/* via686a.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, Kyösti Mälkki <kmalkki@cc.hut.fi>, Mark Studebaker <mdsxyz123@yahoo.com>, and Bob Dougherty <bobd@stanford.edu> (Some conversion-factor data were contributed by Jonathan Teh Soon Yew <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Supports the Via VT82C686A, VT82C686B south bridges. Reports all as a 686A. Warning - only supports a single device. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/jiffies.h> #include <linux/platform_device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/sysfs.h> #include <linux/acpi.h> #include <linux/io.h> /* If force_addr is set to anything different from 0, we forcibly enable the device at the given address. */ static unsigned short force_addr; module_param(force_addr, ushort, 0); MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors"); static struct platform_device *pdev; /* The Via 686a southbridge has a LM78-like chip integrated on the same IC. This driver is a customized copy of lm78.c */ /* Many VIA686A constants specified below */ /* Length of ISA address segment */ #define VIA686A_EXTENT 0x80 #define VIA686A_BASE_REG 0x70 #define VIA686A_ENABLE_REG 0x74 /* The VIA686A registers */ /* ins numbered 0-4 */ #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2)) #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2)) #define VIA686A_REG_IN(nr) (0x22 + (nr)) /* fans numbered 1-2 */ #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr)) #define VIA686A_REG_FAN(nr) (0x28 + (nr)) /* temps numbered 1-3 */ static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f }; static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d }; static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e }; /* bits 7-6 */ #define VIA686A_REG_TEMP_LOW1 0x4b /* 2 = bits 5-4, 3 = bits 7-6 */ #define VIA686A_REG_TEMP_LOW23 0x49 #define VIA686A_REG_ALARM1 0x41 #define VIA686A_REG_ALARM2 0x42 #define VIA686A_REG_FANDIV 0x47 #define VIA686A_REG_CONFIG 0x40 /* The following register sets temp interrupt mode (bits 1-0 for temp1, 3-2 for temp2, 5-4 for temp3). Modes are: 00 interrupt stays as long as value is out-of-range 01 interrupt is cleared once register is read (default) 10 comparator mode- like 00, but ignores hysteresis 11 same as 00 */ #define VIA686A_REG_TEMP_MODE 0x4b /* We'll just assume that you want to set all 3 simultaneously: */ #define VIA686A_TEMP_MODE_MASK 0x3F #define VIA686A_TEMP_MODE_CONTINUOUS 0x00 /* Conversions. Limit checking is only done on the TO_REG variants. ********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; That is: volts = (25*regVal+133)*factor regVal = (volts/factor-133)/25 (These conversions were contributed by Jonathan Teh Soon Yew <j.teh@iname.com>) */ static inline u8 IN_TO_REG(long val, int inNum) { /* To avoid floating point, we multiply constants by 10 (100 for +12V). Rounding is done (120500 is actually 133000 - 12500). Remember that val is expressed in 0.001V/bit, which is why we divide by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) for the constants. */ if (inNum <= 1) return (u8) SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); else if (inNum == 2) return (u8) SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); else if (inNum == 3) return (u8) SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); else return (u8) SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); } static inline long IN_FROM_REG(u8 val, int inNum) { /* To avoid floating point, we multiply constants by 10 (100 for +12V). We also multiply them by 1000 because we want 0.001V/bit for the output value. Rounding is done. */ if (inNum <= 1) return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); else if (inNum == 2) return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); else if (inNum == 3) return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); else return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); } /********* FAN RPM CONVERSIONS ********/ /* Higher register values = slower fans (the fan's strobe gates a counter). But this chip saturates back at 0, not at 255 like all the other chips. So, 0 means 0 RPM */ static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 0; rpm = SENSORS_LIMIT(rpm, 1, 1000000); return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); } #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) /******** TEMP CONVERSIONS (Bob Dougherty) *********/ /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) if(temp<169) return double(temp)*0.427-32.08; else