/* * GPIO driver for Marvell SoCs * * Copyright (C) 2012 Marvell * * Thomas Petazzoni * Andrew Lunn * Sebastian Hesselbarth * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. * * This driver is a fairly straightforward GPIO driver for the * complete family of Marvell EBU SoC platforms (Orion, Dove, * Kirkwood, Discovery, Armada 370/XP). The only complexity of this * driver is the different register layout that exists between the * non-SMP platforms (Orion, Dove, Kirkwood, Armada 370) and the SMP * platforms (MV78200 from the Discovery family and the Armada * XP). Therefore, this driver handles three variants of the GPIO * block: * - the basic variant, called "orion-gpio", with the simplest * register set. Used on Orion, Dove, Kirkwoord, Armada 370 and * non-SMP Discovery systems * - the mv78200 variant for MV78200 Discovery systems. This variant * turns the edge mask and level mask registers into CPU0 edge * mask/level mask registers, and adds CPU1 edge mask/level mask * registers. * - the armadaxp variant for Armada XP systems. This variant keeps * the normal cause/edge mask/level mask registers when the global * interrupts are used, but adds per-CPU cause/edge mask/level mask * registers n a separate memory area for the per-CPU GPIO * interrupts. */ #include #include #include #include #include #include #include #include #include #include #include /* * GPIO unit register offsets. */ #define GPIO_OUT_OFF 0x0000 #define GPIO_IO_CONF_OFF 0x0004 #define GPIO_BLINK_EN_OFF 0x0008 #define GPIO_IN_POL_OFF 0x000c #define GPIO_DATA_IN_OFF 0x0010 #define GPIO_EDGE_CAUSE_OFF 0x0014 #define GPIO_EDGE_MASK_OFF 0x0018 #define GPIO_LEVEL_MASK_OFF 0x001c /* The MV78200 has per-CPU registers for edge mask and level mask */ #define GPIO_EDGE_MASK_MV78200_OFF(cpu) ((cpu) ? 0x30 : 0x18) #define GPIO_LEVEL_MASK_MV78200_OFF(cpu) ((cpu) ? 0x34 : 0x1C) /* The Armada XP has per-CPU registers for interrupt cause, interrupt * mask and interrupt level mask. Those are relative to the * percpu_membase. */ #define GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu) ((cpu) * 0x4) #define GPIO_EDGE_MASK_ARMADAXP_OFF(cpu) (0x10 + (cpu) * 0x4) #define GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu) (0x20 + (cpu) * 0x4) #define MVEBU_GPIO_SOC_VARIANT_ORION 0x1 #define MVEBU_GPIO_SOC_VARIANT_MV78200 0x2 #define MVEBU_GPIO_SOC_VARIANT_ARMADAXP 0x3 #define MVEBU_MAX_GPIO_PER_BANK 32 struct mvebu_gpio_chip { struct gpio_chip chip; spinlock_t lock; void __iomem *membase; void __iomem *percpu_membase; int irqbase; struct irq_domain *domain; int soc_variant; }; /* * Functions returning addresses of individual registers for a given * GPIO controller. */ static inline void __iomem *mvebu_gpioreg_out(struct mvebu_gpio_chip *mvchip) { return mvchip->membase + GPIO_OUT_OFF; } static inline void __iomem *mvebu_gpioreg_blink(struct mvebu_gpio_chip *mvchip) { return mvchip->membase + GPIO_BLINK_EN_OFF; } static inline void __iomem *mvebu_gpioreg_io_conf(struct mvebu_gpio_chip *mvchip) { return mvchip->membase + GPIO_IO_CONF_OFF; } static inline void __iomem *mvebu_gpioreg_in_pol(struct mvebu_gpio_chip *mvchip) { return mvchip->membase + GPIO_IN_POL_OFF; } static inline void __iomem *mvebu_gpioreg_data_in(struct mvebu_gpio_chip *mvchip) { return mvchip->membase + GPIO_DATA_IN_OFF; } static inline void __iomem *mvebu_gpioreg_edge_cause(struct mvebu_gpio_chip *mvchip) { int cpu; switch (mvchip->soc_variant) { case MVEBU_GPIO_SOC_VARIANT_ORION: case MVEBU_GPIO_SOC_VARIANT_MV78200: return mvchip->membase + GPIO_EDGE_CAUSE_OFF; case MVEBU_GPIO_SOC_VARIANT_ARMADAXP: cpu = smp_processor_id(); return mvchip->percpu_membase + GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu); default: BUG(); } } static inline void __iomem *mvebu_gpioreg_edge_mask(struct mvebu_gpio_chip *mvchip) { int cpu; switch (mvchip->soc_variant) { case MVEBU_GPIO_SOC_VARIANT_ORION: return mvchip->membase + GPIO_EDGE_MASK_OFF; case MVEBU_GPIO_SOC_VARIANT_MV78200: cpu = smp_processor_id(); return mvchip->membase + GPIO_EDGE_MASK_MV78200_OFF(cpu); case MVEBU_GPIO_SOC_VARIANT_ARMADAXP: cpu = smp_processor_id(); return