */ if (smmu_domain->smmu != smmu) { dev_err(dev, "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n", dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev)); return -EINVAL; } /* Looks ok, so add the device to the domain */ cfg = find_smmu_master_cfg(dev); if (!cfg) return -ENODEV; ret = arm_smmu_domain_add_master(smmu_domain, cfg); if (!ret) dev->archdata.iommu = domain; return ret; } static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev) { struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_master_cfg *cfg; cfg = find_smmu_master_cfg(dev); if (!cfg) return; dev->archdata.iommu = NULL; arm_smmu_domain_remove_master(smmu_domain, cfg); } static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { int ret; unsigned long flags; struct arm_smmu_domain *smmu_domain = domain->priv; struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; if (!ops) return -ENODEV; spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags); ret = ops->map(ops, iova, paddr, size, prot); spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags); return ret; } static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { size_t ret; unsigned long flags; struct arm_smmu_domain *smmu_domain = domain->priv; struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; if (!ops) return 0; spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags); ret = ops->unmap(ops, iova, size); spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags); return ret; } static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { phys_addr_t ret; unsigned long flags; struct arm_smmu_domain *smmu_domain = domain->priv; struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; if (!ops) return 0; spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags); ret = ops->iova_to_phys(ops, iova); spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags); return ret; } static bool arm_smmu_capable(enum iommu_cap cap) { switch (cap) { case IOMMU_CAP_CACHE_COHERENCY: /* * Return true here as the SMMU can always send out coherent * requests. */ return true; case IOMMU_CAP_INTR_REMAP: return true; /* MSIs are just memory writes */ case IOMMU_CAP_NOEXEC: return true; default: return false; } } static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data) { *((u16 *)data) = alias; return 0; /* Continue walking */ } static void __arm_smmu_release_pci_iommudata(void *data) { kfree(data); } static int arm_smmu_add_device(struct device *dev) { struct arm_smmu_device *smmu; struct arm_smmu_master_cfg *cfg; struct iommu_group *group; void (*releasefn)(void *) = NULL; int ret; smmu = find_smmu_for_device(dev); if (!smmu) return -ENODEV; group = iommu_group_alloc(); if (IS_ERR(group)) { dev_err(dev, "Failed to allocate IOMMU group\n"); return PTR_ERR(group); } if (dev_is_pci(dev)) { struct pci_dev *pdev = to_pci_dev(dev); cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { ret = -ENOMEM; goto out_put_group; } cfg->num_streamids = 1; /* * Assume Stream ID == Requester ID for now. * We need a way to describe the ID mappings in FDT. */ pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &cfg->streamids[0]); releasefn = __arm_smmu_release_pci_iommudata; } else { struct arm_smmu_master *master; master = find_smmu_master(smmu, dev->of_node); if (!master) { ret = -ENODEV; goto out_put_group; } cfg = &master->cfg; } iommu_group_set_iommudata(group, cfg, releasefn); ret = iommu_group_add_device(group, dev); out_put_group: iommu_group_put(group); return ret; } static void arm_smmu_remove_device(struct device *dev) { iommu_group_remove_device(dev); } static int arm_smmu_domain_get_attr(struct iommu_domain *domain, enum iommu_attr attr, void *data) { struct arm_smmu_domain *smmu_domain = domain->priv; switch (attr) { case DOMAIN_ATTR_NESTING: *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED); return 0; default: return -ENODEV; } } static int arm_smmu_domain_set_attr(struct iommu_domain *domain, enum iommu_attr attr, void *data) { int ret = 0; struct arm_smmu_domain *smmu_domain = domain->priv; mutex_lock(&smmu_domain->init_mutex); switch (attr) { case DOMAIN_ATTR_NESTING: if (smmu_domain->smmu) { ret = -EPERM; goto out_unlock; } if (*(int *)data) smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; else smmu_domain->stage = ARM_SMMU_DOMAIN_S1; break; default: ret = -ENODEV; } out_unlock: mutex_unlock(&smmu_domain->init_mutex); return ret; } static struct iommu_ops arm_smmu_ops = { .capable = arm_smmu_capable, .domain_init = arm_smmu_domain_init, .domain_destroy = arm_smmu_domain_destroy, .attach_dev = arm_smmu_attach_dev, .detach_dev = arm_smmu_detach_dev, .map = arm_smmu_map, .unmap = arm_smmu_unmap, .map_sg = default_iommu_map_sg, .iova_to_phys = arm_smmu_iova_to_phys, .add_device = arm_smmu_add_device, .remove_device = arm_smmu_remove_device, .domain_get_attr = arm_smmu_domain_get_attr, .domain_set_attr = arm_smmu_domain_set_attr, .pgsize_bitmap = -1UL, /* Restricted during device attach */ }; static void arm_smmu_device_reset(struct arm_smmu_device *smmu) { void __iomem *gr0_base = ARM_SMMU_GR0(smmu); void __iomem *cb_base; int i = 0; u32 reg; /* clear global FSR */ reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR); writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR); /* Mark all SMRn as invalid and all S2CRn as bypass */ for (i = 0; i < smmu->num_mapping_groups; ++i) { writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i)); writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i)); } /* Make sure all context banks are disabled and clear CB_FSR */ for (i = 0; i < smmu->num_context_banks; ++i) { cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i); writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR); writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR); } /* Invalidate the TLB, just in case */ writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH); reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0); /* Enable fault reporting */ reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE); /* Disable TLB broadcasting. */ reg |= (sCR0_VMIDPNE | sCR0_PTM); /* Enable client access, but bypass when no mapping is found */ reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG); /* Disable forced broadcasting */ reg &= ~sCR0_FB; /* Don't upgrade barriers */ reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT); /* Push the button */ __arm_smmu_tlb_sync(smmu); writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0); } static int arm_smmu_id_size_to_bits(int size) { switch (size) { case 0: return 32; case 1: return 36; case 2: return 40; case 3: return 42; case 4: return 44; case 5: default: return 48; } } static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) { unsigned long size; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); u32 id; dev_notice(smmu->dev, "probing hardware configuration...\n"); dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version); /* ID0 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0); /* Restrict available stages based on module parameter */ if (force_stage == 1) id &= ~(ID0_S2TS | ID0_NTS); else if (force_stage == 2) id &= ~(ID0_S1TS | ID0_NTS); if (id & ID0_S1TS) { smmu->features |= ARM_SMMU_FEAT_TRANS_S1; dev_notice(smmu->dev, "\tstage 1 translation\n"); } if (id & ID0_S2TS) { smmu->features |= ARM_SMMU_FEAT_TRANS_S2; dev_notice(smmu->dev, "\tstage 2 translation\n"); } if (id & ID0_NTS) { smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED; dev_notice(smmu->dev, "\tnested translation\n"); } if (!(smmu->features & (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) { dev_err(smmu->dev, "\tno translation support!\n"); return -ENODEV; } if (id & ID0_CTTW) { smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; dev_notice(smmu->dev, "\tcoherent table walk\n"); } if (id & ID0_SMS) { u32 smr, sid, mask; smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH; smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK; if (smmu->num_mapping_groups == 0) { dev_err(smmu->dev, "stream-matching supported, but no SMRs present!\n"); return -ENODEV; } smr = SMR_MASK_MASK << SMR_MASK_SHIFT; smr |= (SMR_ID_MASK << SMR_ID_SHIFT); writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0)); smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0)); mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK; sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK; if ((mask & sid) != sid) { dev_err(smmu->dev, "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n", mask, sid); return -ENODEV; } dev_notice(smmu->dev, "\tstream matching with %u register groups, mask 0x%x", smmu->num_mapping_groups, mask); } else { smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK; } /* ID1 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1); smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12; /* Check for size mismatch of SMMU address space from mapped region */ size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1); size *= 2 << smmu->pgshift; if (smmu->size != size) dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n", size, smmu->size); smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK; smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK; if (smmu->num_s2_context_banks > smmu->num_context_banks) { dev_err(smmu->dev, "impossible number of S2 context banks!\n"); return -ENODEV; } dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n", smmu->num_context_banks, smmu->num_s2_context_banks); /* ID2 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2); size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK); smmu->ipa_size = size; /* The output mask is also applied for bypass */ size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK); smmu->pa_size = size; if (smmu->version == ARM_SMMU_V1) { smmu->va_size = smmu->ipa_size; size = SZ_4K | SZ_2M | SZ_1G; } else { size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK; smmu->va_size = arm_smmu_id_size_to_bits(size); #ifndef CONFIG_64BIT smmu->va_size = min(32UL, smmu->va_size); #endif size = 0; if (id & ID2_PTFS_4K) size |= SZ_4K | SZ_2M | SZ_1G; if (id & ID2_PTFS_16K) size |= SZ_16K | SZ_32M; if (id & ID2_PTFS_64K) size |= SZ_64K | SZ_512M; } arm_smmu_ops.pgsize_bitmap &= size; dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size); if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n", smmu->va_size, smmu->ipa_size); if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n", smmu->ipa_size, smmu->pa_size); return 0; } static const struct of_device_id arm_smmu_of_match[] = { { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 }, { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 }, { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 }, { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 }, { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 }, { }, }; MODULE_DEVICE_TABLE(of, arm_smmu_of_match); static int arm_smmu_device_dt_probe(struct platform_device *pdev) { const struct of_device_id *of_id; struct resource *res; struct arm_smmu_device *smmu; struct device *dev = &pdev->dev; struct rb_node *node; struct of_phandle_args masterspec; int num_irqs, i, err; smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); if (!smmu) { dev_err(dev, "failed to allocate arm_smmu_device\n"); return -ENOMEM; } smmu->dev = dev; of_id = of_match_node(arm_smmu_of_match, dev->of_node); smmu->version = (enum arm_smmu_arch_version)of_id->data; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); smmu->base = devm_ioremap_resource(dev, res); if (IS_ERR(smmu->base)) return PTR_ERR(smmu->base); smmu->size = resource_size(res); if (of_property_read_u32(dev->of_node, "#global-interrupts", &smmu->num_global_irqs)) { dev_err(dev, "missing #global-interrupts property\n"); return -ENODEV; } num_irqs = 0; while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) { num_irqs++; if (num_irqs > smmu->num_global_irqs) smmu->num_context_irqs++; } if (!smmu->num_context_irqs) { dev_err(dev, "found %d interrupts but expected at least %d\n", num_irqs, smmu->num_global_irqs + 1); return -ENODEV; } smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs, GFP_KERNEL); if (!smmu->irqs) { dev_err(dev, "failed to allocate %d irqs\n", num_irqs); return -ENOMEM; } for (i = 0; i < num_irqs; ++i) { int irq = platform_get_irq(pdev, i); if (irq < 0) { dev_err(dev, "failed to get irq index %d\n", i); return -ENODEV; } smmu->irqs[i] = irq; } err = arm_smmu_device_cfg_probe(smmu); if (err) return err; i = 0; smmu->masters = RB_ROOT; while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters", "#stream-id-cells", i, &masterspec)) { err = register_smmu_master(smmu, dev, &masterspec); if (err) { dev_err(dev, "failed to add master %s\n", masterspec.np->name); goto out_put_masters; } i++; } dev_notice(dev, "registered %d master devices\n", i); parse_driver_options(smmu); if (smmu->version > ARM_SMMU_V1 && smmu->num_context_banks != smmu->num_context_irqs) { dev_err(dev, "found only %d context interrupt(s) but %d required\n", smmu->num_context_irqs, smmu->num_context_banks); err = -ENODEV; goto out_put_masters; } for (i = 0; i < smmu->num_global_irqs; ++i) { err = request_irq(smmu->irqs[i], arm_smmu_global_fault, IRQF_SHARED, "arm-smmu global fault", smmu); if (err) { dev_err(dev, "failed to request global IRQ %d (%u)\n", i, smmu->irqs[i]); goto out_free_irqs; } } INIT_LIST_HEAD(&smmu->list); spin_lock(&arm_smmu_devices_lock); list_add(&smmu->list, &arm_smmu_devices); spin_unlock(&arm_smmu_devices_lock); arm_smmu_device_reset(smmu); return 0; out_free_irqs: while (i--) free_irq(smmu->irqs[i], smmu); out_put_masters: for (node = rb_first(&smmu->masters); node; node = rb_next(node)) { struct arm_smmu_master *master = container_of(node, struct arm_smmu_master, node); of_node_put(master->of_node); } return err; } static int arm_smmu_device_remove(struct platform_device *pdev) { int i; struct device *dev = &pdev->dev; struct arm_smmu_device *curr, *smmu = NULL; struct rb_node *node; spin_lock(&arm_smmu_devices_lock); list_for_each_entry(curr, &arm_smmu_devices, list) { if (curr->dev == dev) { smmu = curr; list_del(&smmu->list); break; } } spin_unlock(&arm_smmu_devices_lock); if (!smmu) return -ENODEV; for (node = rb_first(&smmu->masters); node; node = rb_next(node)) { struct arm_smmu_master *master = container_of(node, struct arm_smmu_master, node); of_node_put(master->of_node); } if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS)) dev_err(dev, "removing device with active domains!\n"); for (i = 0; i < smmu->num_global_irqs; ++i) free_irq(smmu->irqs[i], smmu); /* Turn the thing off */ writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0); return 0; } static struct platform_driver arm_smmu_driver = { .driver = { .name = "arm-smmu", .of_match_table = of_match_ptr(arm_smmu_of_match), }, .probe = arm_smmu_device_dt_probe, .remove = arm_smmu_device_remove, }; static int __init arm_smmu_init(void) { struct device_node *np; int ret; /* * Play nice with systems that don't have an ARM SMMU by checking that * an ARM SMMU exists in the system before proceeding with the driver * and IOMMU bus operation registration. */ np = of_find_matching_node(NULL, arm_smmu_of_match); if (!np) return 0; of_node_put(np); ret = platform_driver_register(&arm_smmu_driver); if (ret) return ret; /* Oh, for a proper bus abstraction */ if (!iommu_present(&platform_bus_type)) bus_set_iommu(&platform_bus_type, &arm_smmu_ops); #ifdef CONFIG_ARM_AMBA if (!iommu_present(&amba_bustype)) bus_set_iommu(&amba_bustype, &arm_smmu_ops); #endif #ifdef CONFIG_PCI if (!iommu_present(&pci_bus_type)) bus_set_iommu(&pci_bus_type, &arm_smmu_ops); #endif return 0; } static void __exit arm_smmu_exit(void) { return platform_driver_unregister(&arm_smmu_driver); } subsys_initcall(arm_smmu_init); module_exit(arm_smmu_exit); MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations"); MODULE_AUTHOR("Will Deacon "); MODULE_LICENSE("GPL v2");