// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_device.h" #include #include #include #include #include #include #include #include #include #include #include #include "display/xe_display.h" #include "instructions/xe_gpu_commands.h" #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_bo.h" #include "xe_debugfs.h" #include "xe_devcoredump.h" #include "xe_dma_buf.h" #include "xe_drm_client.h" #include "xe_drv.h" #include "xe_exec.h" #include "xe_exec_queue.h" #include "xe_force_wake.h" #include "xe_ggtt.h" #include "xe_gsc_proxy.h" #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_gt_printk.h" #include "xe_gt_sriov_vf.h" #include "xe_guc.h" #include "xe_hw_engine_group.h" #include "xe_hwmon.h" #include "xe_irq.h" #include "xe_memirq.h" #include "xe_mmio.h" #include "xe_module.h" #include "xe_observation.h" #include "xe_pat.h" #include "xe_pcode.h" #include "xe_pm.h" #include "xe_query.h" #include "xe_sriov.h" #include "xe_tile.h" #include "xe_ttm_stolen_mgr.h" #include "xe_ttm_sys_mgr.h" #include "xe_vm.h" #include "xe_vram.h" #include "xe_wait_user_fence.h" #include "xe_wa.h" #include static int xe_file_open(struct drm_device *dev, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_drm_client *client; struct xe_file *xef; int ret = -ENOMEM; struct task_struct *task = NULL; xef = kzalloc(sizeof(*xef), GFP_KERNEL); if (!xef) return ret; client = xe_drm_client_alloc(); if (!client) { kfree(xef); return ret; } xef->drm = file; xef->client = client; xef->xe = xe; mutex_init(&xef->vm.lock); xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); mutex_init(&xef->exec_queue.lock); xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); spin_lock(&xe->clients.lock); xe->clients.count++; spin_unlock(&xe->clients.lock); file->driver_priv = xef; kref_init(&xef->refcount); task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); if (task) { xef->process_name = kstrdup(task->comm, GFP_KERNEL); xef->pid = task->pid; put_task_struct(task); } return 0; } static void xe_file_destroy(struct kref *ref) { struct xe_file *xef = container_of(ref, struct xe_file, refcount); struct xe_device *xe = xef->xe; xa_destroy(&xef->exec_queue.xa); mutex_destroy(&xef->exec_queue.lock); xa_destroy(&xef->vm.xa); mutex_destroy(&xef->vm.lock); spin_lock(&xe->clients.lock); xe->clients.count--; spin_unlock(&xe->clients.lock); xe_drm_client_put(xef->client); kfree(xef->process_name); kfree(xef); } /** * xe_file_get() - Take a reference to the xe file object * @xef: Pointer to the xe file * * Anyone with a pointer to xef must take a reference to the xe file * object using this call. * * Return: xe file pointer */ struct xe_file *xe_file_get(struct xe_file *xef) { kref_get(&xef->refcount); return xef; } /** * xe_file_put() - Drop a reference to the xe file object * @xef: Pointer to the xe file * * Used to drop reference to the xef object */ void xe_file_put(struct xe_file *xef) { kref_put(&xef->refcount, xe_file_destroy); } static void xe_file_close(struct drm_device *dev, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = file->driver_priv; struct xe_vm *vm; struct xe_exec_queue *q; unsigned long idx; xe_pm_runtime_get(xe); /* * No need for exec_queue.lock here as there is no contention for it * when FD is closing as IOCTLs presumably can't be modifying the * xarray. Taking exec_queue.lock here causes undue dependency on * vm->lock taken during xe_exec_queue_kill(). */ xa_for_each(&xef->exec_queue.xa, idx, q) { if (q->vm && q->hwe->hw_engine_group) xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); xe_exec_queue_kill(q); xe_exec_queue_put(q); } xa_for_each(&xef->vm.xa, idx, vm) xe_vm_close_and_put(vm); xe_file_put(xef); xe_pm_runtime_put(xe); } static const struct drm_ioctl_desc xe_ioctls[] = { DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), }; static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct drm_file *file_priv = file->private_data; struct xe_device *xe = to_xe_device(file_priv->minor->dev); long ret; if (xe_device_wedged(xe)) return -ECANCELED; ret = xe_pm_runtime_get_ioctl(xe); if (ret >= 0) ret = drm_ioctl(file, cmd, arg); xe_pm_runtime_put(xe); return ret; } #ifdef CONFIG_COMPAT static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct drm_file *file_priv = file->private_data; struct xe_device *xe = to_xe_device(file_priv->minor->dev); long