/* * Copyright(c) 2016 - 2020 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include "qp.h" #include "vt.h" #include "trace.h" #define RVT_RWQ_COUNT_THRESHOLD 16 static void rvt_rc_timeout(struct timer_list *t); static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, enum ib_qp_type type); /* * Convert the AETH RNR timeout code into the number of microseconds. */ static const u32 ib_rvt_rnr_table[32] = { 655360, /* 00: 655.36 */ 10, /* 01: .01 */ 20, /* 02 .02 */ 30, /* 03: .03 */ 40, /* 04: .04 */ 60, /* 05: .06 */ 80, /* 06: .08 */ 120, /* 07: .12 */ 160, /* 08: .16 */ 240, /* 09: .24 */ 320, /* 0A: .32 */ 480, /* 0B: .48 */ 640, /* 0C: .64 */ 960, /* 0D: .96 */ 1280, /* 0E: 1.28 */ 1920, /* 0F: 1.92 */ 2560, /* 10: 2.56 */ 3840, /* 11: 3.84 */ 5120, /* 12: 5.12 */ 7680, /* 13: 7.68 */ 10240, /* 14: 10.24 */ 15360, /* 15: 15.36 */ 20480, /* 16: 20.48 */ 30720, /* 17: 30.72 */ 40960, /* 18: 40.96 */ 61440, /* 19: 61.44 */ 81920, /* 1A: 81.92 */ 122880, /* 1B: 122.88 */ 163840, /* 1C: 163.84 */ 245760, /* 1D: 245.76 */ 327680, /* 1E: 327.68 */ 491520 /* 1F: 491.52 */ }; /* * Note that it is OK to post send work requests in the SQE and ERR * states; rvt_do_send() will process them and generate error * completions as per IB 1.2 C10-96. */ const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { [IB_QPS_RESET] = 0, [IB_QPS_INIT] = RVT_POST_RECV_OK, [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | RVT_PROCESS_NEXT_SEND_OK, [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | RVT_POST_SEND_OK | RVT_FLUSH_SEND, [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | RVT_POST_SEND_OK | RVT_FLUSH_SEND, }; EXPORT_SYMBOL(ib_rvt_state_ops); /* platform specific: return the last level cache (llc) size, in KiB */ static int rvt_wss_llc_size(void) { /* assume that the boot CPU value is universal for all CPUs */ return boot_cpu_data.x86_cache_size; } /* platform specific: cacheless copy */ static void cacheless_memcpy(void *dst, void *src, size_t n) { /* * Use the only available X64 cacheless copy. Add a __user cast * to quiet sparse. The src agument is already in the kernel so * there are no security issues. The extra fault recovery machinery * is not invoked. */ __copy_user_nocache(dst, (void __user *)src, n, 0); } void rvt_wss_exit(struct rvt_dev_info *rdi) { struct rvt_wss *wss = rdi->wss; if (!wss) return; /* coded to handle partially initialized and repeat callers */ kfree(wss->entries); wss->entries = NULL; kfree(rdi->wss); rdi->wss = NULL; } /** * rvt_wss_init - Init wss data structures * * Return: 0 on success */ int rvt_wss_init(struct rvt_dev_info *rdi) { unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; unsigned int wss_threshold = rdi->dparms.wss_threshold; unsigned int wss_clean_period = rdi->dparms.wss_clean_period; long llc_size; long llc_bits; long table_size; long table_bits; struct rvt_wss *wss; int node = rdi->dparms.node; if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { rdi->wss = NULL; return 0; } rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); if (!rdi->wss) return -ENOMEM; wss = rdi->wss; /* check for a valid percent range - default to 80 if none or invalid */ if (wss_threshold < 1 || wss_threshold > 100) wss_threshold = 80; /* reject a wildly large period */ if (wss_clean_period > 1000000) wss_clean_period = 256; /* reject a zero period */ if (wss_clean_period == 0) wss_clean_period = 1; /* * Calculate the table size - the next power of 2 larger than the * LLC size. LLC size is in KiB. */ llc_size = rvt_wss_llc_size() * 1024; table_size = roundup_pow_of_two(llc_size); /* one bit per page in rounded up table */ llc_bits = llc_size / PAGE_SIZE; table_bits = table_size / PAGE_SIZE; wss->pages_mask = table_bits - 1; wss->num_entries = table_bits / BITS_PER_LONG; wss->threshold = (llc_bits * wss_threshold) / 100; if (wss->threshold == 0) wss->threshold = 1; wss->clean_period = wss_clean_period; atomic_set(&wss->clean_counter, wss_clean_period); wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), GFP_KERNEL, node); if (!wss->entries) { rvt_wss_exit(rdi); return -ENOMEM; } return 0; } /* * Advance the clean counter. When the clean period has expired, * clean an entry. * * This is implemented in atomics to avoid locking. Because multiple * variables are involved, it can be racy which can lead to slightly * inaccurate information. Since this is only a heuristic, this is * OK. Any innaccuracies will clean themselves out as the counter * advances. That said, it is unlikely the entry clean operation will * race - the next possible racer will not start until the next clean * period. * * The clean counter is implemented as a decrement to zero. When zero * is reached an entry is cleaned. */ static void wss_advance_clean_counter(struct rvt_wss *wss) { int entry; int weight; unsigned long bits; /* become the cleaner if we decrement the counter to zero */ if (atomic_dec_and_test(&wss->clean_counter)) { /* * Set, not add, the clean period. This avoids an issue * where the counter could decrement below the clean period. * Doing a set can result in lost decrements, slowing the * clean advance. Since this a heuristic, this possible * slowdown is OK. * * An alternative is to loop, advancing the counter by a * clean period until the result is > 0. However, this could * lead to several threads keeping another in the clean loop. * This could be mitigated by limiting the number of times * we stay in the loop. */ atomic_set(&wss->clean_counter, wss->clean_period); /* * Uniquely grab the entry to clean and move to next. * The current entry is always the lower bits of * wss.clean_entry. The table size, wss.num_entries, * is always a power-of-2. */ entry = (atomic_inc_return(&wss->clean_entry) - 1) & (wss->num_entries - 1); /* clear the entry and count the bits */ bits = xchg(&wss->entries[entry], 0); weight = hweight64((u64)bits); /* only adjust the contended total count if needed */ if (weight) atomic_sub(weight, &wss->total_count); } } /* * Insert the given address into the working set array. */ static void wss_insert(struct rvt_wss *wss, void *address) { u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ u32 nr = page & (BITS_PER_LONG - 1); if (!test_and_set_bit(nr, &wss->entries[entry])) atomic_inc(&wss->total_count); wss_advance_clean_counter(wss); } /* * Is the working set larger than the threshold? */ static inline bool wss_exceeds_threshold(struct rvt_wss *wss) { return atomic_read(&wss->total_count) >= wss->threshold; } static void get_map_page(struct rvt_qpn_table *qpt, struct rvt_qpn_map *map) { unsigned long page = get_zeroed_page(GFP_KERNEL); /* * Free the page if someone raced with us installing it. */ spin_lock(&qpt->lock); if (map->page) free_page(page); else map->page = (void *)page; spin_unlock(&qpt->lock); } /** * init_qpn_table - initialize the QP number table for a device * @qpt: the QPN table */ static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) { u32 offset, i; struct rvt_qpn_map *map; int ret = 0; if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) return -EINVAL; spin_lock_init(&qpt->lock); qpt->last = rdi->dparms.qpn_start; qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; /* * Drivers may want some QPs beyond what we need for verbs let them use * our qpn table. No need for two. Lets go ahead and mark the bitmaps * for those. The reserved range must be *after* the range which verbs * will pick from. */ /* Figure out number of bit maps needed before reserved range */ qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; /* This should always be zero */ offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; /* Starting with the first reserved bit map */ map = &qpt->map[qpt->nmaps]; rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { if (!map->page) { get_map_page(qpt, map); if (!map->page) { ret = -ENOMEM; break; } } set_bit(offset, map->page); offset++; if (offset == RVT_BITS_PER_PAGE) { /* next page */ qpt->nmaps++; map++; offset = 0; } } return ret; } /** * free_qpn_table - free the QP number table for a device * @qpt: the QPN table */ static void free_qpn_table(struct rvt_qpn_table *qpt) { int i; for (i = 0; i < ARRAY_SIZE(qpt->map); i++) free_page((unsigned long)qpt->map[i].page); } /** * rvt_driver_qp_init - Init driver qp resources * @rdi: rvt dev strucutre * * Return: 0 on success */ int rvt_driver_qp_init(struct rvt_dev_info *rdi) { int i; int ret = -ENOMEM; if (!rdi->dparms.qp_table_size) return -EINVAL; /* * If driver is not doing any QP allocation then make sure it is * providing the necessary QP functions. */ if (!rdi->driver_f.free_all_qps || !rdi->driver_f.qp_priv_alloc || !rdi->driver_f.qp_priv_free || !rdi->driver_f.notify_qp_reset || !rdi->driver_f.notify_restart_rc) return -EINVAL; /* allocate parent object */ rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, rdi->dparms.node); if (!rdi->qp_dev) return -ENOMEM; /* allocate hash table */ rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); rdi->qp_dev->qp_table = kmalloc_array_node(rdi->qp_dev->qp_table_size, sizeof(*rdi->qp_dev->qp_table), GFP_KERNEL, rdi->dparms.node); if (!rdi->qp_dev->qp_table) goto no_qp_table; for (i = 0; i < rdi->qp_dev->qp_table_size; i++) RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); spin_lock_init(&rdi->qp_dev->qpt_lock); /* initialize qpn map */ if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) goto fail_table; spin_lock_init(&rdi->n_qps_lock); return 