// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "xe_gt_tlb_invalidation.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_guc.h" #include "xe_guc_ct.h" #include "xe_trace.h" #define TLB_TIMEOUT (HZ / 4) static void xe_gt_tlb_fence_timeout(struct work_struct *work) { struct xe_gt *gt = container_of(work, struct xe_gt, tlb_invalidation.fence_tdr.work); struct xe_gt_tlb_invalidation_fence *fence, *next; spin_lock_irq(>->tlb_invalidation.pending_lock); list_for_each_entry_safe(fence, next, >->tlb_invalidation.pending_fences, link) { s64 since_inval_ms = ktime_ms_delta(ktime_get(), fence->invalidation_time); if (msecs_to_jiffies(since_inval_ms) < TLB_TIMEOUT) break; trace_xe_gt_tlb_invalidation_fence_timeout(fence); drm_err(>_to_xe(gt)->drm, "gt%d: TLB invalidation fence timeout, seqno=%d recv=%d", gt->info.id, fence->seqno, gt->tlb_invalidation.seqno_recv); list_del(&fence->link); fence->base.error = -ETIME; dma_fence_signal(&fence->base); dma_fence_put(&fence->base); } if (!list_empty(>->tlb_invalidation.pending_fences)) queue_delayed_work(system_wq, >->tlb_invalidation.fence_tdr, TLB_TIMEOUT); spin_unlock_irq(>->tlb_invalidation.pending_lock); } /** * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state * @gt: graphics tile * * Initialize GT TLB invalidation state, purely software initialization, should * be called once during driver load. * * Return: 0 on success, negative error code on error. */ int xe_gt_tlb_invalidation_init(struct xe_gt *gt) { gt->tlb_invalidation.seqno = 1; INIT_LIST_HEAD(>->tlb_invalidation.pending_fences); spin_lock_init(>->tlb_invalidation.pending_lock); spin_lock_init(>->tlb_invalidation.lock); gt->tlb_invalidation.fence_context = dma_fence_context_alloc(1); INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr, xe_gt_tlb_fence_timeout); return 0; } static void __invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) { trace_xe_gt_tlb_invalidation_fence_signal(fence); dma_fence_signal(&fence->base); dma_fence_put(&fence->base); } static void invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) { list_del(&fence->link); __invalidation_fence_signal(fence); } /** * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset * @gt: graphics tile * * Signal any pending invalidation fences, should be called during a GT reset */ void xe_gt_tlb_invalidation_reset(struct xe_gt *gt) { struct xe_gt_tlb_invalidation_fence *fence, *next; struct xe_guc *guc = >->uc.guc; int pending_seqno; /* * CT channel is already disabled at this point. No new TLB requests can * appear. */ mutex_lock(>->uc.guc.ct.lock); spin_lock_irq(>->tlb_invalidation.pending_lock); cancel_delayed_work(>->tlb_invalidation.fence_tdr); /* * We might have various kworkers waiting for TLB flushes to complete * which are not tracked with an explicit TLB fence, however at this * stage that will never happen since the CT is already disabled, so * make sure we signal them here under the assumption that we have * completed a full GT reset. */ if (gt->tlb_invalidation.seqno == 1) pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1; else pending_seqno = gt->tlb_invalidation.seqno - 1; WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno); wake_up_all(&guc->ct.wq); list_for_each_entry_safe(fence, next, >->tlb_invalidation.pending_fences, link) invalidation_fence_signal(fence); spin_unlock_irq(>->tlb_invalidation.pending_lock); mutex_unlock(>->uc.guc.ct.lock); } static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno) { int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv); if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2)) return false; if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2)) return true; return seqno_recv >= seqno; } static int send_tlb_invalidation(struct xe_guc *guc, struct xe_gt_tlb_invalidation_fence *fence, u32 *action, int len) { struct xe_gt *gt = guc_to_gt(guc); int seqno; int ret; /* * XXX: The seqno algorithm relies on TLB invalidation being processed * in order which they currently are, if that changes the algorithm will * need to be updated. */ mutex_lock(&guc->ct.lock); seqno = gt->tlb_invalidation.seqno; if (fence) { fence->seqno = seqno; trace_xe_gt_tlb_invalidation_fence_send(fence); } action[1] = seqno; ret = xe_guc_ct_send_locked(&guc->ct, action, len, G2H_LEN_DW_TLB_INVALIDATE, 1); if (!ret && fence) { spin_lock_irq(>->tlb_invalidation.pending_lock); /* * We haven't actually published the TLB fence as per * pending_fences, but in theory our seqno could have already * been written as we acquired the pending_lock. In such a case * we can just go ahead and signal the fence here. */ if (tlb_invalidation_seqno_past(gt, seqno)) { __invalidation_fence_signal(fence); } else { fence->invalidation_time = ktime_get(); list_add_tail(&fence->link, >->tlb_invalidation.pending_fences); if (list_is_singular(>->tlb_invalidation.pending_fences)) queue_delayed_work(system_wq, >->tlb_invalidation.fence_tdr, TLB_TIMEOUT); } spin_unlock_irq(>->tlb_invalidation.pending_lock); } else if (ret < 0 && fence) { __invalidation_fence_signal(fence); } if (!ret) { gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) % TLB_INVALIDATION_SEQNO_MAX; if (!gt->tlb_invalidation.seqno) gt->tlb_invalidation.seqno = 1; ret = seqno; } mutex_unlock(&guc->ct.lock); return ret; } #define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \ XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \ XE_GUC_TLB_INVAL_FLUSH_CACHE) /** * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC * @gt: graphics tile * * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and * caller can use seqno + xe_gt_tlb_invalidation_wait to wait for completion. * * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, * negative error code