ret; if (xe_device_wedged(xe)) return -ECANCELED; ret = xe_pm_runtime_get_ioctl(xe); if (ret >= 0) ret = drm_compat_ioctl(file, cmd, arg); xe_pm_runtime_put(xe); return ret; } #else /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ #define xe_drm_compat_ioctl NULL #endif static const struct file_operations xe_driver_fops = { .owner = THIS_MODULE, .open = drm_open, .release = drm_release_noglobal, .unlocked_ioctl = xe_drm_ioctl, .mmap = drm_gem_mmap, .poll = drm_poll, .read = drm_read, .compat_ioctl = xe_drm_compat_ioctl, .llseek = noop_llseek, #ifdef CONFIG_PROC_FS .show_fdinfo = drm_show_fdinfo, #endif .fop_flags = FOP_UNSIGNED_OFFSET, }; static struct drm_driver driver = { /* Don't use MTRRs here; the Xserver or userspace app should * deal with them for Intel hardware. */ .driver_features = DRIVER_GEM | DRIVER_RENDER | DRIVER_SYNCOBJ | DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, .open = xe_file_open, .postclose = xe_file_close, .gem_prime_import = xe_gem_prime_import, .dumb_create = xe_bo_dumb_create, .dumb_map_offset = drm_gem_ttm_dumb_map_offset, #ifdef CONFIG_PROC_FS .show_fdinfo = xe_drm_client_fdinfo, #endif .ioctls = xe_ioctls, .num_ioctls = ARRAY_SIZE(xe_ioctls), .fops = &xe_driver_fops, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, .patchlevel = DRIVER_PATCHLEVEL, }; static void xe_device_destroy(struct drm_device *dev, void *dummy) { struct xe_device *xe = to_xe_device(dev); if (xe->preempt_fence_wq) destroy_workqueue(xe->preempt_fence_wq); if (xe->ordered_wq) destroy_workqueue(xe->ordered_wq); if (xe->unordered_wq) destroy_workqueue(xe->unordered_wq); if (xe->destroy_wq) destroy_workqueue(xe->destroy_wq); ttm_device_fini(&xe->ttm); } struct xe_device *xe_device_create(struct pci_dev *pdev, const struct pci_device_id *ent) { struct xe_device *xe; int err; xe_display_driver_set_hooks(&driver); err = aperture_remove_conflicting_pci_devices(pdev, driver.name); if (err) return ERR_PTR(err); xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); if (IS_ERR(xe)) return xe; err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, xe->drm.anon_inode->i_mapping, xe->drm.vma_offset_manager, false, false); if (WARN_ON(err)) goto err; err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); if (err) goto err; xe->info.devid = pdev->device; xe->info.revid = pdev->revision; xe->info.force_execlist = xe_modparam.force_execlist; spin_lock_init(&xe->irq.lock); spin_lock_init(&xe->clients.lock); init_waitqueue_head(&xe->ufence_wq); init_rwsem(&xe->usm.lock); xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { /* Trigger a large asid and an early asid wrap. */ u32 asid; BUILD_BUG_ON(XE_MAX_ASID < 2); err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), &xe->usm.next_asid, GFP_KERNEL); drm_WARN_ON(&xe->drm, err); if (err >= 0) xa_erase(&xe->usm.asid_to_vm, asid); } spin_lock_init(&xe->pinned.lock); INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); INIT_LIST_HEAD(&xe->pinned.external_vram); INIT_LIST_HEAD(&xe->pinned.evicted); xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); if (!xe->ordered_wq || !xe->unordered_wq || !xe->preempt_fence_wq || !xe->destroy_wq) { /* * Cleanup done in xe_device_destroy via * drmm_add_action_or_reset register above */ drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); err = -ENOMEM; goto err; } err = xe_display_create(xe); if (WARN_ON(err)) goto err; return xe; err: return ERR_PTR(err); } ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ static bool xe_driver_flr_disabled(struct xe_device *xe) { return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; } /* * The driver-initiated FLR is the highest level of reset that we can trigger * from within the driver. It is different from the PCI FLR in that it doesn't * fully reset the SGUnit and doesn't modify the PCI config space and therefore * it doesn't require a re-enumeration of the PCI BARs. However, the * driver-initiated FLR does still cause a reset of both GT and display and a * memory wipe of local and stolen memory, so recovery would require a full HW * re-init and saving/restoring (or re-populating) the wiped memory. Since we * perform the FLR as the very last action before releasing access to the HW * during the driver release flow, we don't attempt recovery at all, because * if/when a new instance of i915 is