0; fail_table: kfree(rdi->qp_dev->qp_table); free_qpn_table(&rdi->qp_dev->qpn_table); no_qp_table: kfree(rdi->qp_dev); return ret; } /** * rvt_free_qp_cb - callback function to reset a qp * @qp: the qp to reset * @v: a 64-bit value * * This function resets the qp and removes it from the * qp hash table. */ static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) { unsigned int *qp_inuse = (unsigned int *)v; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); /* Reset the qp and remove it from the qp hash list */ rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); /* Increment the qp_inuse count */ (*qp_inuse)++; } /** * rvt_free_all_qps - check for QPs still in use * @rdi: rvt device info structure * * There should not be any QPs still in use. * Free memory for table. * Return the number of QPs still in use. */ static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) { unsigned int qp_inuse = 0; qp_inuse += rvt_mcast_tree_empty(rdi); rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); return qp_inuse; } /** * rvt_qp_exit - clean up qps on device exit * @rdi: rvt dev structure * * Check for qp leaks and free resources. */ void rvt_qp_exit(struct rvt_dev_info *rdi) { u32 qps_inuse = rvt_free_all_qps(rdi); if (qps_inuse) rvt_pr_err(rdi, "QP memory leak! %u still in use\n", qps_inuse); if (!rdi->qp_dev) return; kfree(rdi->qp_dev->qp_table); free_qpn_table(&rdi->qp_dev->qpn_table); kfree(rdi->qp_dev); } static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, struct rvt_qpn_map *map, unsigned off) { return (map - qpt->map) * RVT_BITS_PER_PAGE + off; } /** * alloc_qpn - Allocate the next available qpn or zero/one for QP type * IB_QPT_SMI/IB_QPT_GSI * @rdi: rvt device info structure * @qpt: queue pair number table pointer * @port_num: IB port number, 1 based, comes from core * @exclude_prefix: prefix of special queue pair number being allocated * * Return: The queue pair number */ static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, enum ib_qp_type type, u8 port_num, u8 exclude_prefix) { u32 i, offset, max_scan, qpn; struct rvt_qpn_map *map; u32 ret; u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? RVT_AIP_QPN_MAX : RVT_QPN_MAX; if (rdi->driver_f.alloc_qpn) return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); if (type == IB_QPT_SMI || type == IB_QPT_GSI) { unsigned n; ret = type == IB_QPT_GSI; n = 1 << (ret + 2 * (port_num - 1)); spin_lock(&qpt->lock); if (qpt->flags & n) ret = -EINVAL; else qpt->flags |= n; spin_unlock(&qpt->lock); goto bail; } qpn = qpt->last + qpt->incr; if (qpn >= max_qpn) qpn = qpt->incr | ((qpt->last & 1) ^ 1); /* offset carries bit 0 */ offset = qpn & RVT_BITS_PER_PAGE_MASK; map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; max_scan = qpt->nmaps - !offset; for (i = 0;;) { if (unlikely(!map->page)) { get_map_page(qpt, map); if (unlikely(!map->page)) break; } do { if (!test_and_set_bit(offset, map->page)) { qpt->last = qpn; ret = qpn; goto bail; } offset += qpt->incr; /* * This qpn might be bogus if offset >= BITS_PER_PAGE. * That is OK. It gets re-assigned below */ qpn = mk_qpn(qpt, map, offset); } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); /* * In order to keep the number of pages allocated to a * minimum, we scan the all existing pages before increasing * the size of the bitmap table. */ if (++i > max_scan) { if (qpt->nmaps == RVT_QPNMAP_ENTRIES) break; map = &qpt->map[qpt->nmaps++]; /* start at incr with current bit 0 */ offset = qpt->incr | (offset & 1); } else if (map < &qpt->map[qpt->nmaps]) { ++map; /* start at incr with current bit 0 */ offset = qpt->incr | (offset & 1); } else { map = &qpt->map[0]; /* wrap to first map page, invert bit 0 */ offset = qpt->incr | ((offset & 1) ^ 1); } /* there can be no set bits in low-order QoS bits */ WARN_ON(rdi->dparms.qos_shift > 1 && offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); qpn = mk_qpn(qpt, map, offset); } ret = -ENOMEM; bail: return ret; } /** * rvt_clear_mr_refs - Drop help mr refs * @qp: rvt qp data structure * @clr_sends: If shoudl clear send side or not */ static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) { unsigned n; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) rvt_put_ss(&qp->s_rdma_read_sge); rvt_put_ss(&qp->r_sge); if (clr_sends) { while (qp->s_last != qp->s_head) { struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); rvt_put_qp_swqe(qp, wqe); if (++qp->s_last >= qp->s_size) qp->s_last = 0; smp_wmb(); /* see qp_set_savail */ } if (qp->s_rdma_mr) { rvt_put_mr(qp->s_rdma_mr); qp->s_rdma_mr = NULL; } } for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { struct rvt_ack_entry *e = &qp->s_ack_queue[n]; if (e->rdma_sge.mr) { rvt_put_mr(e->rdma_sge.mr); e->rdma_sge.mr = NULL; } } } /** * rvt_swqe_has_lkey - return true if lkey is used by swqe * @wqe - the send wqe * @lkey - the lkey * * Test the swqe for using lkey */ static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) { int i; for (i = 0; i < wqe->wr.num_sge; i++) { struct rvt_sge *sge = &wqe->sg_list[i]; if (rvt_mr_has_lkey(sge->mr, lkey)) return true; } return false; } /** * rvt_qp_sends_has_lkey - return true is qp sends use lkey * @qp - the rvt_qp * @lkey - the lkey */ static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) { u32 s_last = qp->s_last; while (s_last != qp->s_head) { struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); if (rvt_swqe_has_lkey(wqe, lkey)) return true; if (++s_last >= qp->s_size) s_last = 0; } if (qp->s_rdma_mr) if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) return true; return false; } /** * rvt_qp_acks_has_lkey - return true if acks have lkey * @qp - the qp * @lkey - the lkey */ static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) { int i; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { struct rvt_ack_entry *e = &qp->s_ack_queue[i]; if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) return true; } return false; } /* * rvt_qp_mr_clean - clean up remote ops for lkey * @qp - the qp * @lkey - the lkey that is being de-registered * * This routine checks if the lkey is being used by * the qp. * * If so, the qp is put into an error state to elminate * any references from the qp. */ void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) { bool lastwqe = false; if (qp->ibqp.qp_type == IB_QPT_SMI || qp->ibqp.qp_type == IB_QPT_GSI) /* avoid special QPs */ return; spin_lock_irq(&qp->r_lock); spin_lock(&qp->s_hlock); spin_lock(&qp->s_lock); if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) goto check_lwqe; if (rvt_ss_has_lkey(&qp->r_sge, lkey) || rvt_qp_sends_has_lkey(qp, lkey) || rvt_qp_acks_has_lkey(qp, lkey)) lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); check_lwqe: spin_unlock(&qp->s_lock); spin_unlock(&qp->s_hlock); spin_unlock_irq(&qp->r_lock); if (lastwqe) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } } /** * rvt_remove_qp - remove qp form table * @rdi: rvt dev struct * @qp: qp to remove * * Remove the QP from the table so it can't be found asynchronously by * the receive routine. */ static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) { struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); unsigned long flags; int removed = 1; spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); if (rcu_dereference_protected(rvp->qp[0], lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { RCU_INIT_POINTER(rvp->qp[0], NULL); } else if (rcu_dereference_protected(rvp->qp[1], lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { RCU_INIT_POINTER(rvp->qp[1], NULL); } else { struct rvt_qp *q; struct rvt_qp __rcu **qpp; removed = 0; qpp = &rdi->qp_dev->qp_table[n]; for (; (q = rcu_dereference_protected(*qpp, lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; qpp = &q->next) { if (q == qp) { RCU_INIT_POINTER(*qpp, rcu_dereference_protected(qp->next, lockdep_is_held(&rdi->qp_dev->qpt_lock))); removed = 1; trace_rvt_qpremove(qp, n); break; } } } spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); if (removed) { synchronize_rcu(); rvt_put_qp(qp); } } /** * rvt_alloc_rq - allocate memory for user or kernel buffer * @rq: receive queue data structure * @size: number of request queue entries * @node: The NUMA node * @udata: True if user data is available or not false * * Return: If memory allocation failed, return -ENONEM * This function is used by both shared receive * queues and non-shared receive queues to allocate * memory. */ int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, struct ib_udata *udata) { if (udata) { rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); if (!rq->wq) goto bail; /* need kwq with no buffers */ rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); if (!rq->kwq) goto bail; rq->kwq->curr_wq = rq->wq->wq; } else { /* need kwq with buffers */ rq->kwq = vzalloc_node(sizeof(struct rvt_krwq) + size, node); if (!rq->kwq) goto bail; rq->kwq->curr_wq = rq->kwq->wq; } spin_lock_init(&rq->kwq->p_lock); spin_lock_init(&rq->kwq->c_lock); return 0; bail: rvt_free_rq(rq); return -ENOMEM; } /** * rvt_init_qp - initialize the QP state to the reset state * @qp: the QP to init or reinit * @type: the QP type * * This function is called from both rvt_create_qp() and * rvt_reset_qp(). The difference is that the reset * patch the necessary locks to protect against concurent * access. */ static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, enum ib_qp_type type) { qp->remote_qpn = 0; qp->qkey = 0; qp->qp_access_flags = 0; qp->s_flags &= RVT_S_SIGNAL_REQ_WR; qp->s_hdrwords = 0; qp->s_wqe = NULL; qp->s_draining = 0; qp->s_next_psn = 0; qp->s_last_psn = 0; qp->s_sending_psn = 0; qp->s_sending_hpsn = 0; qp->s_psn = 0; qp->r_psn = 0; qp->r_msn = 0; if (type == IB_QPT_RC) { qp->s_state = IB_OPCODE_RC_SEND_LAST; qp->r_state = IB_OPCODE_RC_SEND_LAST; } else { qp->s_state = IB_OPCODE_UC_SEND_LAST; qp->r_state = IB_OPCODE_UC_SEND_LAST; } qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; qp->r_nak_state = 0; qp->r_aflags = 0; qp->r_flags = 0; qp->s_head = 0; qp->s_tail = 0; qp->s_cur = 0; qp->s_acked = 0; qp->s_last = 0; qp->s_ssn = 1; qp->s_lsn = 0; qp->s_mig_state = IB_MIG_MIGRATED; qp->r_head_ack_queue = 0; qp->s_tail_ack_queue = 0; qp->s_acked_ack_queue = 0; qp->s_num_rd_atomic = 0; if (qp->r_rq.kwq) qp->r_rq.kwq->count = qp->r_rq.size; qp->r_sge.num_sge = 0; atomic_set(&qp->s_reserved_used, 0); } /** * _rvt_reset_qp - initialize the QP state to the reset state * @qp: the QP to reset * @type: the QP type * * r_lock, s_hlock, and s_lock are required to be held by the caller */ static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, enum ib_qp_type type) __must_hold(&qp->s_lock) __must_hold(&qp->s_hlock) __must_hold(&qp->r_lock) { lockdep_assert_held(&qp->r_lock); lockdep_assert_held(&qp->s_hlock); lockdep_assert_held(&qp->s_lock); if (qp->state != IB_QPS_RESET) { qp->state = IB_QPS_RESET; /* Let drivers flush their waitlist */ rdi->driver_f.flush_qp_waiters(qp); rvt_stop_rc_timers(qp); qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); spin_unlock(&qp->s_lock); spin_unlock(&qp->s_hlock); spin_unlock_irq(&qp->r_lock); /* Stop the send queue and the retry timer */ rdi->driver_f.stop_send_queue(qp); rvt_del_timers_sync(qp); /* Wait for things to stop */ rdi->driver_f.quiesce_qp(qp); /* take qp out the hash and wait for it to be unused */ rvt_remove_qp(rdi, qp); /* grab the lock b/c it was locked at call time */ spin_lock_irq(&qp->r_lock); spin_lock(&qp->s_hlock); spin_lock(&qp->s_lock); rvt_clear_mr_refs(qp, 1); /* * Let the driver do any tear down or re-init it needs to for * a qp that has been reset */ rdi->driver_f.notify_qp_reset(qp); } rvt_init_qp(rdi, qp, type); lockdep_assert_held(&qp->r_lock); lockdep_assert_held(&qp->s_hlock); lockdep_assert_held(&qp->s_lock); } /** * rvt_reset_qp - initialize the QP state to the reset state * @rdi: the device info * @qp: the QP to reset * @type: the QP type * * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock * before calling _rvt_reset_qp(). */ static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, enum ib_qp_type type) { spin_lock_irq(&qp->r_lock); spin_lock(&qp->s_hlock); spin_lock(&qp->s_lock); _rvt_reset_qp(rdi, qp, type); spin_unlock(&qp->s_lock); spin_unlock(&qp->s_hlock); spin_unlock_irq(&qp->r_lock); } /** rvt_free_qpn - Free a qpn from the bit map * @qpt: QP table * @qpn: queue pair number to free */ static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) { struct rvt_qpn_map *map; if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) qpn &= RVT_AIP_QP_SUFFIX; map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; if (map->page) clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); } /** * get_allowed_ops - Given a QP type return the appropriate allowed OP * @type: valid, supported, QP type */ static u8 get_allowed_ops(enum ib_qp_type type) { return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? IB_OPCODE_UC : IB_OPCODE_UD; } /** * free_ud_wq_attr - Clean up AH attribute cache for UD QPs * @qp: Valid QP with allowed_ops set * * The rvt_swqe data structure being used is a union, so this is * only valid for UD QPs. */ static void free_ud_wq_attr(struct rvt_qp *qp) { struct rvt_swqe *wqe; int i; for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { wqe = rvt_get_swqe_ptr(qp, i); kfree(wqe->ud_wr.attr); wqe->ud_wr.attr = NULL; } } /** * alloc_ud_wq_attr - AH attribute cache for UD QPs * @qp: Valid QP with allowed_ops set * @node: Numa node for allocation * * The rvt_swqe data structure being used is a union, so this is * only valid for UD QPs. */ static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) { struct rvt_swqe *wqe; int i; for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { wqe = rvt_get_swqe_ptr(qp, i); wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), GFP_KERNEL, node); if (!wqe->ud_wr.attr) { free_ud_wq_attr(qp); return -ENOMEM; } } return 0; } /** * rvt_create_qp - create a queue pair for a device * @ibpd: the protection domain who's device we create the queue pair for * @init_attr: the attributes of the queue pair * @udata: user data for libibverbs.so * * Queue pair creation is mostly an rvt issue. However, drivers have their own * unique idea of what queue pair numbers mean. For instance there is a reserved * range for PSM. * * Return: the queue pair on success, otherwise returns an errno. * * Called by the ib_create_qp() core verbs function. */ struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, struct ib_qp_init_attr *init_attr, struct ib_udata *udata) { struct rvt_qp *qp; int err; struct rvt_swqe *swq = NULL; size_t sz; size_t sg_list_sz; struct ib_qp *ret = ERR_PTR(-ENOMEM); struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); void *priv = NULL; size_t sqsize; u8 exclude_prefix = 0; if (!rdi) return ERR_PTR(-EINVAL); if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || (init_attr->create_flags && init_attr->create_flags != IB_QP_CREATE_NETDEV_USE)) return ERR_PTR(-EINVAL); /* Check receive queue parameters if no SRQ is specified. */ if (!init_attr->srq) { if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_recv_sge || init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) return ERR_PTR(-EINVAL); if (init_attr->cap.max_send_sge + init_attr->cap.max_send_wr + init_attr->cap.max_recv_sge + init_attr->cap.max_recv_wr == 0) return ERR_PTR(-EINVAL); } sqsize = init_attr->cap.max_send_wr + 1 + rdi->dparms.reserved_operations; switch (init_attr->qp_type) { case IB_QPT_SMI: case IB_QPT_GSI: if (init_attr->port_num == 0 || init_attr->port_num > ibpd->device->phys_port_cnt) return ERR_PTR(-EINVAL); /* fall through */ case IB_QPT_UC: case IB_QPT_RC: case IB_QPT_UD: sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); if (!swq) return ERR_PTR(-ENOMEM); sz = sizeof(*qp); sg_list_sz = 0; if (init_attr->srq) { struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); if (srq->rq.max_sge > 1) sg_list_sz = sizeof(*qp->r_sg_list) * (srq->rq.max_sge - 1); } else if (init_attr->cap.max_recv_sge > 1) sg_list_sz = sizeof(*qp->r_sg_list) * (init_attr->cap.max_recv_sge - 1); qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, rdi->dparms.node); if (!qp) goto bail_swq; qp->allowed_ops = get_allowed_ops(init_attr->qp_type); RCU_INIT_POINTER(qp->next, NULL); if (init_attr->qp_type == IB_QPT_RC) { qp->s_ack_queue = kcalloc_node(rvt_max_atomic(rdi), sizeof(*qp->s_ack_queue), GFP_KERNEL, rdi->dparms.node); if (!qp->s_ack_queue) goto bail_qp; } /* initialize timers needed for rc qp */ timer_setup(&qp->s_timer, rvt_rc_timeout, 0); hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); qp->s_rnr_timer.function = rvt_rc_rnr_retry; /* * Driver needs to set up it's private QP structure and do any * initialization that is needed. */ priv = rdi->driver_f.qp_priv_alloc(rdi, qp); if (IS_ERR(priv)) { ret = priv; goto bail_qp; } qp->priv = priv; qp->timeout_jiffies = usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1000UL); if (init_attr->srq) { sz = 0; } else { qp->r_rq.size = init_attr->cap.max_recv_wr + 1; qp->r_rq.max_sge = init_attr->cap.max_recv_sge; sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + sizeof(struct rvt_rwqe); err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, rdi->dparms.node, udata); if (err) { ret = ERR_PTR(err); goto bail_driver_priv; } } /* * ib_create_qp() will initialize qp->ibqp * except for qp->ibqp.qp_num. */ spin_lock_init(&qp->r_lock); spin_lock_init(&qp->s_hlock); spin_lock_init(&qp->s_lock); atomic_set(&qp->refcount, 0); atomic_set(&qp->local_ops_pending, 0); init_waitqueue_head(&qp->wait); INIT_LIST_HEAD(&qp->rspwait); qp->state = IB_QPS_RESET; qp->s_wq = swq; qp->s_size = sqsize; qp->s_avail = init_attr->cap.max_send_wr; qp->s_max_sge = init_attr->cap.max_send_sge; if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) qp->s_flags = RVT_S_SIGNAL_REQ_WR; err = alloc_ud_wq_attr(qp, rdi->dparms.node); if (err) { ret = (ERR_PTR(err)); goto bail_rq_rvt; } if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) exclude_prefix = RVT_AIP_QP_PREFIX; err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, init_attr->qp_type, init_attr->port_num, exclude_prefix); if (err < 0) { ret = ERR_PTR(err); goto bail_rq_wq; } qp->ibqp.qp_num = err; if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) qp->ibqp.qp_num |= RVT_AIP_QP_BASE; qp->port_num = init_attr->port_num; rvt_init_qp(rdi, qp, init_attr->qp_type); if (rdi->driver_f.qp_priv_init) { err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); if (err) { ret = ERR_PTR(err); goto bail_rq_wq; } } break; default: /* Don't support raw QPs */ return ERR_PTR(-EOPNOTSUPP); } init_attr->cap.max_inline_data = 0; /* * Return the address of the RWQ as the offset to mmap. * See rvt_mmap() for details. */ if (udata && udata->outlen >= sizeof(__u64)) { if (!qp->r_rq.wq) { __u64 offset = 0; err = ib_copy_to_udata(udata, &offset, sizeof(offset)); if (err) { ret = ERR_PTR(err); goto bail_qpn; } } else { u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; qp->ip = rvt_create_mmap_info(rdi, s, udata, qp->r_rq.wq); if (IS_ERR(qp->ip)) { ret = ERR_CAST(qp->ip); goto bail_qpn; } err = ib_copy_to_udata(udata, &qp->ip->offset, sizeof(qp->ip->offset)); if (err) { ret = ERR_PTR(err); goto bail_ip; } } qp->pid = current->pid; } spin_lock(&rdi->n_qps_lock); if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { spin_unlock(&rdi->n_qps_lock); ret = ERR_PTR(-ENOMEM); goto bail_ip; } rdi->n_qps_allocated++; /* * Maintain a busy_jiffies variable that will be added to the timeout * period in mod_retry_timer and add_retry_timer. This busy jiffies * is scaled by the number of rc qps created for the device to reduce * the number of timeouts occurring when there is a large number of * qps. busy_jiffies is incremented every rc qp scaling interval. * The scaling interval is selected based on extensive performance * evaluation of targeted workloads. */ if (init_attr->qp_type == IB_QPT_RC) { rdi->n_rc_qps++; rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; } spin_unlock(&rdi->n_qps_lock); if (qp->ip) { spin_lock_irq(&rdi->pending_lock); list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); spin_unlock_irq(&rdi->pending_lock); } ret = &qp->ibqp; return ret; bail_ip: if (qp->ip) kref_put(&qp->ip->ref, rvt_release_mmap_info); bail_qpn: rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); bail_rq_wq: free_ud_wq_attr(qp); bail_rq_rvt: rvt_free_rq(&qp->r_rq); bail_driver_priv: rdi->driver_f.qp_priv_free(rdi, qp); bail_qp: kfree(qp->s_ack_queue); kfree(qp); bail_swq: vfree(swq); return ret; } /** * rvt_error_qp - put a QP into the error state * @qp: the QP to put into the error state * @err: the receive completion error to signal if a RWQE is active * * Flushes both send and receive work queues. * * Return: true if last WQE event should be generated. * The QP r_lock and s_lock should be held and interrupts disabled. * If we are already in error state, just return. */ int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) { struct ib_wc wc; int ret = 0; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); lockdep_assert_held(&qp->r_lock); lockdep_assert_held(&qp->s_lock); if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) goto bail; qp->state = IB_QPS_ERR; if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); del_timer(&qp->s_timer); } if (qp->s_flags & RVT_S_ANY_WAIT_SEND) qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; rdi->driver_f.notify_error_qp(qp); /* Schedule the sending tasklet to drain the send work queue. */ if (READ_ONCE(qp->s_last) != qp->s_head) rdi->driver_f.schedule_send(qp); rvt_clear_mr_refs(qp, 0); memset(&wc, 0, sizeof(wc)); wc.qp = &qp->ibqp; wc.opcode = IB_WC_RECV; if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { wc.wr_id = qp->r_wr_id; wc.status = err; rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); } wc.status = IB_WC_WR_FLUSH_ERR; if (qp->r_rq.kwq) { u32 head; u32 tail; struct rvt_rwq *wq = NULL; struct rvt_krwq *kwq = NULL; spin_lock(&qp->r_rq.kwq->c_lock); /* qp->ip used to validate if there is a user buffer mmaped */ if (qp->ip) { wq = qp->r_rq.wq; head = RDMA_READ_UAPI_ATOMIC(wq->head); tail = RDMA_READ_UAPI_ATOMIC(wq->tail); } else { kwq = qp->r_rq.kwq; head = kwq->head; tail = kwq->tail; } /* sanity check pointers before trusting them */ if (head >= qp->r_rq.size) head = 0; if (tail >= qp->r_rq.size) tail = 0; while (tail != head) { wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; if (++tail >= qp->r_rq.size) tail = 0; rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); } if (qp->ip) RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); else kwq->tail = tail; spin_unlock(&qp->r_rq.kwq->c_lock); } else if (qp->ibqp.event_handler) { ret = 1; } bail: return ret; } EXPORT_SYMBOL(rvt_error_qp); /* * Put the QP into the hash table. * The hash table holds a reference to the QP. */ static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) { struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; unsigned long flags; rvt_get_qp(qp); spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); if (qp->ibqp.qp_num <= 1) { rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); } else { u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); qp->next = rdi->qp_dev->qp_table[n]; rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); trace_rvt_qpinsert(qp, n); } spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); } /** * rvt_modify_qp - modify the attributes of a queue pair * @ibqp: the queue pair who's attributes we're modifying * @attr: the new attributes * @attr_mask: the mask of attributes to modify * @udata: user data for libibverbs.so * * Return: 0 on success, otherwise returns an errno. */ int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); enum ib_qp_state cur_state, new_state; struct ib_event ev; int lastwqe = 0; int mig = 0; int pmtu = 0; /* for gcc warning only */ int opa_ah; spin_lock_irq(&qp->r_lock); spin_lock(&qp->s_hlock); spin_lock(&qp->s_lock); cur_state = attr_mask & IB_QP_CUR_STATE ? attr->cur_qp_state : qp->state; new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, attr_mask)) goto inval; if (rdi->driver_f.check_modify_qp && rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) goto inval; if (attr_mask & IB_QP_AV) { if (opa_ah) { if (rdma_ah_get_dlid(&attr->ah_attr) >= opa_get_mcast_base(OPA_MCAST_NR)) goto inval; } else { if (rdma_ah_get_dlid(&attr->ah_attr) >= be16_to_cpu(IB_MULTICAST_LID_BASE)) goto inval; } if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) goto inval; } if (attr_mask & IB_QP_ALT_PATH) { if (opa_ah) { if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= opa_get_mcast_base(OPA_MCAST_NR)) goto inval; } else { if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= be16_to_cpu(IB_MULTICAST_LID_BASE)) goto inval; } if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) goto inval; if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) goto inval; } if (attr_mask & IB_QP_PKEY_INDEX) if (attr->pkey_index >= rvt_get_npkeys(rdi)) goto inval; if (attr_mask & IB_QP_MIN_RNR_TIMER) if (attr->min_rnr_timer > 31) goto inval; if (attr_mask & IB_QP_PORT) if (qp->ibqp.qp_type == IB_QPT_SMI || qp->ibqp.qp_type == IB_QPT_GSI || attr->port_num == 0 || attr->port_num > ibqp->device->phys_port_cnt) goto inval; if (attr_mask & IB_QP_DEST_QPN) if (attr->dest_qp_num > RVT_QPN_MASK) goto inval; if (attr_mask & IB_QP_RETRY_CNT) if (attr->retry_cnt > 7) goto inval; if (attr_mask & IB_QP_RNR_RETRY) if (attr->rnr_retry > 7) goto inval; /* * Don't allow invalid path_mtu values. OK to set greater * than the active mtu (or even the max_cap, if we have tuned * that to a small mtu. We'll set qp->path_mtu * to the lesser of requested attribute mtu and active, * for packetizing messages. * Note that the QP port has to be set in INIT and MTU in RTR. */ if (attr_mask & IB_QP_PATH_MTU) { pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); if (pmtu < 0) goto inval; } if (attr_mask & IB_QP_PATH_MIG_STATE) { if (attr->path_mig_state == IB_MIG_REARM) { if (qp->s_mig_state == IB_MIG_ARMED) goto inval; if (new_state != IB_QPS_RTS) goto inval; } else if (attr->path_mig_state == IB_MIG_MIGRATED) { if (qp->s_mig_state == IB_MIG_REARM) goto inval; if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) goto inval; if (qp->s_mig_state == IB_MIG_ARMED) mig = 1; } else { goto inval; } } if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) goto inval; switch (new_state) { case IB_QPS_RESET: if (qp->state != IB_QPS_RESET) _rvt_reset_qp(rdi, qp, ibqp->qp_type); break; case IB_QPS_RTR: /* Allow event to re-trigger if QP set to RTR more than once */ qp->r_flags &= ~RVT_R_COMM_EST; qp->state = new_state; break; case IB_QPS_SQD: qp->s_draining = qp->s_last != qp->s_cur; qp->state = new_state; break; case IB_QPS_SQE: if (qp->ibqp.qp_type == IB_QPT_RC) goto inval; qp->state = new_state; break; case IB_QPS_ERR: lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); break; default: qp->state = new_state; break; } if (attr_mask & IB_QP_PKEY_INDEX) qp->s_pkey_index = attr->pkey_index; if (attr_mask & IB_QP_PORT) qp->port_num = attr->port_num; if (attr_mask & IB_QP_DEST_QPN) qp->remote_qpn = attr->dest_qp_num; if (attr_mask & IB_QP_SQ_PSN) { qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; qp->s_psn = qp->s_next_psn; qp->s_sending_psn = qp->s_next_psn; qp->s_last_psn = qp->s_next_psn - 1; qp->s_sending_hpsn = qp->s_last_psn; } if (attr_mask & IB_QP_RQ_PSN) qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; if (attr_mask & IB_QP_ACCESS_FLAGS) qp->qp_access_flags = attr->qp_access_flags; if (attr_mask & IB_QP_AV) { rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); } if (attr_mask & IB_QP_ALT_PATH) { rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); qp->s_alt_pkey_index = attr->alt_pkey_index; } if (attr_mask & IB_QP_PATH_MIG_STATE) { qp->s_mig_state = attr->path_mig_state; if (mig) { qp->remote_ah_attr = qp->alt_ah_attr; qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); qp->s_pkey_index = qp->s_alt_pkey_index; } } if (attr_mask & IB_QP_PATH_MTU) { qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); qp->log_pmtu = ilog2(qp->pmtu); } if (attr_mask & IB_QP_RETRY_CNT) { qp->s_retry_cnt = attr->retry_cnt; qp->s_retry = attr->retry_cnt; } if (attr_mask & IB_QP_RNR_RETRY) { qp->s_rnr_retry_cnt = attr->rnr_retry; qp->s_rnr_retry = attr->rnr_retry; } if (attr_mask & IB_QP_MIN_RNR_TIMER) qp->r_min_rnr_timer = attr->min_rnr_timer; if (attr_mask & IB_QP_TIMEOUT) { qp->timeout = attr->timeout; qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); } if (attr_mask & IB_QP_QKEY) qp->qkey = attr->qkey; if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) qp->r_max_rd_atomic = attr->max_dest_rd_atomic; if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) qp->s_max_rd_atomic = attr->max_rd_atomic; if (rdi->driver_f.modify_qp) rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); spin_unlock(&qp->s_lock); spin_unlock(&qp->s_hlock); spin_unlock_irq(&qp->r_lock); if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) rvt_insert_qp(rdi, qp); if (lastwqe) { ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } if (mig) { ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_PATH_MIG; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return 0; inval: spin_unlock(&qp->s_lock); spin_unlock(&qp->s_hlock); spin_unlock_irq(&qp->r_lock); return -EINVAL; } /** * rvt_destroy_qp - destroy a queue pair * @ibqp: the queue pair to destroy * * Note that this can be called while the QP is actively sending or * receiving! * * Return: 0 on success. */ int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) { struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); rvt_reset_qp(rdi, qp, ibqp->qp_type); wait_event(qp->wait, !atomic_read(&qp->refcount)); /* qpn is now available for use again */ rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); spin_lock(&rdi->n_qps_lock); rdi->n_qps_allocated--; if (qp->ibqp.qp_type == IB_QPT_RC) { rdi->n_rc_qps--; rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; } spin_unlock(&rdi->n_qps_lock); if (qp->ip) kref_put(&qp->ip->ref, rvt_release_mmap_info); kvfree(qp->r_rq.kwq); rdi->driver_f.qp_priv_free(rdi, qp); kfree(qp->s_ack_queue); rdma_destroy_ah_attr(&qp->remote_ah_attr); rdma_destroy_ah_attr(&qp->alt_ah_attr); free_ud_wq_attr(qp); vfree(qp->s_wq); kfree(qp); return 0; } /** * rvt_query_qp - query an ipbq * @ibqp: IB qp to query * @attr: attr struct to fill in * @attr_mask: attr mask ignored * @init_attr: struct to fill in * * Return: always 0 */ int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int attr_mask, struct ib_qp_init_attr *init_attr) { struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); attr->qp_state = qp->state; attr->cur_qp_state = attr->qp_state; attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); attr->path_mig_state = qp->s_mig_state; attr->qkey = qp->qkey; attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; attr->dest_qp_num = qp->remote_qpn; attr->qp_access_flags = qp->qp_access_flags; attr->cap.max_send_wr = qp->s_size - 1 - rdi->dparms.reserved_operations; attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; attr->cap.max_send_sge = qp->s_max_sge; attr->cap.max_recv_sge = qp->r_rq.max_sge; attr->cap.max_inline_data = 0; attr->ah_attr = qp->remote_ah_attr; attr->alt_ah_attr = qp->alt_ah_attr; attr->pkey_index = qp->s_pkey_index; attr->alt_pkey_index = qp->s_alt_pkey_index; attr->en_sqd_async_notify = 0; attr->sq_draining = qp->s_draining; attr->max_rd_atomic = qp->s_max_rd_atomic; attr->max_dest_rd_atomic = qp->r_max_rd_atomic; attr->min_rnr_timer = qp->r_min_rnr_timer; attr->port_num = qp->port_num; attr->timeout = qp->timeout; attr->retry_cnt = qp->s_retry_cnt; attr->rnr_retry = qp->s_rnr_retry_cnt; attr->alt_port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); attr->alt_timeout = qp->alt_timeout; init_attr->event_handler = qp->ibqp.event_handler; init_attr->qp_context = qp->ibqp.qp_context; init_attr->send_cq = qp->ibqp.send_cq; init_attr->recv_cq = qp->ibqp.recv_cq; init_attr->srq = qp->ibqp.srq; init_attr->cap = attr->cap; if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; else init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; init_attr->qp_type = qp->ibqp.qp_type; init_attr->port_num = qp->port_num; return 0; } /** * rvt_post_receive - post a receive on a QP * @ibqp: the QP to post the receive on * @wr: the WR to post * @bad_wr: the first bad WR is put here * * This may be called from interrupt context. * * Return: 0 on success otherwise errno */ int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); struct rvt_krwq *wq = qp->r_rq.kwq; unsigned long flags; int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && !qp->ibqp.srq; /* Check that state is OK to post receive. */ if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { *bad_wr = wr; return -EINVAL; } for (; wr; wr = wr->next) { struct rvt_rwqe *wqe; u32 next; int i; if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { *bad_wr = wr; return -EINVAL; } spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); next = wq->head + 1; if (next >= qp->r_rq.size) next = 0; if (next == READ_ONCE(wq->tail)) { spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); *bad_wr = wr; return -ENOMEM; } if (unlikely(qp_err_flush)) { struct ib_wc wc; memset(&wc, 0, sizeof(wc)); wc.qp = &qp->ibqp; wc.opcode = IB_WC_RECV; wc.wr_id = wr->wr_id; wc.status = IB_WC_WR_FLUSH_ERR; rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); } else { wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); wqe->wr_id = wr->wr_id; wqe->num_sge = wr->num_sge; for (i = 0; i < wr->num_sge; i++) { wqe->sg_list[i].addr = wr->sg_list[i].addr; wqe->sg_list[i].length = wr->sg_list[i].length; wqe->sg_list[i].lkey = wr->sg_list[i].lkey; } /* * Make sure queue entry is written * before the head index. */ smp_store_release(&wq->head, next); } spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); } return 0; } /** * rvt_qp_valid_operation - validate post send wr request * @qp - the qp * @post-parms - the post send table for the driver * @wr - the work request * * The routine validates the operation based on the * validation table an returns the length of the operation * which can extend beyond the ib_send_bw. Operation * dependent flags key atomic operation validation. * * There is an exception for UD qps that validates the pd and * overrides the length to include the additional UD specific * length. * * Returns a negative error or the length of the work request * for building the swqe. */ static inline int rvt_qp_valid_operation( struct rvt_qp *qp, const struct rvt_operation_params *post_parms, const struct ib_send_wr *wr) { int len; if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) return -EINVAL; if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) return -EINVAL; if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && ibpd_to_rvtpd(qp->ibqp.pd)->user) return -EINVAL; if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && (wr->num_sge == 0 || wr->sg_list[0].length < sizeof(u64) || wr->sg_list[0].addr & (sizeof(u64) - 1))) return -EINVAL; if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && !qp->s_max_rd_atomic) return -EINVAL; len = post_parms[wr->opcode].length; /* UD specific */ if (qp->ibqp.qp_type != IB_QPT_UC && qp->ibqp.qp_type != IB_QPT_RC) { if (qp->ibqp.pd != ud_wr(wr)->ah->pd) return -EINVAL; len = sizeof(struct ib_ud_wr); } return len; } /** * rvt_qp_is_avail - determine queue capacity * @qp: the qp * @rdi: the rdmavt device * @reserved_op: is reserved operation * * This assumes the s_hlock is held but the s_last * qp variable is uncontrolled. * * For non reserved operations, the qp->s_avail * may be changed. * * The return value is zero or a -ENOMEM. */ static inline int rvt_qp_is_avail( struct rvt_qp *qp, struct rvt_dev_info *rdi, bool reserved_op) { u32 slast; u32 avail; u32 reserved_used; /* see rvt_qp_wqe_unreserve() */ smp_mb__before_atomic(); if (unlikely(reserved_op)) { /* see rvt_qp_wqe_unreserve() */ reserved_used = atomic_read(&qp->s_reserved_used); if (reserved_used >= rdi->dparms.reserved_operations) return -ENOMEM; return 0; } /* non-reserved operations */ if (likely(qp->s_avail)) return 0; /* See rvt_qp_complete_swqe() */ slast = smp_load_acquire(&qp->s_last); if (qp->s_head >= slast) avail = qp->s_size - (qp->s_head - slast); else avail = slast - qp->s_head; reserved_used = atomic_read(&qp->s_reserved_used); avail = avail - 1 - (rdi->dparms.reserved_operations - reserved_used); /* insure we don't assign a negative s_avail */ if ((s32)avail <= 0) return -ENOMEM; qp->s_avail = avail; if (WARN_ON(qp->s_avail > (qp->s_size - 1 - rdi->dparms.reserved_operations))) rvt_pr_err(rdi, "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", qp->ibqp.qp_num, qp->s_size, qp->s_avail, qp->s_head, qp->s_tail, qp->s_cur, qp->s_acked, qp->s_last); return 0; } /** * rvt_post_one_wr - post one RC, UC, or UD send work request * @qp: the QP to post on * @wr: the work request to send */ static int rvt_post_one_wr(struct rvt_qp *qp, const struct ib_send_wr *wr, bool *call_send) { struct rvt_swqe *wqe; u32 next; int i; int j; int acc; struct rvt_lkey_table *rkt; struct rvt_pd *pd; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); u8 log_pmtu; int ret; size_t cplen; bool reserved_op; int local_ops_delayed = 0; BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); /* IB spec says that num_sge == 0 is OK. */ if (unlikely(wr->num_sge > qp->s_max_sge)) return -EINVAL; ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); if (ret < 0) return ret; cplen = ret; /* * Local operations include fast register and local invalidate. * Fast