/* * adm9240.c Part of lm_sensors, Linux kernel modules for hardware * monitoring * * Copyright (C) 1999 Frodo Looijaard * Philip Edelbrock * Copyright (C) 2003 Michiel Rook * Copyright (C) 2005 Grant Coady with valuable * guidance from Jean Delvare * * Driver supports Analog Devices ADM9240 * Dallas Semiconductor DS1780 * National Semiconductor LM81 * * ADM9240 is the reference, DS1780 and LM81 are register compatibles * * Voltage Six inputs are scaled by chip, VID also reported * Temperature Chip temperature to 0.5'C, maximum and max_hysteris * Fans 2 fans, low speed alarm, automatic fan clock divider * Alarms 16-bit map of active alarms * Analog Out 0..1250 mV output * * Chassis Intrusion: clear CI latch with 'echo 1 > chassis_clear' * * Test hardware: Intel SE440BX-2 desktop motherboard --Grant * * LM81 extended temp reading not implemented * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include /* Addresses to scan */ static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_3(adm9240, ds1780, lm81); /* ADM9240 registers */ #define ADM9240_REG_MAN_ID 0x3e #define ADM9240_REG_DIE_REV 0x3f #define ADM9240_REG_CONFIG 0x40 #define ADM9240_REG_IN(nr) (0x20 + (nr)) /* 0..5 */ #define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2) #define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2) #define ADM9240_REG_FAN(nr) (0x28 + (nr)) /* 0..1 */ #define ADM9240_REG_FAN_MIN(nr) (0x3b + (nr)) #define ADM9240_REG_INT(nr) (0x41 + (nr)) #define ADM9240_REG_INT_MASK(nr) (0x43 + (nr)) #define ADM9240_REG_TEMP 0x27 #define ADM9240_REG_TEMP_HIGH 0x39 #define ADM9240_REG_TEMP_HYST 0x3a #define ADM9240_REG_ANALOG_OUT 0x19 #define ADM9240_REG_CHASSIS_CLEAR 0x46 #define ADM9240_REG_VID_FAN_DIV 0x47 #define ADM9240_REG_I2C_ADDR 0x48 #define ADM9240_REG_VID4 0x49 #define ADM9240_REG_TEMP_CONF 0x4b /* generalised scaling with integer rounding */ static inline int SCALE(long val, int mul, int div) { if (val < 0) return (val * mul - div / 2) / div; else return (val * mul + div / 2) / div; } /* adm9240 internally scales voltage measurements */ static const u16 nom_mv[] = { 2500, 2700, 3300, 5000, 12000, 2700 }; static inline unsigned int IN_FROM_REG(u8 reg, int n) { return SCALE(reg, nom_mv[n], 192); } static inline u8 IN_TO_REG(unsigned long val, int n) { return SENSORS_LIMIT(SCALE(val, 192, nom_mv[n]), 0, 255); } /* temperature range: -40..125, 127 disables temperature alarm */ static inline s8 TEMP_TO_REG(long val) { return SENSORS_LIMIT(SCALE(val, 1, 1000), -40, 127); } /* two fans, each with low fan speed limit */ static inline unsigned int FAN_FROM_REG(u8 reg, u8 div) { if (!reg) /* error */ return -1; if (reg == 255) return 0; return SCALE(1350000, 1, reg * div); } /* analog out 0..1250mV */ static inline u8 AOUT_TO_REG(unsigned long val) { return SENSORS_LIMIT(SCALE(val, 255, 1250), 0, 255); } static inline unsigned int AOUT_FROM_REG(u8 reg) { return SCALE(reg, 1250, 255); } static int adm9240_attach_adapter(struct i2c_adapter *adapter); static int adm9240_detect(struct i2c_adapter *adapter, int address, int kind); static void adm9240_init_client(struct i2c_client *client); static int adm9240_detach_client(struct i2c_client *client); static struct adm9240_data *adm9240_update_device(struct device *dev); /* driver data */ static struct i2c_driver adm9240_driver = { .owner = THIS_MODULE, .name = "adm9240", .id = I2C_DRIVERID_ADM9240, .flags = I2C_DF_NOTIFY, .attach_adapter = adm9240_attach_adapter, .detach_client = adm9240_detach_client, }; /* per client data */ struct adm9240_data { enum chips type; struct i2c_client client; struct class_device *class_dev; struct semaphore update_lock; char valid; unsigned long last_updated_measure; unsigned long last_updated_config; u8 in[6]; /* ro in0_input */ u8 in_max[6]; /* rw in0_max */ u8 in_min[6]; /* rw in0_min */ u8 fan[2]; /* ro fan1_input */ u8 fan_min[2]; /* rw fan1_min */ u8 fan_div[2]; /* rw fan1_div, read-only accessor */ s16 temp; /* ro temp1_input, 9-bit sign-extended */ s8 temp_high; /* rw temp1_max */ s8 temp_hyst; /* rw temp1_max_hyst */ u16 alarms; /* ro alarms */ u8 aout; /* rw aout_output */ u8 vid; /* ro vid */ u8 vrm; /* -- vrm set on startup, no accessor */ }; /*** sysfs accessors ***/ /* temperature */ #define show_temp(value, scale) \ static ssize_t show_##value(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct adm9240_data *data = adm9240_update_device(dev); \ return sprintf(buf, "%d\n", data->value * scale); \ } show_temp(temp_high, 1000); show_temp(temp_hyst, 1000); show_temp(temp, 500); /* 0.5'C per bit */ #define set_temp(value, reg) \ static ssize_t set_##value(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct i2c_client *client = to_i2c_client(dev); \ struct adm9240_data *data = adm9240_update_device(dev); \ long temp = simple_strtoul(buf, NULL, 10); \ \ down(&data->update_lock); \ data->value = TEMP_TO_REG(temp); \ i2c_smbus_write_byte_data(client, reg, data->value); \ up(&data->update_lock); \ return count; \ } set_temp(temp_high, ADM9240_REG_TEMP_HIGH); set_temp(temp_hyst, ADM9240_REG_TEMP_HYST); static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_high, set_temp_high); static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hyst, set_temp_hyst); static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL); /* voltage */ static ssize_t show_in(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr], nr)); } static ssize_t show_in_min(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[nr], nr)); } static ssize_t show_in_max(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[nr], nr)); } static ssize_t set_in_min(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct adm9240_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); down(&data->update_lock); data->in_min[nr] = IN_TO_REG(val, nr); i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MIN(nr), data->in_min[nr]); up(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct adm9240_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); down(&data->update_lock); data->in_max[nr] = IN_TO_REG(val, nr); i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MAX(nr), data->in_max[nr]); up(&data->update_lock); return count; } #define show_in_offset(offset) \ static ssize_t show_in##offset(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_in(dev, buf, offset); \ } \ static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL); \ static ssize_t show_in##offset##_min(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_in_min(dev, buf, offset); \ } \ static ssize_t show_in##offset##_max(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_in_max(dev, buf, offset); \ } \ static ssize_t \ set_in##offset##_min(struct device *dev, \ struct device_attribute *attr, const char *buf, \ size_t count) \ { \ return set_in_min(dev, buf, count, offset); \ } \ static ssize_t \ set_in##offset##_max(struct device *dev, \ struct device_attribute *attr, const char *buf, \ size_t count) \ { \ return set_in_max(dev, buf, count, offset); \ } \ static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in##offset##_min, set_in##offset##_min); \ static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in##offset##_max, set_in##offset##_max); show_in_offset(0); show_in_offset(1); show_in_offset(2); show_in_offset(3); show_in_offset(4); show_in_offset(5); /* fans */ static ssize_t show_fan(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 1 << data->fan_div[nr])); } static ssize_t show_fan_min(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 1 << data->fan_div[nr])); } static ssize_t show_fan_div(struct device *dev, char *buf, int nr) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", 1 << data->fan_div[nr]); } /* write new fan div, callers must hold data->update_lock */ static void