bound to the device it will do a full * re-init anyway. */ static void __xe_driver_flr(struct xe_device *xe) { const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ struct xe_mmio *mmio = xe_root_tile_mmio(xe); int ret; drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); /* * Make sure any pending FLR requests have cleared by waiting for the * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS * to make sure it's not still set from a prior attempt (it's a write to * clear bit). * Note that we should never be in a situation where a previous attempt * is still pending (unless the HW is totally dead), but better to be * safe in case something unexpected happens */ ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); return; } xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); /* Trigger the actual Driver-FLR */ xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); /* Wait for hardware teardown to complete */ ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); return; } /* Wait for hardware/firmware re-init to complete */ ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); return; } /* Clear sticky completion status */ xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); } static void xe_driver_flr(struct xe_device *xe) { if (xe_driver_flr_disabled(xe)) { drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); return; } __xe_driver_flr(xe); } static void xe_driver_flr_fini(void *arg) { struct xe_device *xe = arg; if (xe->needs_flr_on_fini) xe_driver_flr(xe); } static void xe_device_sanitize(void *arg) { struct xe_device *xe = arg; struct xe_gt *gt; u8 id; for_each_gt(gt, xe, id) xe_gt_sanitize(gt); } static int xe_set_dma_info(struct xe_device *xe) { unsigned int mask_size = xe->info.dma_mask_size; int err; dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; return 0; mask_err: drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); return err; } static bool verify_lmem_ready(struct xe_device *xe) { u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; return !!val; } static int wait_for_lmem_ready(struct xe_device *xe) { unsigned long timeout, start; if (!IS_DGFX(xe)) return 0; if (IS_SRIOV_VF(xe)) return 0; if (verify_lmem_ready(xe)) return 0; drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); start = jiffies; timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ do { if (signal_pending(current)) return -EINTR; /* * The boot firmware initializes local memory and * assesses its health. If memory training fails, * the punit will have been instructed to keep the GT powered * down.we won't be able to communicate with it * * If the status check is done before punit updates the register, * it can lead to the system being unusable. * use a timeout and defer the probe to prevent this. */ if (time_after(jiffies, timeout)) { drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); return -EPROBE_DEFER; } msleep(20); } while (!verify_lmem_ready(xe)); drm_dbg(&xe->drm, "lmem ready after %ums", jiffies_to_msecs(jiffies - start)); return 0; } ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ static void update_device_info(struct xe_device *xe) { /* disable features that are not available/applicable to VFs */ if (IS_SRIOV_VF(xe)) { xe->info.probe_display = 0; xe->info.has_heci_gscfi = 0; xe->info.skip_guc_pc = 1; xe->info.skip_pcode = 1; } } /** * xe_device_probe_early: Device early probe * @xe: xe device instance * * Initialize MMIO resources that don't require any * knowledge about tile count. Also initialize pcode and * check vram initialization on root tile. * * Return: 0 on success, error code on failure */ int xe_device_probe_early(struct xe_device *xe) { int err; err = xe_mmio_init(xe); if (err) return err; xe_sriov_probe_early(xe); update_device_info(xe); err = xe_pcode_probe_early(xe); if (err) return err; err = wait_for_lmem_ready(xe); if (err) return err; xe->wedged.mode = xe_modparam.wedged_mode; return 0; } static int probe_has_flat_ccs(struct xe_device *xe) { struct xe_gt *gt; u32 reg; int err; /* Always enabled/disabled, no runtime check to do */ if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) return 0; gt = xe_root_mmio_gt(xe); err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return err; reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); if (!xe->info.has_flat_ccs) drm_dbg(&xe->drm, "Flat