// SPDX-License-Identifier: GPL-2.0-or-later /* * ads7871 - driver for TI ADS7871 A/D converter * * Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com> * * You need to have something like this in struct spi_board_info * { * .modalias = "ads7871", * .max_speed_hz = 2*1000*1000, * .chip_select = 0, * .bus_num = 1, * }, */ /*From figure 18 in the datasheet*/ /*Register addresses*/ #define REG_LS_BYTE 0 /*A/D Output Data, LS Byte*/ #define REG_MS_BYTE 1 /*A/D Output Data, MS Byte*/ #define REG_PGA_VALID 2 /*PGA Valid Register*/ #define REG_AD_CONTROL 3 /*A/D Control Register*/ #define REG_GAIN_MUX 4 /*Gain/Mux Register*/ #define REG_IO_STATE 5 /*Digital I/O State Register*/ #define REG_IO_CONTROL 6 /*Digital I/O Control Register*/ #define REG_OSC_CONTROL 7 /*Rev/Oscillator Control Register*/ #define REG_SER_CONTROL 24 /*Serial Interface Control Register*/ #define REG_ID 31 /*ID Register*/ /* * From figure 17 in the datasheet * These bits get ORed with the address to form * the instruction byte */ /*Instruction Bit masks*/ #define INST_MODE_BM (1 << 7) #define INST_READ_BM (1 << 6) #define INST_16BIT_BM (1 << 5) /*From figure 18 in the datasheet*/ /*bit masks for Rev/Oscillator Control Register*/ #define MUX_CNV_BV 7 #define MUX_CNV_BM (1 << MUX_CNV_BV) #define MUX_M3_BM (1 << 3) /*M3 selects single ended*/ #define MUX_G_BV 4 /*allows for reg = (gain << MUX_G_BV) | ...*/ /*From figure 18 in the datasheet*/ /*bit masks for Rev/Oscillator Control Register*/ #define OSC_OSCR_BM (1 << 5) #define OSC_OSCE_BM (1 << 4) #define OSC_REFE_BM (1 << 3) #define OSC_BUFE_BM (1 << 2) #define OSC_R2V_BM (1 << 1) #define OSC_RBG_BM (1 << 0) #include <linux/module.h> #include <linux/init.h> #include <linux/spi/spi.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/delay.h> #define DEVICE_NAME "ads7871" struct ads7871_data { struct spi_device *spi; }; static int ads7871_read_reg8(struct spi_device *spi, int reg) { int ret; reg = reg | INST_READ_BM; ret = spi_w8r8(spi, reg); return ret; } static int ads7871_read_reg16(struct spi_device *spi, int reg) { int ret; reg = reg | INST_READ_BM | INST_16BIT_BM; ret = spi_w8r16(spi, reg); return ret; } static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val) { u8 tmp[2] = {reg, val}; return spi_write(spi, tmp, sizeof(tmp)); } static ssize_t voltage_show(struct device *dev, struct device_attribute *da, char *buf) { struct ads7871_data *pdata = dev_get_drvdata(dev); struct spi_device *spi = pdata->spi; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int ret, val, i = 0; uint8_t channel, mux_cnv; channel = attr->index; /* * TODO: add support for conversions * other than single ended with a gain of 1 */ /*MUX_M3_BM forces single ended*/ /*This is also where the gain of the PGA would be set*/ ads7871_write_reg8(spi, REG_GAIN_MUX, (MUX_CNV_BM | MUX_M3_BM | channel)); ret = ads7871_read_reg8(spi, REG_GAIN_MUX); mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV); /* * on 400MHz arm9 platform the conversion * is already done when we do this test */ while ((i < 2) && mux_cnv) { i++; ret = ads7871_read_reg8(spi, REG_GAIN_MUX); mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV); msleep_interruptible(1); } if (mux_cnv == 0) { val = ads7871_read_reg16(spi, REG_LS_BYTE); /*result in volts*10000 = (val/8192)*2.5*10000*/ val = ((val >> 2) * 25000) / 8192; return sprintf(buf, "%d\n", val); } else { return -1; } } static SENSOR_DEVICE_ATTR_RO(in0_input, voltage, 0); static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 5); static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 6); static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 7); static struct attribute *ads7871_attrs[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(ads7871); static int ads7871_probe(struct spi_device *spi) { struct device *dev = &spi->dev; int ret; uint8_t val; struct ads7871_data *pdata; struct device *hwmon_dev; /* Configure the SPI bus */ spi->mode = (SPI_MODE_0); spi->bits_per_word = 8; spi_setup(spi); ads7871_write_reg8(spi, REG_SER_CONTROL, 0); ads7871_write_reg8(spi, REG_AD_CONTROL, 0); val = (OSC_OSCR_BM | OSC_OSCE_BM | OSC_REFE_BM | OSC_BUFE_BM); ads7871_write_reg8(spi, REG_OSC_CONTROL, val); ret = ads7871_read_reg8(spi, REG_OSC_CONTROL); dev_dbg(dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret); /* * because there is no other error checking on an SPI bus * we need to make sure we really have a chip */ if (val != ret) return -ENODEV; pdata = devm_kzalloc(dev, sizeof(struct ads7871_data), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->spi = spi; hwmon_dev = devm_hwmon_device_register_with_groups(dev, spi->modalias, pdata, ads7871_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static struct spi_driver ads7871_driver = { .driver = { .name = DEVICE_NAME, }, .probe = ads7871_probe, }; module_spi_driver(ads7871_driver); MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>"); MODULE_DESCRIPTION("TI ADS7871 A/D driver"); MODULE_LICENSE("GPL");