adm9240_write_fan_div(struct i2c_client *client, int nr, u8 fan_div) { u8 reg, old, shift = (nr + 2) * 2; reg = i2c_smbus_read_byte_data(client, ADM9240_REG_VID_FAN_DIV); old = (reg >> shift) & 3; reg &= ~(3 << shift); reg |= (fan_div << shift); i2c_smbus_write_byte_data(client, ADM9240_REG_VID_FAN_DIV, reg); dev_dbg(&client->dev, "fan%d clock divider changed from %u " "to %u\n", nr + 1, 1 << old, 1 << fan_div); } /* * set fan speed low limit: * * - value is zero: disable fan speed low limit alarm * * - value is below fan speed measurement range: enable fan speed low * limit alarm to be asserted while fan speed too slow to measure * * - otherwise: select fan clock divider to suit fan speed low limit, * measurement code may adjust registers to ensure fan speed reading */ static ssize_t set_fan_min(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct adm9240_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); u8 new_div; down(&data->update_lock); if (!val) { data->fan_min[nr] = 255; new_div = data->fan_div[nr]; dev_dbg(&client->dev, "fan%u low limit set disabled\n", nr + 1); } else if (val < 1350000 / (8 * 254)) { new_div = 3; data->fan_min[nr] = 254; dev_dbg(&client->dev, "fan%u low limit set minimum %u\n", nr + 1, FAN_FROM_REG(254, 1 << new_div)); } else { unsigned int new_min = 1350000 / val; new_div = 0; while (new_min > 192 && new_div < 3) { new_div++; new_min /= 2; } if (!new_min) /* keep > 0 */ new_min++; data->fan_min[nr] = new_min; dev_dbg(&client->dev, "fan%u low limit set fan speed %u\n", nr + 1, FAN_FROM_REG(new_min, 1 << new_div)); } if (new_div != data->fan_div[nr]) { data->fan_div[nr] = new_div; adm9240_write_fan_div(client, nr, new_div); } i2c_smbus_write_byte_data(client, ADM9240_REG_FAN_MIN(nr), data->fan_min[nr]); up(&data->update_lock); return count; } #define show_fan_offset(offset) \ static ssize_t show_fan_##offset (struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_fan(dev, buf, offset - 1); \ } \ static ssize_t show_fan_##offset##_div (struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_fan_div(dev, buf, offset - 1); \ } \ static ssize_t show_fan_##offset##_min (struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return show_fan_min(dev, buf, offset - 1); \ } \ static ssize_t set_fan_##offset##_min (struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_fan_min(dev, buf, count, offset - 1); \ } \ static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan_##offset, NULL); \ static DEVICE_ATTR(fan##offset##_div, S_IRUGO, \ show_fan_##offset##_div, NULL); \ static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_##offset##_min, set_fan_##offset##_min); show_fan_offset(1); show_fan_offset(2); /* alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); /* vid */ static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); /* analog output */ static ssize_t show_aout(struct device *dev, struct device_attribute *attr, char *buf) { struct adm9240_data *data = adm9240_update_device(dev); return sprintf(buf, "%d\n", AOUT_FROM_REG(data->aout)); } static ssize_t set_aout(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm9240_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtol(buf, NULL, 10); down(&data->update_lock); data->aout = AOUT_TO_REG(val); i2c_smbus_write_byte_data(client, ADM9240_REG_ANALOG_OUT, data->aout); up(&data->update_lock); return count; } static DEVICE_ATTR(aout_output, S_IRUGO | S_IWUSR, show_aout, set_aout); /* chassis_clear */ static ssize_t chassis_clear(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); unsigned long val = simple_strtol(buf, NULL, 10); if (val == 1) { i2c_smbus_write_byte_data(client, ADM9240_REG_CHASSIS_CLEAR, 0x80); dev_dbg(&client->dev, "chassis intrusion latch cleared\n"); } return count; } static DEVICE_ATTR(chassis_clear, S_IWUSR, NULL, chassis_clear); /*** sensor chip detect and driver install ***/ static int adm9240_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct adm9240_data *data; int err = 0; const char *name = ""; u8 man_id, die_rev; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; if (!