CCS has been disabled in bios, May lead to performance impact"); return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } int xe_device_probe(struct xe_device *xe) { struct xe_tile *tile; struct xe_gt *gt; int err; u8 last_gt; u8 id; xe_pat_init_early(xe); err = xe_sriov_init(xe); if (err) return err; xe->info.mem_region_mask = 1; err = xe_display_init_nommio(xe); if (err) return err; err = xe_set_dma_info(xe); if (err) return err; err = xe_mmio_probe_tiles(xe); if (err) return err; xe_ttm_sys_mgr_init(xe); for_each_gt(gt, xe, id) { err = xe_gt_init_early(gt); if (err) return err; /* * Only after this point can GT-specific MMIO operations * (including things like communication with the GuC) * be performed. */ xe_gt_mmio_init(gt); } for_each_tile(tile, xe, id) { if (IS_SRIOV_VF(xe)) { xe_guc_comm_init_early(&tile->primary_gt->uc.guc); err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); if (err) return err; err = xe_gt_sriov_vf_query_config(tile->primary_gt); if (err) return err; } err = xe_ggtt_init_early(tile->mem.ggtt); if (err) return err; err = xe_memirq_init(&tile->memirq); if (err) return err; } for_each_gt(gt, xe, id) { err = xe_gt_init_hwconfig(gt); if (err) return err; } err = xe_devcoredump_init(xe); if (err) return err; err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); if (err) return err; err = xe_display_init_noirq(xe); if (err) return err; err = xe_irq_install(xe); if (err) goto err; err = probe_has_flat_ccs(xe); if (err) goto err; err = xe_vram_probe(xe); if (err) goto err; for_each_tile(tile, xe, id) { err = xe_tile_init_noalloc(tile); if (err) goto err; } /* Allocate and map stolen after potential VRAM resize */ xe_ttm_stolen_mgr_init(xe); /* * Now that GT is initialized (TTM in particular), * we can try to init display, and inherit the initial fb. * This is the reason the first allocation needs to be done * inside display. */ err = xe_display_init_noaccel(xe); if (err) goto err; for_each_gt(gt, xe, id) { last_gt = id; err = xe_gt_init(gt); if (err) goto err_fini_gt; } xe_heci_gsc_init(xe); err = xe_oa_init(xe); if (err) goto err_fini_gt; err = xe_display_init(xe); if (err) goto err_fini_oa; err = drm_dev_register(&xe->drm, 0); if (err) goto err_fini_display; xe_display_register(xe); xe_oa_register(xe); xe_debugfs_register(xe); xe_hwmon_register(xe); for_each_gt(gt, xe, id) xe_gt_sanitize_freq(gt); return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); err_fini_display: xe_display_driver_remove(xe); err_fini_oa: xe_oa_fini(xe); err_fini_gt: for_each_gt(gt, xe, id) { if (id < last_gt) xe_gt_remove(gt); else break; } err: xe_display_fini(xe); return err; } static void xe_device_remove_display(struct xe_device *xe) { xe_display_unregister(xe); drm_dev_unplug(&xe->drm); xe_display_driver_remove(xe); } void xe_device_remove(struct xe_device *xe) { struct xe_gt *gt; u8 id; xe_oa_unregister(xe); xe_device_remove_display(xe); xe_display_fini(xe); xe_oa_fini(xe); xe_heci_gsc_fini(xe); for_each_gt(gt, xe, id) xe_gt_remove(gt); } void xe_device_shutdown(struct xe_device *xe) { struct xe_gt *gt; u8 id; drm_dbg(&xe->drm, "Shutting down device\n"); if (xe_driver_flr_disabled(xe)) { xe_display_pm_shutdown(xe); xe_irq_suspend(xe); for_each_gt(gt, xe, id) xe_gt_shutdown(gt); xe_display_pm_shutdown_late(xe); } else { /* BOOM! */ __xe_driver_flr(xe); } } /** * xe_device_wmb() - Device specific write memory barrier * @xe: the &xe_device * * While wmb() is sufficient for a barrier if we use system memory, on discrete * platforms with device memory we additionally need to issue a register write. * Since it doesn't matter which register we write to, use the read-only VF_CAP * register that is also marked as accessible by the VFs. */ void xe_device_wmb(struct xe_device *xe) { wmb(); if (IS_DGFX(xe)) xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); } /** * xe_device_td_flush() - Flush transient L3 cache entries * @xe: The device * * Display engine has direct access to memory and is never coherent with L3/L4 * caches (or CPU caches), however KMD is responsible for specifically flushing * transient L3 GPU cache entries prior to the flip sequence to ensure scanout * can happen from such a surface without seeing corruption. * * Display surfaces can be tagged as transient by mapping it using one of the * various L3:XD PAT