// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_gt_topology.h" #include "xe_gt_types.h" #include "xe_mmio.h" #include "gt/intel_gt_regs.h" /** * DOC: GT Multicast/Replicated (MCR) Register Support * * Some GT registers are designed as "multicast" or "replicated" registers: * multiple instances of the same register share a single MMIO offset. MCR * registers are generally used when the hardware needs to potentially track * independent values of a register per hardware unit (e.g., per-subslice, * per-L3bank, etc.). The specific types of replication that exist vary * per-platform. * * MMIO accesses to MCR registers are controlled according to the settings * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR * registers can be done in either a (i.e., a single write updates all * instances of the register to the same value) or unicast (a write updates only * one specific instance). Reads of MCR registers always operate in a unicast * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. * Selection of a specific MCR instance for unicast operations is referred to * as "steering." * * If MCR register operations are steered toward a hardware unit that is * fused off or currently powered down due to power gating, the MMIO operation * is "terminated" by the hardware. Terminated read operations will return a * value of zero and terminated unicast write operations will be silently * ignored. */ enum { MCR_OP_READ, MCR_OP_WRITE }; static const struct xe_mmio_range xelp_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; /* * Although the bspec lists more "MSLICE" ranges than shown here, some of those * are of a "GAM" subclass that has special rules and doesn't need to be * included here. */ static const struct xe_mmio_range xehp_mslice_steering_table[] = { { 0x00DD00, 0x00DDFF }, { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ {}, }; static const struct xe_mmio_range xehp_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D880, 0x00D8FF }, {}, }; /* * We have several types of MCR registers where steering to (0,0) will always * provide us with a non-terminated value. We'll stick them all in the same * table for simplicity. */ static const struct xe_mmio_range xehpc_instance0_steering_table[] = { { 0x004000, 0x004AFF }, /* HALF-BSLICE */ { 0x008800, 0x00887F }, /* CC */ { 0x008A80, 0x008AFF }, /* TILEPSMI */ { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ { 0x00B100, 0x00B3FF }, /* L3BANK */ { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ { 0x00DD00, 0x00DDFF }, /* BSLICE */ { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ { 0x024180, 0x0241FF }, /* HALF-BSLICE */ {}, }; static const struct xe_mmio_range xelpg_instance0_steering_table[] = { { 0x000B00, 0x000BFF }, /* SQIDI */ { 0x001000, 0x001FFF }, /* SQIDI */ { 0x004000, 0x0048FF }, /* GAM */ { 0x008700, 0x0087FF }, /* SQIDI */ { 0x00B000, 0x00B0FF }, /* NODE */ { 0x00C800, 0x00CFFF }, /* GAM */ { 0x00D880, 0x00D8FF }, /* NODE */ { 0x00DD00, 0x00DDFF }, /* OAAL2 */ {}, }; static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; static const struct xe_mmio_range xelp_dss_steering_table[] = { { 0x008150, 0x00815F }, { 0x009520, 0x00955F }, { 0x00DE80, 0x00E8FF }, { 0x024A00, 0x024A7F }, {}, }; /* DSS steering is used for GSLICE ranges as well */ static const struct xe_mmio_range xehp_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* GSLICE */ { 0x005400, 0x007FFF }, /* GSLICE */ { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x008D00, 0x008DFF }, /* DSS */ { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* GSLICE */ { 0x00DC00, 0x00DCFF }, /* GSLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ { 0x017000, 0x017FFF }, /* GSLICE */ { 0x024A00, 0x024A7F }, /* DSS */ {}, }; /* DSS steering is used for COMPUTE ranges as well */ static const struct xe_mmio_range xehpc_dss_steering_table[] = { { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00DC00, 0x00DCFF }, /* COMPUTE */ { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ {}, }; /* DSS steering is used for SLICE ranges as well */ static const struct xe_mmio_range xelpg_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* SLICE */ { 0x005500, 0x007FFF }, /* SLICE */ { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* SLICE */ { 0x00DC00, 0x00DCFF }, /* SLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ {}, }; static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { { 0x393200, 0x39323F }, { 0x393400, 0x3934FF }, {}, }; /* * DG2 GAM registers are a special case; this table is checked directly in * xe_gt_mcr_get_nonterminated_steering and is not hooked up via * gt->steering[]. */ static const struct xe_mmio_range dg2_gam_ranges[] = { { 0x004000, 0x004AFF }, { 0x00C800, 0x00CFFF }, { 0x00F000, 0x00FFFF }, {}, }; static void init_steering_l3bank(struct xe_gt *gt) { if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { u32 mslice_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, xe_mmio_read32(gt, GEN10_MIRROR_FUSE3.reg)); u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, xe_mmio_read32(gt, XEHP_FUSE4.reg)); /* * Group selects mslice, instance selects bank within mslice. * Bank 0 is always valid _except_ when the bank mask is 010b. */ gt->steering[L3BANK].group_target = __ffs(mslice_mask); gt->steering[L3BANK].instance_target = bank_mask & BIT(0) ? 