(data = kzalloc(sizeof(*data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &adm9240_driver; new_client->flags = 0; if (kind == 0) { kind = adm9240; } if (kind < 0) { /* verify chip: reg address should match i2c address */ if (i2c_smbus_read_byte_data(new_client, ADM9240_REG_I2C_ADDR) != address) { dev_err(&adapter->dev, "detect fail: address match, " "0x%02x\n", address); goto exit_free; } /* check known chip manufacturer */ man_id = i2c_smbus_read_byte_data(new_client, ADM9240_REG_MAN_ID); if (man_id == 0x23) { kind = adm9240; } else if (man_id == 0xda) { kind = ds1780; } else if (man_id == 0x01) { kind = lm81; } else { dev_err(&adapter->dev, "detect fail: unknown manuf, " "0x%02x\n", man_id); goto exit_free; } /* successful detect, print chip info */ die_rev = i2c_smbus_read_byte_data(new_client, ADM9240_REG_DIE_REV); dev_info(&adapter->dev, "found %s revision %u\n", man_id == 0x23 ? "ADM9240" : man_id == 0xda ? "DS1780" : "LM81", die_rev); } /* either forced or detected chip kind */ if (kind == adm9240) { name = "adm9240"; } else if (kind == ds1780) { name = "ds1780"; } else if (kind == lm81) { name = "lm81"; } /* fill in the remaining client fields and attach */ strlcpy(new_client->name, name, I2C_NAME_SIZE); data->type = kind; init_MUTEX(&data->update_lock); if ((err = i2c_attach_client(new_client))) goto exit_free; adm9240_init_client(new_client); /* populate sysfs filesystem */ data->class_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exit_detach; } device_create_file(&new_client->dev, &dev_attr_in0_input); device_create_file(&new_client->dev, &dev_attr_in0_min); device_create_file(&new_client->dev, &dev_attr_in0_max); device_create_file(&new_client->dev, &dev_attr_in1_input); device_create_file(&new_client->dev, &dev_attr_in1_min); device_create_file(&new_client->dev, &dev_attr_in1_max); device_create_file(&new_client->dev, &dev_attr_in2_input); device_create_file(&new_client->dev, &dev_attr_in2_min); device_create_file(&new_client->dev, &dev_attr_in2_max); device_create_file(&new_client->dev, &dev_attr_in3_input); device_create_file(&new_client->dev, &dev_attr_in3_min); device_create_file(&new_client->dev, &dev_attr_in3_max); device_create_file(&new_client->dev, &dev_attr_in4_input); device_create_file(&new_client->dev, &dev_attr_in4_min); device_create_file(&new_client->dev, &dev_attr_in4_max); device_create_file(&new_client->dev, &dev_attr_in5_input); device_create_file(&new_client->dev, &dev_attr_in5_min); device_create_file(&new_client->dev, &dev_attr_in5_max); device_create_file(&new_client->dev, &dev_attr_temp1_max); device_create_file(&new_client->dev, &dev_attr_temp1_max_hyst); device_create_file(&new_client->dev, &dev_attr_temp1_input); device_create_file(&new_client->dev, &dev_attr_fan1_input); device_create_file(&new_client->dev, &dev_attr_fan1_div); device_create_file(&new_client->dev, &dev_attr_fan1_min); device_create_file(&new_client->dev, &dev_attr_fan2_input); device_create_file(&new_client->dev, &dev_attr_fan2_div); device_create_file(&new_client->dev, &dev_attr_fan2_min); device_create_file(&new_client->dev, &dev_attr_alarms); device_create_file(&new_client->dev, &dev_attr_aout_output); device_create_file(&new_client->dev, &dev_attr_chassis_clear); device_create_file(&new_client->dev, &dev_attr_cpu0_vid); return 0; exit_detach: i2c_detach_client(new_client); exit_free: kfree(data); exit: return err; } static int adm9240_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, adm9240_detect); } static int adm9240_detach_client(struct i2c_client *client) { struct adm9240_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->class_dev); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static void adm9240_init_client(struct i2c_client *client) { struct adm9240_data *data = i2c_get_clientdata(client); u8 conf = i2c_smbus_read_byte_data(client, ADM9240_REG_CONFIG); u8 mode = i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP_CONF) & 3; data->vrm = vid_which_vrm(); /* need this to report vid as mV */ dev_info(&client->dev, "Using VRM: %d.