if(temp>=169 && temp<=202) return double(temp)*0.582-58.16; else return double(temp)*0.924-127.33; A fifth-order polynomial fits the unofficial data (provided by Alex van Kaam <darkside@chello.nl>) a bit better. It also give more reasonable numbers on my machine (ie. they agree with what my BIOS tells me). Here's the fifth-order fit to the 8-bit data: temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for finding my typos in this formula!) Alas, none of the elegant function-fit solutions will work because we aren't allowed to use floating point in the kernel and doing it with integers doesn't provide enough precision. So we'll do boring old look-up table stuff. The unofficial data (see below) have effectively 7-bit resolution (they are rounded to the nearest degree). I'm assuming that the transfer function of the device is monotonic and smooth, so a smooth function fit to the data will allow us to get better precision. I used the 5th-order poly fit described above and solved for VIA register values 0-255. I *10 before rounding, so we get tenth-degree precision. (I could have done all 1024 values for our 10-bit readings, but the function is very linear in the useful range (0-80 deg C), so we'll just use linear interpolation for 10-bit readings.) So, tempLUT is the temp at via register values 0-255: */ static const s16 tempLUT[] = { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189, 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241, 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294, 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348, 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404, 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464, 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532, 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 }; /* the original LUT values from Alex van Kaam <darkside@chello.nl> (for via register values 12-240): {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed an extra term for a good fit to these inverse data!) and then solving for each temp value from -50 to 110 (the useable range for this chip). Here's the fit: viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) Note that n=161: */ static const u8 viaLUT[] = { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 239, 240 }; /* Converting temps to (8-bit) hyst and over registers No interpolation here. The +50 is because the temps start at -50 */ static inline u8 TEMP_TO_REG(long val) { return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : (val < 0 ? val - 500 : val + 500) / 1000 + 50]; } /* for 8-bit temperature hyst and over registers */ #define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100) /* for 10-bit temperature readings */ static inline long TEMP_FROM_REG10(u16 val) { u16 eightBits = val >> 2; u16 twoBits = val & 3; /* no interpolation for these */ if (twoBits == 0 || eightBits == 255) return TEMP_FROM_REG(eightBits); /* do some linear interpolation */ return (tempLUT[eightBits] * (4 - twoBits) + tempLUT[eightBits + 1] * twoBits) * 25; } #define DIV_FROM_REG(val) (1 << (val)) #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) /* For each registered chip, we need to keep some data in memory. The structure is dynamically allocated. */ struct via686a_data { unsigned short addr; const char *name; struct device *hwmon_dev; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[5]; /* Register value */ u8 in_max[5]; /* Register value */ u8 in_min[5]; /* Register value */ u8 fan[2]; /* Register value */ u8 fan_min[2]; /* Register value */ u16 temp[3]; /* Register value 10 bit */ u8 temp_over[3]; /* Register value */ u8 temp_hyst[3]; /* Register value */ u8 fan_div[2]; /* Register encoding, shifted right */ u16 alarms; /* Register encoding, combined */ }; static struct pci_dev *s_bridge; /* pointer to the (only) via686a */ static int via686a_probe(struct platform_device *pdev); static int __devexit via686a_remove(struct platform_device *pdev); static inline int via686a_read_value(struct via686a_data *data, u8 reg) { return inb_p(data->addr + reg); } static inline void via686a_write_value(struct via686a_data *data, u8 reg, u8 value) { outb_p(value, data->addr + reg); } static struct via686a_data *via686a_update_device(struct device *dev); static void via686a_init_device(struct via686a_data *data); /* following are the sysfs callback functions */ /* 7 voltage sensors */ static ssize_t show_in(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr)); } static ssize_t show_in_min(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr)); } static