index modes on Xe2. * * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed * at the end of each submission via PIPE_CONTROL for compute/render, since SA * Media is not coherent with L3 and we want to support render-vs-media * usescases. For other engines like copy/blt the HW internally forces uncached * behaviour, hence why we can skip the TDF on such platforms. */ void xe_device_td_flush(struct xe_device *xe) { struct xe_gt *gt; u8 id; if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) return; if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { xe_device_l2_flush(xe); return; } for_each_gt(gt, xe, id) { if (xe_gt_is_media_type(gt)) continue; if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) return; xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); /* * FIXME: We can likely do better here with our choice of * timeout. Currently we just assume the worst case, i.e. 150us, * which is believed to be sufficient to cover the worst case * scenario on current platforms if all cache entries are * transient and need to be flushed.. */ if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 150, NULL, false)) xe_gt_err_once(gt, "TD flush timeout\n"); xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } } void xe_device_l2_flush(struct xe_device *xe) { struct xe_gt *gt; int err; gt = xe_root_mmio_gt(xe); if (!XE_WA(gt, 16023588340)) return; err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return; spin_lock(>->global_invl_lock); xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) xe_gt_err_once(gt, "Global invalidation timeout\n"); spin_unlock(>->global_invl_lock); xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) { return xe_device_has_flat_ccs(xe) ? DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; } /** * xe_device_assert_mem_access - Inspect the current runtime_pm state. * @xe: xe device instance * * To be used before any kind of memory access. It will splat a debug warning * if the device is currently sleeping. But it doesn't guarantee in any way * that the device is going to remain awake. Xe PM runtime get and put * functions might be added to the outer bound of the memory access, while * this check is intended for inner usage to splat some warning if the worst * case has just happened. */ void xe_device_assert_mem_access(struct xe_device *xe) { xe_assert(xe, !xe_pm_runtime_suspended(xe)); } void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) { struct xe_gt *gt; u8 id; drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); for_each_gt(gt, xe, id) { drm_printf(p, "GT id: %u\n", id); drm_printf(p, "\tTile: %u\n", gt->tile->id); drm_printf(p, "\tType: %s\n", gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); drm_printf(p, "\tIP ver: %u.%u.%u\n", REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); } } u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) { return sign_extend64(address, xe->info.va_bits - 1); } u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) { return address & GENMASK_ULL(xe->info.va_bits - 1, 0); } static void xe_device_wedged_fini(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; xe_pm_runtime_put(xe); } /** * xe_device_declare_wedged - Declare device wedged * @xe: xe device instance * * This is a final state that can only be cleared with a mudule * re-probe (unbind + bind). * In this state every IOCTL will be blocked so the GT cannot be used. * In general it will be called upon any critical error such as gt reset * failure or guc loading failure. * If xe.wedged module parameter is set to 2, this function will be called * on every single execution timeout (a.k.a. GPU hang) right after devcoredump * snapshot capture. In this mode, GT reset won't be attempted so the state of * the issue is preserved for further debugging. */ void xe_device_declare_wedged(struct xe_device *xe) { struct xe_gt *gt; u8 id; if (xe->wedged.mode == 0) { drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); return; } xe_pm_runtime_get_noresume(xe); if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); return; } if (!atomic_xchg(&xe->wedged.flag, 1)) { xe->needs_flr_on_fini = true; drm_err(&xe->drm, "CRITICAL: Xe has declared device %s as wedged.\n" "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", dev_name(xe->drm.dev)); } for_each_gt(gt, xe, id) xe_gt_declare_wedged(gt); }