on error. */ int xe_gt_tlb_invalidation_guc(struct xe_gt *gt) { u32 action[] = { XE_GUC_ACTION_TLB_INVALIDATION, 0, /* seqno, replaced in send_tlb_invalidation */ MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC), }; return send_tlb_invalidation(>->uc.guc, NULL, action, ARRAY_SIZE(action)); } /** * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA * @gt: graphics tile * @fence: invalidation fence which will be signal on TLB invalidation * completion, can be NULL * @vma: VMA to invalidate * * Issue a range based TLB invalidation if supported, if not fallback to a full * TLB invalidation. Completion of TLB is asynchronous and caller can either use * the invalidation fence or seqno + xe_gt_tlb_invalidation_wait to wait for * completion. * * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, * negative error code on error. */ int xe_gt_tlb_invalidation_vma(struct xe_gt *gt, struct xe_gt_tlb_invalidation_fence *fence, struct xe_vma *vma) { struct xe_device *xe = gt_to_xe(gt); #define MAX_TLB_INVALIDATION_LEN 7 u32 action[MAX_TLB_INVALIDATION_LEN]; int len = 0; xe_gt_assert(gt, vma); action[len++] = XE_GUC_ACTION_TLB_INVALIDATION; action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */ if (!xe->info.has_range_tlb_invalidation) { action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL); } else { u64 start = xe_vma_start(vma); u64 length = xe_vma_size(vma); u64 align, end; if (length < SZ_4K) length = SZ_4K; /* * We need to invalidate a higher granularity if start address * is not aligned to length. When start is not aligned with * length we need to find the length large enough to create an * address mask covering the required range. */ align = roundup_pow_of_two(length); start = ALIGN_DOWN(xe_vma_start(vma), align); end = ALIGN(xe_vma_end(vma), align); length = align; while (start + length < end) { length <<= 1; start = ALIGN_DOWN(xe_vma_start(vma), length); } /* * Minimum invalidation size for a 2MB page that the hardware * expects is 16MB */ if (length >= SZ_2M) { length = max_t(u64, SZ_16M, length); start = ALIGN_DOWN(xe_vma_start(vma), length); } xe_gt_assert(gt, length >= SZ_4K); xe_gt_assert(gt, is_power_of_2(length)); xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, ilog2(SZ_2M) + 1))); xe_gt_assert(gt, IS_ALIGNED(start, length)); action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE); action[len++] = xe_vma_vm(vma)->usm.asid; action[len++] = lower_32_bits(start); action[len++] = upper_32_bits(start); action[len++] = ilog2(length) - ilog2(SZ_4K); } xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN); return send_tlb_invalidation(>->uc.guc, fence, action, len); } /** * xe_gt_tlb_invalidation_wait - Wait for TLB to complete * @gt: graphics tile * @seqno: seqno to wait which was returned from xe_gt_tlb_invalidation * * Wait for 200ms for a TLB invalidation to complete, in practice we always * should receive the TLB invalidation within 200ms. * * Return: 0 on success, -ETIME on TLB invalidation timeout */ int xe_gt_tlb_invalidation_wait(struct xe_gt *gt, int seqno) { struct xe_device *xe = gt_to_xe(gt); struct xe_guc *guc = >->uc.guc; struct drm_printer p = drm_err_printer(__func__); int ret; /* * XXX: See above, this algorithm only works if seqno are always in * order */ ret = wait_event_timeout(guc->ct.wq, tlb_invalidation_seqno_past(gt, seqno), TLB_TIMEOUT); if (!ret) { drm_err(&xe->drm, "gt%d: TLB invalidation time'd out, seqno=%d, recv=%d\n", gt->info.id, seqno, gt->tlb_invalidation.seqno_recv); xe_guc_ct_print(&guc->ct, &p, true); return -ETIME; } return 0; } /** * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler * @guc: guc * @msg: message indicating TLB invalidation done * @len: length of message * * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any * invalidation fences for seqno. Algorithm for this depends on seqno being * received in-order and asserts this assumption. * * Return: 0 on success, -EPROTO for malformed messages. */ int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len) { struct xe_gt *gt = guc_to_gt(guc); struct xe_gt_tlb_invalidation_fence *fence, *next; unsigned long flags; if (unlikely(len != 1)) return -EPROTO; /* * This can also be run both directly from the IRQ handler and also in * process_g2h_msg(). Only one may process any individual CT message, * however the order they are processed here could result in skipping a * seqno. To handle that we just process all the seqnos from the last * seqno_recv up to and including the one in msg[0]. The delta should be * very small so there shouldn't be much of pending_fences we actually * need to iterate over here. * * From GuC POV we expect the seqnos to always appear in-order, so if we * see something later in the timeline we can be sure that anything * appearing earlier has already signalled, just that we have yet to * officially process the CT message like if racing against * process_g2h_msg(). */ spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags); if (tlb_invalidation_seqno_past(gt, msg[0])) { spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); return 0; } /* * wake_up_all() and wait_event_timeout() already have the correct * barriers. */ WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]); wake_up_all(&guc->ct.wq); list_for_each_entry_safe(fence, next, >->tlb_invalidation.pending_fences, link) { trace_xe_gt_tlb_invalidation_fence_recv(fence); if (!tlb_invalidation_seqno_past(gt, fence->seqno)) break; invalidation_fence_signal(fence); } if (!list_empty(>->tlb_invalidation.pending_fences)) mod_delayed_work(system_wq, >->tlb_invalidation.fence_tdr, TLB_TIMEOUT); else cancel_delayed_work(>->tlb_invalidation.fence_tdr); spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); return 0; }