/* SPDX-License-Identifier: MIT */ /* * Copyright © 2021 Intel Corporation */ #ifndef _XE_BO_H_ #define _XE_BO_H_ #include "xe_bo_types.h" #include "xe_macros.h" #include "xe_vm_types.h" #define XE_DEFAULT_GTT_SIZE_MB 3072ULL /* 3GB by default */ #define XE_BO_CREATE_USER_BIT BIT(0) /* The bits below need to be contiguous, or things break */ #define XE_BO_CREATE_SYSTEM_BIT BIT(1) #define XE_BO_CREATE_VRAM0_BIT BIT(2) #define XE_BO_CREATE_VRAM1_BIT BIT(3) #define XE_BO_CREATE_VRAM_MASK (XE_BO_CREATE_VRAM0_BIT | \ XE_BO_CREATE_VRAM1_BIT) /* -- */ #define XE_BO_CREATE_STOLEN_BIT BIT(4) #define XE_BO_CREATE_VRAM_IF_DGFX(tile) \ (IS_DGFX(tile_to_xe(tile)) ? XE_BO_CREATE_VRAM0_BIT << (tile)->id : \ XE_BO_CREATE_SYSTEM_BIT) #define XE_BO_CREATE_GGTT_BIT BIT(5) #define XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT BIT(6) #define XE_BO_CREATE_PINNED_BIT BIT(7) #define XE_BO_CREATE_NO_RESV_EVICT BIT(8) #define XE_BO_DEFER_BACKING BIT(9) #define XE_BO_SCANOUT_BIT BIT(10) #define XE_BO_FIXED_PLACEMENT_BIT BIT(11) /* this one is trigger internally only */ #define XE_BO_INTERNAL_TEST BIT(30) #define XE_BO_INTERNAL_64K BIT(31) #define PPAT_UNCACHED GENMASK_ULL(4, 3) #define PPAT_CACHED_PDE 0 #define PPAT_CACHED BIT_ULL(7) #define PPAT_DISPLAY_ELLC BIT_ULL(4) #define XE_PTE_SHIFT 12 #define XE_PAGE_SIZE (1 << XE_PTE_SHIFT) #define XE_PTE_MASK (XE_PAGE_SIZE - 1) #define XE_PDE_SHIFT (XE_PTE_SHIFT - 3) #define XE_PDES (1 << XE_PDE_SHIFT) #define XE_PDE_MASK (XE_PDES - 1) #define XE_64K_PTE_SHIFT 16 #define XE_64K_PAGE_SIZE (1 << XE_64K_PTE_SHIFT) #define XE_64K_PTE_MASK (XE_64K_PAGE_SIZE - 1) #define XE_64K_PDE_MASK (XE_PDE_MASK >> 4) #define XE_PDE_PS_2M BIT_ULL(7) #define XE_PDPE_PS_1G BIT_ULL(7) #define XE_PDE_IPS_64K BIT_ULL(11) #define XE_GGTT_PTE_LM BIT_ULL(1) #define XE_USM_PPGTT_PTE_AE BIT_ULL(10) #define XE_PPGTT_PTE_LM BIT_ULL(11) #define XE_PDE_64K BIT_ULL(6) #define XE_PTE_PS64 BIT_ULL(8) #define XE_PAGE_PRESENT BIT_ULL(0) #define XE_PAGE_RW BIT_ULL(1) #define XE_PTE_READ_ONLY BIT(0) #define XE_PL_SYSTEM TTM_PL_SYSTEM #define XE_PL_TT TTM_PL_TT #define XE_PL_VRAM0 TTM_PL_VRAM #define XE_PL_VRAM1 (XE_PL_VRAM0 + 1) #define XE_PL_STOLEN (TTM_NUM_MEM_TYPES - 1) #define XE_BO_PROPS_INVALID (-1) struct sg_table; struct xe_bo *xe_bo_alloc(void); void xe_bo_free(struct xe_bo *bo); struct xe_bo *__xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, struct xe_tile *tile, struct dma_resv *resv, size_t size, enum ttm_bo_type type, u32 flags); struct xe_bo * xe_bo_create_locked_range(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u64 start, u64 end, enum ttm_bo_type type, u32 flags); struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags); struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags); struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags); struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u64 offset, enum ttm_bo_type type, u32 flags); struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, const void *data, size_t size, enum ttm_bo_type type, u32 flags); int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags); struct xe_tile *xe_bo_to_tile(struct xe_bo *bo); static inline struct xe_bo *ttm_to_xe_bo(const struct ttm_buffer_object *bo) { return container_of(bo, struct xe_bo, ttm); } static inline struct xe_bo *gem_to_xe_bo(const struct drm_gem_object *obj) { return container_of(obj, struct xe_bo, ttm.base); } #define xe_bo_device(bo) ttm_to_xe_device((bo)->ttm.bdev) static inline struct xe_bo *xe_bo_get(struct xe_bo *bo) { if (bo) drm_gem_object_get(&bo->ttm.base); return bo; } static inline void xe_bo_put(struct xe_bo *bo) { if (bo) drm_gem_object_put(&bo->ttm.base); } static inline void xe_bo_assert_held(struct xe_bo *bo) { if (bo) dma_resv_assert_held((bo)->ttm.base.resv); } int xe_bo_lock(struct xe_bo *bo, struct ww_acquire_ctx *ww, int num_resv, bool intr); void xe_bo_unlock(struct xe_bo *bo, struct ww_acquire_ctx *ww); static inline void xe_bo_unlock_vm_held(struct xe_bo *bo) { if (bo) { XE_BUG_ON(bo->vm && bo->ttm.base.resv != &bo->vm->resv); if (bo->vm) xe_vm_assert_held(bo->vm); else dma_resv_unlock(bo->ttm.base.resv); } } static inline void xe_bo_lock_no_vm(struct xe_bo *bo, struct ww_acquire_ctx *ctx) { if (bo) { XE_BUG_ON(bo->vm || (bo->ttm.type != ttm_bo_type_sg && bo->ttm.base.resv != &bo->ttm.base._resv)); dma_resv_lock(bo->ttm.base.resv, ctx); } } static inline void xe_bo_unlock_no_vm(struct xe_bo *bo) { if (bo) { XE_BUG_ON(bo->vm || (bo->ttm.type != ttm_bo_type_sg && bo->ttm.base.resv != &bo->ttm.base._resv)); dma_resv_unlock(bo->ttm.base.resv); } } int xe_bo_pin_external(struct xe_bo *bo); int xe_bo_pin(struct xe_bo *bo); void xe_bo_unpin_external(struct xe_bo *bo); void xe_bo_unpin(struct xe_bo *bo); int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict); static inline bool xe_bo_is_pinned(struct xe_bo *bo) { return bo->ttm.pin_count; } static inline void xe_bo_unpin_map_no_vm(struct xe_bo *bo) { if (likely(bo)) { xe_bo_lock_no_vm(bo, NULL); xe_bo_unpin(bo); xe_bo_unlock_no_vm(bo); xe_bo_put(bo); } } bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo); dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size, bool *is_vram); dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size, bool *is_vram); static inline dma_addr_t xe_bo_main_addr(struct xe_bo *bo, size_t page_size) { bool is_vram; return xe_bo_addr(bo, 0, page_size, &is_vram); } static inline u32 xe_bo_ggtt_addr(struct xe_bo *bo) { XE_BUG_ON(bo->ggtt_node.size > bo->size); XE_BUG_ON(bo->ggtt_node.start + bo->ggtt_node.size > (1ull << 32)); return bo->ggtt_node.start; } int xe_bo_vmap(struct xe_bo *bo); void xe_bo_vunmap(struct xe_bo *bo); bool mem_type_is_vram(u32 mem_type); bool xe_bo_is_vram(struct xe_bo *bo); bool xe_bo_is_stolen(struct xe_bo *bo); uint64_t vram_region_gpu_offset(struct ttm_resource *res); bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type); int xe_bo_migrate(struct xe_bo *bo, u32 mem_type); int xe_bo_evict(struct xe_bo *bo, bool force_alloc); int xe_bo_evict_pinned(struct xe_bo *bo); int xe_bo_restore_pinned(struct xe_bo *bo); extern struct ttm_device_funcs xe_ttm_funcs; int xe_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int xe_bo_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args); bool xe_bo_needs_ccs_pages(struct xe_bo *bo); static inline size_t xe_bo_ccs_pages_start(struct xe_bo *bo) { return PAGE_ALIGN(bo->ttm.base.size); } void __xe_bo_release_dummy(struct kref *kref); /** * xe_bo_put_deferred() - Put a buffer object with delayed final freeing * @bo: The bo to put. * @deferred: List to which to add the buffer object if we cannot put, or * NULL if the function is to put unconditionally. * * Since the final freeing of an object includes both sleeping and (!) * memory allocation in the dma_resv individualization, it's not ok * to put an object from atomic context nor from within a held lock * tainted by reclaim. In such situations we want to defer the final * freeing until we've exited the restricting context, or in the worst * case to a workqueue. * This function either puts the object if possible without the refcount * reaching zero, or adds it to the @deferred list if that was not possible. * The caller needs to follow up with a call to xe_bo_put_commit() to actually * put the bo iff this function returns true. It's safe to always * follow up with a call to xe_bo_put_commit(). * TODO: It's TTM that is the villain here. Perhaps TTM should add an * interface like this. * * Return: true if @bo was the first object put on the @freed list, * false otherwise. */ static inline bool xe_bo_put_deferred(struct xe_bo *bo, struct llist_head *deferred) { if (!deferred) { xe_bo_put(bo); return false; } if (!kref_put(&bo->ttm.base.refcount, __xe_bo_release_dummy)) return false; return llist_add(&bo->freed, deferred); } void xe_bo_put_commit(struct llist_head *deferred); struct sg_table *xe_bo_get_sg(struct xe_bo *bo); /* * xe_sg_segment_size() - Provides upper limit for sg segment size. * @dev: device pointer * * Returns the maximum segment size for the 'struct scatterlist' * elements. */ static inline unsigned int xe_sg_segment_size(struct device *dev) { struct scatterlist __maybe_unused sg; size_t max = BIT_ULL(sizeof(sg.length) * 8) - 1; max = min_t(size_t, max, dma_max_mapping_size(dev)); /* * The iommu_dma_map_sg() function ensures iova allocation doesn't * cross dma segment boundary. It does so by padding some sg elements. * This can cause overflow, ending up with sg->length being set to 0. * Avoid this by ensuring maximum segment size is half of 'max' * rounded down to PAGE_SIZE. */ return round_down(max / 2, PAGE_SIZE); } #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) /** * xe_bo_is_mem_type - Whether the bo currently resides in the given * TTM memory type * @bo: The bo to check. * @mem_type: The TTM memory type. * * Return: true iff the bo resides in @mem_type, false otherwise. */ static inline bool xe_bo_is_mem_type(struct xe_bo *bo, u32 mem_type) { xe_bo_assert_held(bo); return bo->ttm.resource->mem_type == mem_type; } #endif #endif