0 : 2; } else { u32 fuse = REG_FIELD_GET(GEN10_L3BANK_MASK, ~xe_mmio_read32(gt, GEN10_MIRROR_FUSE3.reg)); gt->steering[L3BANK].group_target = 0; /* unused */ gt->steering[L3BANK].instance_target = __ffs(fuse); } } static void init_steering_mslice(struct xe_gt *gt) { u32 mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, xe_mmio_read32(gt, GEN10_MIRROR_FUSE3.reg)); /* * mslice registers are valid (not terminated) if either the meml3 * associated with the mslice is present, or at least one DSS associated * with the mslice is present. There will always be at least one meml3 * so we can just use that to find a non-terminated mslice and ignore * the DSS fusing. */ gt->steering[MSLICE].group_target = __ffs(mask); gt->steering[MSLICE].instance_target = 0; /* unused */ /* * LNCF termination is also based on mslice presence, so we'll set * it up here. Either LNCF within a non-terminated mslice will work, * so we just always pick LNCF 0 here. */ gt->steering[LNCF].group_target = __ffs(mask) << 1; gt->steering[LNCF].instance_target = 0; /* unused */ } static void init_steering_dss(struct xe_gt *gt) { unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)); unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4; gt->steering[DSS].group_target = dss / dss_per_grp; gt->steering[DSS].instance_target = dss % dss_per_grp; } static void init_steering_oaddrm(struct xe_gt *gt) { /* * First instance is only terminated if the entire first media slice * is absent (i.e., no VCS0 or VECS0). */ if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) gt->steering[OADDRM].group_target = 0; else gt->steering[OADDRM].group_target = 1; gt->steering[DSS].instance_target = 0; /* unused */ } static void init_steering_inst0(struct xe_gt *gt) { gt->steering[DSS].group_target = 0; /* unused */ gt->steering[DSS].instance_target = 0; /* unused */ } static const struct { const char *name; void (*init)(struct xe_gt *); } xe_steering_types[] = { { "L3BANK", init_steering_l3bank }, { "MSLICE", init_steering_mslice }, { "LNCF", NULL }, /* initialized by mslice init */ { "DSS", init_steering_dss }, { "OADDRM", init_steering_oaddrm }, { "INSTANCE 0", init_steering_inst0 }, }; void xe_gt_mcr_init(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); spin_lock_init(>->mcr_lock); if (gt->info.type == XE_GT_TYPE_MEDIA) { drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; } else if (GRAPHICS_VERx100(xe) >= 1270) { gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; gt->steering[DSS].ranges = xelpg_dss_steering_table; } else if (xe->info.platform == XE_PVC) { gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; gt->steering[DSS].ranges = xehpc_dss_steering_table; } else if (xe->info.platform == XE_DG2) { gt->steering[MSLICE].ranges = xehp_mslice_steering_table; gt->steering[LNCF].ranges = xehp_lncf_steering_table; gt->steering[DSS].ranges = xehp_dss_steering_table; } else { gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; gt->steering[DSS].ranges = xelp_dss_steering_table; } /* Select non-terminated steering target for each type */ for (int i = 0; i < NUM_STEERING_TYPES; i++) if (gt->steering[i].ranges && xe_steering_types[i].init) xe_steering_types[i].init(gt); } /* * xe_gt_mcr_get_nonterminated_steering - find group/instance values that * will steer a register to a non-terminated instance * @gt: GT structure * @reg: register for which the steering is required * @group: return variable for group steering * @instance: return variable for instance steering * * This function returns a group/instance pair that is guaranteed to work for * read steering of the given register. Note that a value will be returned even * if the register is not replicated and therefore does not actually require * steering. * * Returns true if the caller should steer to the @group/@instance values * returned. Returns false if the caller need not perform any steering (i.e., * the DG2 GAM range special case). */ static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, i915_mcr_reg_t reg, u8 *group, u8 *instance) { for (int type = 0; type < NUM_STEERING_TYPES; type++) { if (!gt->steering[type].ranges) continue; for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { if (xe_mmio_in_range(>->steering[type].ranges[i], reg.reg)) { *group = gt->steering[type].group_target; *instance = gt->steering[type].instance_target; return true; } } } /* * All MCR registers should usually be part of one of the steering * ranges we're tracking. However there's one special case: DG2 * GAM registers are technically multicast registers, but are special * in a number of ways: * - they have their own dedicated steering control register (they * don't share 0xFDC with other MCR classes) * - all reads should be directed to instance 1 (unicast reads against * other instances are not allowed), and instance 1 is already the * the hardware's default steering target, which we never change * * Ultimately this means that we can just treat them as