register needs to be processed immediately because the * registered lkey may be used by following work requests and the * lkey needs to be valid at the time those requests are posted. * Local invalidate can be processed immediately if fencing is * not required and no previous local invalidate ops are pending. * Signaled local operations that have been processed immediately * need to have requests with "completion only" flags set posted * to the send queue in order to generate completions. */ if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { switch (wr->opcode) { case IB_WR_REG_MR: ret = rvt_fast_reg_mr(qp, reg_wr(wr)->mr, reg_wr(wr)->key, reg_wr(wr)->access); if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) return ret; break; case IB_WR_LOCAL_INV: if ((wr->send_flags & IB_SEND_FENCE) || atomic_read(&qp->local_ops_pending)) { local_ops_delayed = 1; } else { ret = rvt_invalidate_rkey( qp, wr->ex.invalidate_rkey); if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) return ret; } break; default: return -EINVAL; } } reserved_op = rdi->post_parms[wr->opcode].flags & RVT_OPERATION_USE_RESERVE; /* check for avail */ ret = rvt_qp_is_avail(qp, rdi, reserved_op); if (ret) return ret; next = qp->s_head + 1; if (next >= qp->s_size) next = 0; rkt = &rdi->lkey_table; pd = ibpd_to_rvtpd(qp->ibqp.pd); wqe = rvt_get_swqe_ptr(qp, qp->s_head); /* cplen has length from above */ memcpy(&wqe->wr, wr, cplen); wqe->length = 0; j = 0; if (wr->num_sge) { struct rvt_sge *last_sge = NULL; acc = wr->opcode >= IB_WR_RDMA_READ ? IB_ACCESS_LOCAL_WRITE : 0; for (i = 0; i < wr->num_sge; i++) { u32 length = wr->sg_list[i].length; if (length == 0) continue; ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, &wr->sg_list[i], acc); if (unlikely(ret < 0)) goto bail_inval_free; wqe->length += length; if (ret) last_sge = &wqe->sg_list[j]; j += ret; } wqe->wr.num_sge = j; } /* * Calculate and set SWQE PSN values prior to handing it off * to the driver's check routine. This give the driver the * opportunity to adjust PSN values based on internal checks. */ log_pmtu = qp->log_pmtu; if (qp->allowed_ops == IB_OPCODE_UD) { struct rvt_ah *ah = rvt_get_swqe_ah(wqe); log_pmtu = ah->log_pmtu; rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); } if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { if (local_ops_delayed) atomic_inc(&qp->local_ops_pending); else wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; wqe->ssn = 0; wqe->psn = 0; wqe->lpsn = 0; } else { wqe->ssn = qp->s_ssn++; wqe->psn = qp->s_next_psn; wqe->lpsn = wqe->psn + (wqe->length ? ((wqe->length - 1) >> log_pmtu) : 0); } /* general part of wqe valid - allow for driver checks */ if (rdi->driver_f.setup_wqe) { ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); if (ret < 0) goto bail_inval_free_ref; } if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) qp->s_next_psn = wqe->lpsn + 1; if (unlikely(reserved_op)) { wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; rvt_qp_wqe_reserve(qp, wqe); } else { wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; qp->s_avail--; } trace_rvt_post_one_wr(qp, wqe, wr->num_sge); smp_wmb(); /* see request builders */ qp->s_head = next; return 0; bail_inval_free_ref: if (qp->allowed_ops == IB_OPCODE_UD) rdma_destroy_ah_attr(wqe->ud_wr.attr); bail_inval_free: /* release mr holds */ while (j) { struct rvt_sge *sge = &wqe->sg_list[--j]; rvt_put_mr(sge->mr); } return ret; } /** * rvt_post_send - post a send on a QP * @ibqp: the QP to post the send on * @wr: the list of work requests to post * @bad_wr: the first bad WR is put here * * This may be called from interrupt context. * * Return: 0 on success else errno */ int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, const struct ib_send_wr **bad_wr) { struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); unsigned long flags = 0; bool call_send; unsigned nreq = 0; int err = 0; spin_lock_irqsave(&qp->s_hlock, flags); /* * Ensure QP state is such that we can send. If not bail out early, * there is no need to do this every time we post a send. */ if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { spin_unlock_irqrestore(&qp->s_hlock, flags); return -EINVAL; } /* * If the send queue is empty, and we only have a single WR then just go * ahead and kick the send engine into gear. Otherwise we will always * just schedule the send to happen later. */ call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; for (; wr; wr = wr->next) { err = rvt_post_one_wr(qp, wr, &call_send); if (unlikely(err)) { *bad_wr = wr; goto bail; } nreq++; } bail: spin_unlock_irqrestore(&qp->s_hlock, flags); if (nreq) { /* * Only call do_send if there is exactly one packet, and the * driver said it was ok. */ if (nreq == 1 && call_send) rdi->driver_f.do_send(qp); else rdi->driver_f.schedule_send_no_lock(qp); } return err; } /** * rvt_post_srq_receive - post a receive on a shared receive queue * @ibsrq: the SRQ to post the receive on * @wr: the list of work requests to post * @bad_wr: A pointer to the first WR to cause a problem is put here * * This may be called from interrupt context. * * Return: 0 on success else errno */ int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); struct rvt_krwq *wq; unsigned long flags; for (; wr; wr = wr->next) { struct rvt_rwqe *wqe; u32 next; int i; if ((unsigned)wr->num_sge > srq->rq.max_sge) { *bad_wr = wr; return -EINVAL; } spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); wq = srq->rq.kwq; next = wq->head + 1; if (next >= srq->rq.size) next = 0; if (next == READ_ONCE(wq->tail)) { spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); *bad_wr = wr; return -ENOMEM; } wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); wqe->wr_id = wr->wr_id; wqe->num_sge = wr->num_sge; for (i = 0; i < wr->num_sge; i++) { wqe->sg_list[i].addr = wr->sg_list[i].addr; wqe->sg_list[i].length = wr->sg_list[i].length; wqe->sg_list[i].lkey = wr->sg_list[i].lkey; } /* Make sure queue entry is written before the head index. */ smp_store_release(&wq->head, next); spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); } return 0; } /* * rvt used the internal kernel struct as part of its ABI, for now make sure * the kernel struct does not change layout. FIXME: rvt should never cast the * user struct to a kernel struct. */ static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) { BUILD_BUG_ON(offsetof(struct ib_sge, addr) != offsetof(struct rvt_wqe_sge, addr)); BUILD_BUG_ON(offsetof(struct ib_sge, length) != offsetof(struct rvt_wqe_sge, length)); BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != offsetof(struct rvt_wqe_sge, lkey)); return (struct ib_sge *)sge; } /* * Validate a RWQE and fill in the SGE state. * Return 1 if OK. */ static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) { int i, j, ret; struct ib_wc wc; struct rvt_lkey_table *rkt; struct rvt_pd *pd; struct rvt_sge_state *ss; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); rkt = &rdi->lkey_table; pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); ss = &qp->r_sge; ss->sg_list = qp->r_sg_list; qp->r_len = 0; for (i = j = 0; i < wqe->num_sge; i++) { if (wqe->sg_list[i].length == 0) continue; /* Check LKEY */ ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, NULL, rvt_cast_sge(&wqe->sg_list[i]), IB_ACCESS_LOCAL_WRITE); if (unlikely(ret <= 0)) goto bad_lkey; qp->r_len += wqe->sg_list[i].length; j++; } ss->num_sge = j; ss->total_len = qp->r_len; return 1; bad_lkey: while (j) { struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; rvt_put_mr(sge->mr); } ss->num_sge = 0; memset(&wc, 0, sizeof(wc)); wc.wr_id = wqe->wr_id; wc.status = IB_WC_LOC_PROT_ERR; wc.opcode = IB_WC_RECV; wc.qp = &qp->ibqp; /* Signal solicited completion event. */ rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); return 0; } /** * get_count - count numbers of request work queue entries * in circular buffer * @rq: data structure for request queue entry * @tail: tail indices of the circular buffer * @head: head indices of the circular buffer * * Return - total number of entries in the circular buffer */ static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head) { u32 count; count = head; if (count >= rq->size) count = 0; if (count < tail) count += rq->size - tail; else count -= tail; return count; } /** * get_rvt_head - get head indices of the circular buffer * @rq: data structure for request queue entry * @ip: the QP * * Return - head index value */ static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) { u32 head; if (ip) head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); else head = rq->kwq->head; return head; } /** * rvt_get_rwqe - copy the next RWQE into the QP's RWQE * @qp: the QP * @wr_id_only: update qp->r_wr_id only, not qp->r_sge * * Return -1 if there is a local error, 0 if no RWQE is available, * otherwise return 1. * * Can be called from interrupt level. */ int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) { unsigned long flags; struct rvt_rq *rq; struct rvt_krwq *kwq = NULL; struct rvt_rwq *wq; struct rvt_srq *srq; struct rvt_rwqe *wqe; void (*handler)(struct ib_event *, void *); u32 tail; u32 head; int ret; void *ip = NULL; if (qp->ibqp.srq) { srq = ibsrq_to_rvtsrq(qp->ibqp.srq); handler = srq->ibsrq.event_handler; rq = &srq->rq; ip = srq->ip; } else { srq = NULL; handler = NULL; rq = &qp->r_rq; ip = qp->ip; } spin_lock_irqsave(&rq->kwq->c_lock, flags); if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { ret = 0; goto unlock; } kwq = rq->kwq; if (ip) { wq = rq->wq; tail = RDMA_READ_UAPI_ATOMIC(wq->tail); } else { tail = kwq->tail; } /* Validate tail before using it since it is user writable. */ if (tail >= rq->size) tail = 0; if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { head = get_rvt_head(rq, ip); kwq->count = get_count(rq, tail, head); } if (unlikely(kwq->count == 0)) { ret = 0; goto unlock; } /* Make sure entry is read after the count is read. */ smp_rmb(); wqe = rvt_get_rwqe_ptr(rq, tail); /* * Even though we update the tail index in memory, the verbs * consumer is not supposed to post more entries until a * completion is generated. */ if (++tail >= rq->size) tail = 0; if (ip) RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); else kwq->tail = tail; if (!wr_id_only && !init_sge(qp, wqe)) { ret = -1; goto unlock; } qp->r_wr_id = wqe->wr_id; kwq->count--; ret = 1; set_bit(RVT_R_WRID_VALID, &qp->r_aflags); if (handler) { /* * Validate head pointer value and compute * the number of remaining WQEs. */ if (kwq->count < srq->limit) { kwq->count = get_count(rq, tail, get_rvt_head(rq, ip)); if (kwq->count < srq->limit) { struct ib_event ev; srq->limit = 0; spin_unlock_irqrestore(&rq->kwq->c_lock, flags); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; handler(&ev, srq->ibsrq.srq_context); goto bail; } } } unlock: spin_unlock_irqrestore(&rq->kwq->c_lock, flags); bail: return ret; } EXPORT_SYMBOL(rvt_get_rwqe); /** * qp_comm_est - handle trap with QP established * @qp: the QP */ void rvt_comm_est(struct rvt_qp *qp) { qp->r_flags |= RVT_R_COMM_EST; if (qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_COMM_EST; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } } EXPORT_SYMBOL(rvt_comm_est); void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) { unsigned long flags; int lastwqe; spin_lock_irqsave(&qp->s_lock, flags); lastwqe = rvt_error_qp(qp, err); spin_unlock_irqrestore(&qp->s_lock, flags); if (lastwqe) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } } EXPORT_SYMBOL(rvt_rc_error); /* * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table * @index - the index * return usec from an index into ib_rvt_rnr_table */ unsigned long rvt_rnr_tbl_to_usec(u32 index) { return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; } EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); static inline unsigned long rvt_aeth_to_usec(u32 aeth) { return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & IB_AETH_CREDIT_MASK]; } /* * rvt_add_retry_timer_ext - add/start a retry timer * @qp - the QP * @shift - timeout shift to wait for multiple packets * add a retry timer on the QP */ void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) { struct ib_qp *ibqp = &qp->ibqp; struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); lockdep_assert_held(&qp->s_lock); qp->s_flags |= RVT_S_TIMER; /* 4.096 usec. * (1 << qp->timeout) */ qp->s_timer.expires = jiffies + rdi->busy_jiffies + (qp->timeout_jiffies << shift); add_timer(&qp->s_timer); } EXPORT_SYMBOL(rvt_add_retry_timer_ext); /** * rvt_add_rnr_timer - add/start an rnr timer on the QP * @qp: the QP * @aeth: aeth of RNR timeout, simulated aeth for loopback */ void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) { u32 to; lockdep_assert_held(&qp->s_lock); qp->s_flags |= RVT_S_WAIT_RNR; to = rvt_aeth_to_usec(aeth); trace_rvt_rnrnak_add(qp, to); hrtimer_start(&qp->s_rnr_timer, ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); } EXPORT_SYMBOL(rvt_add_rnr_timer); /** * rvt_stop_rc_timers - stop all timers * @qp: the QP * stop any pending timers */ void rvt_stop_rc_timers(struct rvt_qp *qp) { lockdep_assert_held(&qp->s_lock); /* Remove QP from all timers */ if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); del_timer(&qp->s_timer); hrtimer_try_to_cancel(&qp->s_rnr_timer); } } EXPORT_SYMBOL(rvt_stop_rc_timers); /** * rvt_stop_rnr_timer - stop an rnr timer * @qp - the QP * * stop an rnr timer and return if the timer * had been pending. */ static void rvt_stop_rnr_timer(struct rvt_qp *qp) { lockdep_assert_held(&qp->s_lock); /* Remove QP from rnr timer */ if (qp->s_flags & RVT_S_WAIT_RNR) { qp->s_flags &= ~RVT_S_WAIT_RNR; trace_rvt_rnrnak_stop(qp, 0); } } /** * rvt_del_timers_sync - wait for any timeout routines to exit * @qp: the QP */ void rvt_del_timers_sync(struct rvt_qp *qp) { del_timer_sync(&qp->s_timer); hrtimer_cancel(&qp->s_rnr_timer); } EXPORT_SYMBOL(rvt_del_timers_sync); /* * This is called from s_timer for missing responses. */ static void rvt_rc_timeout(struct timer_list *t) { struct rvt_qp *qp = from_timer(qp, t, s_timer); struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); unsigned long flags; spin_lock_irqsave(&qp->r_lock, flags); spin_lock(&qp->s_lock); if (qp->s_flags & RVT_S_TIMER) { struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; qp->s_flags &= ~RVT_S_TIMER; rvp->n_rc_timeouts++; del_timer(&qp->s_timer); trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); if (rdi->driver_f.notify_restart_rc) rdi->driver_f.notify_restart_rc(qp, qp->s_last_psn + 1, 1); rdi->driver_f.schedule_send(qp); } spin_unlock(&qp->s_lock); spin_unlock_irqrestore(&qp->r_lock, flags); } /* * This is called from s_timer for RNR timeouts. */ enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) { struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); unsigned long flags; spin_lock_irqsave(&qp->s_lock, flags); rvt_stop_rnr_timer(qp); trace_rvt_rnrnak_timeout(qp, 0); rdi->driver_f.schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, flags); return HRTIMER_NORESTART; } EXPORT_SYMBOL(rvt_rc_rnr_retry); /** * rvt_qp_iter_init - initial for QP iteration * @rdi: rvt devinfo * @v: u64 value * @cb: user-defined callback * * This returns an iterator suitable for iterating QPs * in the system. * * The @cb is a user-defined callback and @v is a 64-bit * value passed to and relevant for processing in the * @cb. An example use case would be to alter QP processing * based on criteria not part of the rvt_qp. * * Use cases that require memory allocation to succeed * must preallocate appropriately. * * Return: a pointer to an rvt_qp_iter or NULL */ struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)) { struct rvt_qp_iter *i; i = kzalloc(sizeof(*i), GFP_KERNEL); if (!i) return NULL; i->rdi = rdi; /* number of special QPs (SMI/GSI) for device */ i->specials = rdi->ibdev.phys_port_cnt * 2; i->v = v; i->cb = cb; return i; } EXPORT_SYMBOL(rvt_qp_iter_init); /** * rvt_qp_iter_next - return the next QP in iter * @iter: the iterator * * Fine grained QP iterator suitable for use * with debugfs seq_file mechanisms. * * Updates iter->qp with the current QP when the return * value is 0. * * Return: 0 - iter->qp is valid 1 - no more QPs */ int rvt_qp_iter_next(struct rvt_qp_iter *iter) __must_hold(RCU) { int n = iter->n; int ret = 1; struct rvt_qp *pqp = iter->qp; struct rvt_qp *qp; struct rvt_dev_info *rdi = iter->rdi; /* * The approach is to consider the special qps * as additional table entries before the * real hash table. Since the qp code sets * the qp->next hash link to NULL, this works just fine. * * iter->specials is 2 * # ports * * n = 0..iter->specials is the special qp indices * * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are * the potential hash bucket entries * */ for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { if (pqp) { qp = rcu_dereference(pqp->next); } else { if (n < iter->specials) { struct rvt_ibport *rvp; int pidx; pidx = n % rdi->ibdev.phys_port_cnt; rvp = rdi->ports[pidx]; qp = rcu_dereference(rvp->qp[n & 1]); } else { qp = rcu_dereference( rdi->qp_dev->qp_table[ (n - iter->specials)]); } } pqp = qp; if (qp) { iter->qp = qp; iter->n = n; return 0; } } return ret; } EXPORT_SYMBOL(rvt_qp_iter_next); /** * rvt_qp_iter - iterate all QPs * @rdi: rvt devinfo * @v: a 64-bit value * @cb: a callback * * This provides a way for iterating all QPs. * * The @cb is a user-defined callback and @v is a 64-bit * value passed to and relevant for processing in the * cb. An example use case would be to alter QP processing * based on criteria not part of the rvt_qp. * * The code has an internal iterator to simplify * non seq_file use cases. */ void rvt_qp_iter(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)) { int ret; struct rvt_qp_iter i = { .rdi = rdi, .specials = rdi->ibdev.phys_port_cnt * 2, .v = v, .cb = cb }; rcu_read_lock(); do { ret = rvt_qp_iter_next(&i); if (!ret) { rvt_get_qp(i.qp); rcu_read_unlock(); i.cb(i.qp, i.v); rcu_read_lock(); rvt_put_qp(i.qp); } } while (!ret); rcu_read_unlock(); } EXPORT_SYMBOL(rvt_qp_iter); /* * This should be called with s_lock held. */ void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, enum ib_wc_status status) { u32 old_last, last; struct rvt_dev_info *rdi; if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) return; rdi = ib_to_rvt(qp->ibqp.device); old_last = qp->s_last; trace_rvt_qp_send_completion(qp, wqe, old_last); last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], status); if (qp->s_acked == old_last) qp->s_acked = last; if (qp->s_cur == old_last) qp->s_cur = last; if (qp->s_tail == old_last) qp->s_tail = last; if (qp->state == IB_QPS_SQD && last == qp->s_cur) qp->s_draining = 0; } EXPORT_SYMBOL(rvt_send_complete); /** * rvt_copy_sge - copy data to SGE memory * @qp: associated QP * @ss: the SGE state * @data: the data to copy * @length: the