%d\n", data->vrm / 10, data->vrm % 10); if (conf & 1) { /* measurement cycle running: report state */ dev_info(&client->dev, "status: config 0x%02x mode %u\n", conf, mode); } else { /* cold start: open limits before starting chip */ int i; for (i = 0; i < 6; i++) { i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MIN(i), 0); i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MAX(i), 255); } i2c_smbus_write_byte_data(client, ADM9240_REG_FAN_MIN(0), 255); i2c_smbus_write_byte_data(client, ADM9240_REG_FAN_MIN(1), 255); i2c_smbus_write_byte_data(client, ADM9240_REG_TEMP_HIGH, 127); i2c_smbus_write_byte_data(client, ADM9240_REG_TEMP_HYST, 127); /* start measurement cycle */ i2c_smbus_write_byte_data(client, ADM9240_REG_CONFIG, 1); dev_info(&client->dev, "cold start: config was 0x%02x " "mode %u\n", conf, mode); } } static struct adm9240_data *adm9240_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adm9240_data *data = i2c_get_clientdata(client); int i; down(&data->update_lock); /* minimum measurement cycle: 1.75 seconds */ if (time_after(jiffies, data->last_updated_measure + (HZ * 7 / 4)) || !data->valid) { for (i = 0; i < 6; i++) /* read voltages */ { data->in[i] = i2c_smbus_read_byte_data(client, ADM9240_REG_IN(i)); } data->alarms = i2c_smbus_read_byte_data(client, ADM9240_REG_INT(0)) | i2c_smbus_read_byte_data(client, ADM9240_REG_INT(1)) << 8; /* read temperature: assume temperature changes less than * 0.5'C per two measurement cycles thus ignore possible * but unlikely aliasing error on lsb reading. --Grant */ data->temp = ((i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP) << 8) | i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP_CONF)) / 128; for (i = 0; i < 2; i++) /* read fans */ { data->fan[i] = i2c_smbus_read_byte_data(client, ADM9240_REG_FAN(i)); /* adjust fan clock divider on overflow */ if (data->valid && data->fan[i] == 255 && data->fan_div[i] < 3) { adm9240_write_fan_div(client, i, ++data->fan_div[i]); /* adjust fan_min if active, but not to 0 */ if (data->fan_min[i] < 255 && data->fan_min[i] >= 2) data->fan_min[i] /= 2; } } data->last_updated_measure = jiffies; } /* minimum config reading cycle: 300 seconds */ if (time_after(jiffies, data->last_updated_config + (HZ * 300)) || !data->valid) { for (i = 0; i < 6; i++) { data->in_min[i] = i2c_smbus_read_byte_data(client, ADM9240_REG_IN_MIN(i)); data->in_max[i] = i2c_smbus_read_byte_data(client, ADM9240_REG_IN_MAX(i)); } for (i = 0; i < 2; i++) { data->fan_min[i] = i2c_smbus_read_byte_data(client, ADM9240_REG_FAN_MIN(i)); } data->temp_high = i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP_HIGH); data->temp_hyst = i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP_HYST); /* read fan divs and 5-bit VID */ i = i2c_smbus_read_byte_data(client, ADM9240_REG_VID_FAN_DIV); data->fan_div[0] = (i >> 4) & 3; data->fan_div[1] = (i >> 6) & 3; data->vid = i & 0x0f; data->vid |= (i2c_smbus_read_byte_data(client, ADM9240_REG_VID4) & 1) << 4; /* read analog out */ data->aout = i2c_smbus_read_byte_data(client, ADM9240_REG_ANALOG_OUT); data->last_updated_config = jiffies; data->valid = 1; } up(&data->update_lock); return data; } static int __init sensors_adm9240_init(void) { return i2c_add_driver(&adm9240_driver); } static void __exit sensors_adm9240_exit(void) { i2c_del_driver(&adm9240_driver); } MODULE_AUTHOR("Michiel Rook , " "Grant Coady and others"); MODULE_DESCRIPTION("ADM9240/DS1780/LM81 driver"); MODULE_LICENSE("GPL"); module_init(sensors_adm9240_init); module_exit(sensors_adm9240_exit);