ssize_t show_in_max(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); } static ssize_t set_in_min(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[nr] = IN_TO_REG(val, nr); via686a_write_value(data, VIA686A_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[nr] = IN_TO_REG(val, nr); via686a_write_value(data, VIA686A_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } #define show_in_offset(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset); show_in_offset(0); show_in_offset(1); show_in_offset(2); show_in_offset(3); show_in_offset(4); /* 3 temperatures */ static ssize_t show_temp(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr])); } static ssize_t show_temp_over(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr])); } static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); } static ssize_t set_temp_over(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_over[nr] = TEMP_TO_REG(val); via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr], data->temp_over[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_hyst[nr] = TEMP_TO_REG(val); via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr], data->temp_hyst[nr]); mutex_unlock(&data->update_lock); return count; } #define show_temp_offset(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_over, set_temp_over, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_hyst, set_temp_hyst, offset - 1); show_temp_offset(1); show_temp_offset(2); show_temp_offset(3); /* 2 Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr])) ); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, char *buf) { struct via686a_data *data = via686a_update_device(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct via686a_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int nr = attr->index; int val = simple_strtol(buf, NULL, 10); int old; mutex_lock(&data->update_lock); old = via686a_read_value(data, VIA686A_REG_FANDIV); data->fan_div[nr] = DIV_TO_REG(val); old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); via686a_write_value(data, VIA686A_REG_FANDIV, old); mutex_unlock(&data->update_lock); return count; } #define show_fan_offset(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1); show_fan_offset(1); show_fan_offset(2); /* Alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 15); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { struct via686a_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s\n", data->name); } static DEVICE_ATTR(name, S_IRUGO, show_name, NULL); static struct attribute *via686a_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_name.attr, NULL }; static const struct attribute_group via686a_group = { .attrs = via686a_attributes, }; static struct platform_driver via686a_driver = { .driver = { .owner = THIS_MODULE, .name = "via686a", }, .probe = via686a_probe, .remove = __devexit_p(via686a_remove), }; /* This is called when the module is loaded */ static int __devinit via686a_probe(struct platform_device *pdev) { struct via686a_data *data; struct resource *res; int err; /* Reserve the ISA region */ res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!request_region(res->start, VIA686A_EXTENT, via686a_driver.driver.name)) { dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", (unsigned long)res->start, (unsigned long)res->end); return -ENODEV; } if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) { err = -ENOMEM; goto exit_release; } platform_set_drvdata(pdev, data); data->addr = res->start; data->name = "via686a"; mutex_init(&data->update_lock); /* Initialize the VIA686A chip */ via686a_init_device(data); /* Register sysfs hooks */ if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group))) goto exit_free; data->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: sysfs_remove_group(&pdev->dev.kobj, &via686a_group); exit_free: kfree(data); exit_release: release_region(res->start, VIA686A_EXTENT); return err; } static int __devexit via686a_remove(struct platform_device *pdev) { struct via686a_data *data = platform_get_drvdata(pdev); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&pdev->dev.kobj, &via686a_group); release_region(data->addr, VIA686A_EXTENT); platform_set_drvdata(pdev, NULL); kfree(data); return 0; } static void __devinit via686a_init_device(struct via686a_data *data) { u8 reg; /* Start monitoring */ reg = via686a_read_value(data, VIA686A_REG_CONFIG); via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F); /* Configure temp interrupt mode for continuous-interrupt operation */ reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE); via686a_write_value(data, VIA686A_REG_TEMP_MODE, (reg & ~VIA686A_TEMP_MODE_MASK) | VIA686A_TEMP_MODE_CONTINUOUS); } static struct via686a_data *via686a_update_device(struct device *dev) { struct via686a_data *data = dev_get_drvdata(dev); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i <= 4; i++) { data->in[i] = via686a_read_value(data, VIA686A_REG_IN(i)); data->in_min[i] = via686a_read_value(data, VIA686A_REG_IN_MIN (i)); data->in_max[i] = via686a_read_value(data, VIA686A_REG_IN_MAX(i)); } for (i = 1; i <= 2; i++) { data->fan[i - 1] = via686a_read_value(data, VIA686A_REG_FAN(i)); data->fan_min[i - 1] = via686a_read_value(data, VIA686A_REG_FAN_MIN(i)); } for (i = 0; i <= 2; i++) { data->temp[i] = via686a_read_value(data, VIA686A_REG_TEMP[i]) << 2; data->temp_over[i] = via686a_read_value(data, VIA686A_REG_TEMP_OVER[i]); data->temp_hyst[i] = via686a_read_value(data, VIA686A_REG_TEMP_HYST[i]); } /* add in lower 2 bits temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 */ data->temp[0] |= (via686a_read_value(data, VIA686A_REG_TEMP_LOW1) & 0xc0) >> 6; data->temp[1] |= (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 0x30) >> 4; data->temp[2] |= (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 0xc0) >> 6; i = via686a_read_value(data, VIA686A_REG_FANDIV); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = i >> 6; data->alarms = via686a_read_value(data, VIA686A_REG_ALARM1) | (via686a_read_value(data, VIA686A_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static struct pci_device_id via686a_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, { 0, } }; MODULE_DEVICE_TABLE(pci, via686a_pci_ids); static int __devinit via686a_device_add(unsigned short address) { struct resource res = { .start = address, .end = address + VIA686A_EXTENT - 1, .name = "via686a", .flags = IORESOURCE_IO, }; int err; err = acpi_check_resource_conflict(&res); if (err) goto exit; pdev = platform_device_alloc("via686a", address); if (!pdev) { err = -ENOMEM; printk(KERN_ERR "via686a: Device allocation failed\n"); goto exit; } err = platform_device_add_resources(pdev, &res, 1); if (err) { printk(KERN_ERR "via686a: Device resource addition failed " "(%d)\n", err); goto exit_device_put; } err = platform_device_add(pdev); if (err) { printk(KERN_ERR "via686a: Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit: return err; } static int __devinit via686a_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { u16 address, val; if (force_addr) { address = force_addr & ~(VIA686A_EXTENT - 1); dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(dev, VIA686A_BASE_REG, address | 1)) return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VIA686A_BASE_REG, &val)) return -ENODEV; address = val & ~(VIA686A_EXTENT - 1); if (address == 0) { dev_err(&dev->dev, "base address not set - upgrade BIOS " "or use force_addr=0xaddr\n"); return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VIA686A_ENABLE_REG, &val)) return -ENODEV; if (!(val & 0x0001)) { if (!force_addr) { dev_warn(&dev->dev, "Sensors disabled, enable " "with force_addr=0x%x\n", address); return -ENODEV; } dev_warn(&dev->dev, "Enabling sensors\n"); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(dev, VIA686A_ENABLE_REG, val | 0x0001)) return -ENODEV; } if (platform_driver_register(&via686a_driver)) goto exit; /* Sets global pdev as a side effect */ if (via686a_device_add(address)) goto exit_unregister; /* Always return failure here. This is to allow other drivers to bind * to this pci device. We don't really want to have control over the * pci device, we only wanted to read as few register values from it. */ s_bridge = pci_dev_get(dev); return -ENODEV; exit_unregister: platform_driver_unregister(&via686a_driver); exit: return -ENODEV; } static struct pci_driver via686a_pci_driver = { .name = "via686a", .id_table = via686a_pci_ids, .probe = via686a_pci_probe, }; static int __init sm_via686a_init(void) { return pci_register_driver(&via686a_pci_driver); } static void __exit sm_via686a_exit(void) { pci_unregister_driver(&via686a_pci_driver); if (s_bridge != NULL) { platform_device_unregister(pdev); platform_driver_unregister(&via686a_driver); pci_dev_put(s_bridge); s_bridge = NULL; } } MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, " "Mark Studebaker <mdsxyz123@yahoo.com> " "and Bob Dougherty <bobd@stanford.edu>"); MODULE_DESCRIPTION("VIA 686A Sensor device"); MODULE_LICENSE("GPL"); module_init(sm_via686a_init); module_exit(sm_via686a_exit);