length of the data * @release: boolean to release MR * @copy_last: do a separate copy of the last 8 bytes */ void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, void *data, u32 length, bool release, bool copy_last) { struct rvt_sge *sge = &ss->sge; int i; bool in_last = false; bool cacheless_copy = false; struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); struct rvt_wss *wss = rdi->wss; unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { cacheless_copy = length >= PAGE_SIZE; } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { if (length >= PAGE_SIZE) { /* * NOTE: this *assumes*: * o The first vaddr is the dest. * o If multiple pages, then vaddr is sequential. */ wss_insert(wss, sge->vaddr); if (length >= (2 * PAGE_SIZE)) wss_insert(wss, (sge->vaddr + PAGE_SIZE)); cacheless_copy = wss_exceeds_threshold(wss); } else { wss_advance_clean_counter(wss); } } if (copy_last) { if (length > 8) { length -= 8; } else { copy_last = false; in_last = true; } } again: while (length) { u32 len = rvt_get_sge_length(sge, length); WARN_ON_ONCE(len == 0); if (unlikely(in_last)) { /* enforce byte transfer ordering */ for (i = 0; i < len; i++) ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; } else if (cacheless_copy) { cacheless_memcpy(sge->vaddr, data, len); } else { memcpy(sge->vaddr, data, len); } rvt_update_sge(ss, len, release); data += len; length -= len; } if (copy_last) { copy_last = false; in_last = true; length = 8; goto again; } } EXPORT_SYMBOL(rvt_copy_sge); static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, struct rvt_qp *sqp) { rvp->n_pkt_drops++; /* * For RC, the requester would timeout and retry so * shortcut the timeouts and just signal too many retries. */ return sqp->ibqp.qp_type == IB_QPT_RC ? IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; } /** * ruc_loopback - handle UC and RC loopback requests * @sqp: the sending QP * * This is called from rvt_do_send() to forward a WQE addressed to the same HFI * Note that although we are single threaded due to the send engine, we still * have to protect against post_send(). We don't have to worry about * receive interrupts since this is a connected protocol and all packets * will pass through here. */ void rvt_ruc_loopback(struct rvt_qp *sqp) { struct rvt_ibport *rvp = NULL; struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); struct rvt_qp *qp; struct rvt_swqe *wqe; struct rvt_sge *sge; unsigned long flags; struct ib_wc wc; u64 sdata; atomic64_t *maddr; enum ib_wc_status send_status; bool release; int ret; bool copy_last = false; int local_ops = 0; rcu_read_lock(); rvp = rdi->ports[sqp->port_num - 1]; /* * Note that we check the responder QP state after * checking the requester's state. */ qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, sqp->remote_qpn); spin_lock_irqsave(&sqp->s_lock, flags); /* Return if we are already busy processing a work request. */ if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) goto unlock; sqp->s_flags |= RVT_S_BUSY; again: if (sqp->s_last == READ_ONCE(sqp->s_head)) goto clr_busy; wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); /* Return if it is not OK to start a new work request. */ if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) goto clr_busy; /* We are in the error state, flush the work request. */ send_status = IB_WC_WR_FLUSH_ERR; goto flush_send; } /* * We can rely on the entry not changing without the s_lock * being held until we update s_last. * We increment s_cur to indicate s_last is in progress. */ if (sqp->s_last == sqp->s_cur) { if (++sqp->s_cur >= sqp->s_size) sqp->s_cur = 0; } spin_unlock_irqrestore(&sqp->s_lock, flags); if (!qp) { send_status = loopback_qp_drop(rvp, sqp); goto serr_no_r_lock; } spin_lock_irqsave(&qp->r_lock, flags); if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || qp->ibqp.qp_type != sqp->ibqp.qp_type) { send_status = loopback_qp_drop(rvp, sqp); goto serr; } memset(&wc, 0, sizeof(wc)); send_status = IB_WC_SUCCESS; release = true; sqp->s_sge.sge = wqe->sg_list[0]; sqp->s_sge.sg_list = wqe->sg_list + 1; sqp->s_sge.num_sge = wqe->wr.num_sge; sqp->s_len = wqe->length; switch (wqe->wr.opcode) { case IB_WR_REG_MR: goto send_comp; case IB_WR_LOCAL_INV: if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { if (rvt_invalidate_rkey(sqp, wqe->wr.ex.invalidate_rkey)) send_status = IB_WC_LOC_PROT_ERR; local_ops = 1; } goto send_comp; case IB_WR_SEND_WITH_INV: case IB_WR_SEND_WITH_IMM: case IB_WR_SEND: ret = rvt_get_rwqe(qp, false); if (ret < 0) goto op_err; if (!ret) goto rnr_nak; if (wqe->length > qp->r_len) goto inv_err; switch (wqe->wr.opcode) { case IB_WR_SEND_WITH_INV: if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) { wc.wc_flags = IB_WC_WITH_INVALIDATE; wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey; } break; case IB_WR_SEND_WITH_IMM: wc.wc_flags = IB_WC_WITH_IMM; wc.ex.imm_data = wqe->wr.ex.imm_data; break; default: break; } break; case IB_WR_RDMA_WRITE_WITH_IMM: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) goto inv_err; wc.wc_flags = IB_WC_WITH_IMM; wc.ex.imm_data = wqe->wr.ex.imm_data; ret = rvt_get_rwqe(qp, true); if (ret < 0) goto op_err; if (!ret) goto rnr_nak; /* skip copy_last set and qp_access_flags recheck */ goto do_write; case IB_WR_RDMA_WRITE: copy_last = rvt_is_user_qp(qp); if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) goto inv_err; do_write: if (wqe->length == 0) break; if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, wqe->rdma_wr.remote_addr, wqe->rdma_wr.rkey, IB_ACCESS_REMOTE_WRITE))) goto acc_err; qp->r_sge.sg_list = NULL; qp->r_sge.num_sge = 1; qp->r_sge.total_len = wqe->length; break; case IB_WR_RDMA_READ: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) goto inv_err; if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, wqe->rdma_wr.remote_addr, wqe->rdma_wr.rkey, IB_ACCESS_REMOTE_READ))) goto acc_err; release = false; sqp->s_sge.sg_list = NULL; sqp->s_sge.num_sge = 1; qp->r_sge.sge = wqe->sg_list[0]; qp->r_sge.sg_list = wqe->sg_list + 1; qp->r_sge.num_sge = wqe->wr.num_sge; qp->r_sge.total_len = wqe->length; break; case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) goto inv_err; if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), wqe->atomic_wr.remote_addr, wqe->atomic_wr.rkey, IB_ACCESS_REMOTE_ATOMIC))) goto acc_err; /* Perform atomic OP and save result. */ maddr = (atomic64_t *)qp->r_sge.sge.vaddr; sdata = wqe->atomic_wr.compare_add; *(u64 *)sqp->s_sge.sge.vaddr = (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? (u64)atomic64_add_return(sdata, maddr) - sdata : (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, sdata, wqe->atomic_wr.swap); rvt_put_mr(qp->r_sge.sge.mr); qp->r_sge.num_sge = 0; goto send_comp; default: send_status = IB_WC_LOC_QP_OP_ERR; goto serr; } sge = &sqp->s_sge.sge; while (sqp->s_len) { u32 len = rvt_get_sge_length(sge, sqp->s_len); WARN_ON_ONCE(len == 0); rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, len, release, copy_last); rvt_update_sge(&sqp->s_sge, len, !release); sqp->s_len -= len; } if (release) rvt_put_ss(&qp->r_sge); if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) goto send_comp; if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; else wc.opcode = IB_WC_RECV; wc.wr_id = qp->r_wr_id; wc.status = IB_WC_SUCCESS; wc.byte_len = wqe->length; wc.qp = &qp->ibqp; wc.src_qp = qp->remote_qpn; wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); wc.port_num = 1; /* Signal completion event if the solicited bit is set. */ rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); send_comp: spin_unlock_irqrestore(&qp->r_lock, flags); spin_lock_irqsave(&sqp->s_lock, flags); rvp->n_loop_pkts++; flush_send: sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; rvt_send_complete(sqp, wqe, send_status); if (local_ops) { atomic_dec(&sqp->local_ops_pending); local_ops = 0; } goto again; rnr_nak: /* Handle RNR NAK */ if (qp->ibqp.qp_type == IB_QPT_UC) goto send_comp; rvp->n_rnr_naks++; /* * Note: we don't need the s_lock held since the BUSY flag * makes this single threaded. */ if (sqp->s_rnr_retry == 0) { send_status = IB_WC_RNR_RETRY_EXC_ERR; goto serr; } if (sqp->s_rnr_retry_cnt < 7) sqp->s_rnr_retry--; spin_unlock_irqrestore(&qp->r_lock, flags); spin_lock_irqsave(&sqp->s_lock, flags); if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) goto clr_busy; rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << IB_AETH_CREDIT_SHIFT); goto clr_busy; op_err: send_status = IB_WC_REM_OP_ERR; wc.status = IB_WC_LOC_QP_OP_ERR; goto err; inv_err: send_status = sqp->ibqp.qp_type == IB_QPT_RC ? IB_WC_REM_INV_REQ_ERR : IB_WC_SUCCESS; wc.status = IB_WC_LOC_QP_OP_ERR; goto err; acc_err: send_status = IB_WC_REM_ACCESS_ERR; wc.status = IB_WC_LOC_PROT_ERR; err: /* responder goes to error state */ rvt_rc_error(qp, wc.status); serr: spin_unlock_irqrestore(&qp->r_lock, flags); serr_no_r_lock: spin_lock_irqsave(&sqp->s_lock, flags); rvt_send_complete(sqp, wqe, send_status); if (sqp->ibqp.qp_type == IB_QPT_RC) { int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); sqp->s_flags &= ~RVT_S_BUSY; spin_unlock_irqrestore(&sqp->s_lock, flags); if (lastwqe) { struct ib_event ev; ev.device = sqp->ibqp.device; ev.element.qp = &sqp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); } goto done; } clr_busy: sqp->s_flags &= ~RVT_S_BUSY; unlock: spin_unlock_irqrestore(&sqp->s_lock, flags); done: rcu_read_unlock(); } EXPORT_SYMBOL(rvt_ruc_loopback);