if they were * unicast registers and all operations will work properly. */ for (int i = 0; dg2_gam_ranges[i].end > 0; i++) if (xe_mmio_in_range(&dg2_gam_ranges[i], reg.reg)) return false; /* * Not found in a steering table and not a DG2 GAM register? We'll * just steer to 0/0 as a guess and raise a warning. */ drm_WARN(>_to_xe(gt)->drm, true, "Did not find MCR register %#x in any MCR steering table\n", reg.reg); *group = 0; *instance = 0; return true; } #define STEER_SEMAPHORE 0xFD0 /* * Obtain exclusive access to MCR steering. On MTL and beyond we also need * to synchronize with external clients (e.g., firmware), so a semaphore * register will also need to be taken. */ static void mcr_lock(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); int ret; spin_lock(>->mcr_lock); /* * Starting with MTL we also need to grab a semaphore register * to synchronize with external agents (e.g., firmware) that now * shares the same steering control register. */ if (GRAPHICS_VERx100(xe) >= 1270) ret = wait_for_us(xe_mmio_read32(gt, STEER_SEMAPHORE) == 0x1, 10); drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); } static void mcr_unlock(struct xe_gt *gt) { /* Release hardware semaphore */ if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1); spin_unlock(>->mcr_lock); } /* * Access a register with specific MCR steering * * Caller needs to make sure the relevant forcewake wells are up. */ static u32 rw_with_mcr_steering(struct xe_gt *gt, i915_mcr_reg_t reg, u8 rw_flag, int group, int instance, u32 value) { u32 steer_reg, steer_val, val = 0; lockdep_assert_held(>->mcr_lock); if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { steer_reg = MTL_MCR_SELECTOR.reg; steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); } else { steer_reg = GEN8_MCR_SELECTOR.reg; steer_val = REG_FIELD_PREP(GEN11_MCR_SLICE_MASK, group) | REG_FIELD_PREP(GEN11_MCR_SUBSLICE_MASK, instance); } /* * Always leave the hardware in multicast mode when doing reads * (see comment about Wa_22013088509 below) and only change it * to unicast mode when doing writes of a specific instance. * * No need to save old steering reg value. */ if (rw_flag == MCR_OP_READ) steer_val |= GEN11_MCR_MULTICAST; xe_mmio_write32(gt, steer_reg, steer_val); if (rw_flag == MCR_OP_READ) val = xe_mmio_read32(gt, reg.reg); else xe_mmio_write32(gt, reg.reg, value); /* * If we turned off the multicast bit (during a write) we're required * to turn it back on before finishing. The group and instance values * don't matter since they'll be re-programmed on the next MCR * operation. */ if (rw_flag == MCR_OP_WRITE) xe_mmio_write32(gt, steer_reg, GEN11_MCR_MULTICAST); return val; } /** * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register * @gt: GT structure * @reg: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * This function assumes the caller is already holding any necessary forcewake * domains. * * Returns the value from a non-terminated instance of @reg. */ u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, i915_mcr_reg_t reg) { u8 group, instance; u32 val; bool steer; steer = xe_gt_mcr_get_nonterminated_steering(gt, reg, &group, &instance); if (steer) { mcr_lock(gt); val = rw_with_mcr_steering(gt, reg, MCR_OP_READ, group, instance, 0); mcr_unlock(gt); } else { /* DG2 GAM special case rules; treat as if unicast */ val = xe_mmio_read32(gt, reg.reg); } return val; } /** * xe_gt_mcr_unicast_read - read a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to read * @group: the MCR group * @instance: the MCR instance * * Returns the value read from an MCR register after steering toward a specific * group/instance. */ u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, i915_mcr_reg_t reg, int group, int instance) { u32 val; mcr_lock(gt); val = rw_with_mcr_steering(gt, reg, MCR_OP_READ, group, instance, 0); mcr_unlock(gt); return val; } /** * xe_gt_mcr_unicast_write - write a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * @group: the MCR group * @instance: the MCR instance * * Write an MCR register in unicast mode after steering toward a specific * group/instance. */ void xe_gt_mcr_unicast_write(struct xe_gt *gt, i915_mcr_reg_t reg, u32 value, int group, int instance) { mcr_lock(gt); rw_with_mcr_steering(gt, reg, MCR_OP_WRITE, group, instance, value); mcr_unlock(gt); } /** * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. */ void xe_gt_mcr_multicast_write(struct xe_gt *gt, i915_mcr_reg_t reg, u32 value) { /* * Synchronize with any unicast operations. Once we have exclusive * access, the MULTICAST bit should already be set, so there's no need * to touch the steering register. */ mcr_lock(gt); xe_mmio_write32(gt, reg.reg, value); mcr_unlock(gt); } void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) { for (int i = 0; i < NUM_STEERING_TYPES; i++) { if (gt->steering[i].ranges) { drm_printf(p, "%s steering: group=%#x, instance=%#x\n", xe_steering_types[i].name, gt->steering[i].group_target, gt->steering[i].instance_target); for (int j = 0; gt->steering[i].ranges[j].end; j++) drm_printf(p, "\t0x%06x - 0x%06x\n", gt->steering[i].ranges[j].start, gt->steering[i].ranges[j].end); } } }