mvchip->percpu_membase + GPIO_EDGE_MASK_ARMADAXP_OFF(cpu); default: BUG(); } } static void __iomem *mvebu_gpioreg_level_mask(struct mvebu_gpio_chip *mvchip) { int cpu; switch (mvchip->soc_variant) { case MVEBU_GPIO_SOC_VARIANT_ORION: return mvchip->membase + GPIO_LEVEL_MASK_OFF; case MVEBU_GPIO_SOC_VARIANT_MV78200: cpu = smp_processor_id(); return mvchip->membase + GPIO_LEVEL_MASK_MV78200_OFF(cpu); case MVEBU_GPIO_SOC_VARIANT_ARMADAXP: cpu = smp_processor_id(); return mvchip->percpu_membase + GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu); default: BUG(); } } /* * Functions implementing the gpio_chip methods */ static int mvebu_gpio_request(struct gpio_chip *chip, unsigned pin) { return pinctrl_request_gpio(chip->base + pin); } static void mvebu_gpio_free(struct gpio_chip *chip, unsigned pin) { pinctrl_free_gpio(chip->base + pin); } static void mvebu_gpio_set(struct gpio_chip *chip, unsigned pin, int value) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); unsigned long flags; u32 u; spin_lock_irqsave(&mvchip->lock, flags); u = readl_relaxed(mvebu_gpioreg_out(mvchip)); if (value) u |= 1 << pin; else u &= ~(1 << pin); writel_relaxed(u, mvebu_gpioreg_out(mvchip)); spin_unlock_irqrestore(&mvchip->lock, flags); } static int mvebu_gpio_get(struct gpio_chip *chip, unsigned pin) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); u32 u; if (readl_relaxed(mvebu_gpioreg_io_conf(mvchip)) & (1 << pin)) { u = readl_relaxed(mvebu_gpioreg_data_in(mvchip)) ^ readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); } else { u = readl_relaxed(mvebu_gpioreg_out(mvchip)); } return (u >> pin) & 1; } static void mvebu_gpio_blink(struct gpio_chip *chip, unsigned pin, int value) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); unsigned long flags; u32 u; spin_lock_irqsave(&mvchip->lock, flags); u = readl_relaxed(mvebu_gpioreg_blink(mvchip)); if (value) u |= 1 << pin; else u &= ~(1 << pin); writel_relaxed(u, mvebu_gpioreg_blink(mvchip)); spin_unlock_irqrestore(&mvchip->lock, flags); } static int mvebu_gpio_direction_input(struct gpio_chip *chip, unsigned pin) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); unsigned long flags; int ret; u32 u; /* Check with the pinctrl driver whether this pin is usable as * an input GPIO */ ret = pinctrl_gpio_direction_input(chip->base + pin); if (ret) return ret; spin_lock_irqsave(&mvchip->lock, flags); u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip)); u |= 1 << pin; writel_relaxed(u, mvebu_gpioreg_io_conf(mvchip)); spin_unlock_irqrestore(&mvchip->lock, flags); return 0; } static int mvebu_gpio_direction_output(struct gpio_chip *chip, unsigned pin, int value) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); unsigned long flags; int ret; u32 u; /* Check with the pinctrl driver whether this pin is usable as * an output GPIO */ ret = pinctrl_gpio_direction_output(chip->base + pin); if (ret) return ret; mvebu_gpio_blink(chip, pin, 0); mvebu_gpio_set(chip, pin, value); spin_lock_irqsave(&mvchip->lock, flags); u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip)); u &= ~(1 << pin); writel_relaxed(u, mvebu_gpioreg_io_conf(mvchip)); spin_unlock_irqrestore(&mvchip->lock, flags); return 0; } static int mvebu_gpio_to_irq(struct gpio_chip *chip, unsigned pin) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); return irq_create_mapping(mvchip->domain, pin); } /* * Functions implementing the irq_chip methods */ static void mvebu_gpio_irq_ack(struct irq_data *d) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct mvebu_gpio_chip *mvchip = gc->private; u32 mask = ~(1 << (d->irq - gc->irq_base)); irq_gc_lock(gc); writel_relaxed(mask, mvebu_gpioreg_edge_cause(mvchip)); irq_gc_unlock(gc); } static void mvebu_gpio_edge_irq_mask(struct irq_data *d) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct mvebu_gpio_chip *mvchip = gc->private; struct irq_chip_type *ct = irq_data_get_chip_type(d); u32 mask = 1 << (d->irq - gc->irq_base); irq_gc_lock(gc); ct->mask_cache_priv &= ~mask; writel_relaxed(ct->mask_cache_priv, mvebu_gpioreg_edge_mask(mvchip)); irq_gc_unlock(gc); } static void mvebu_gpio_edge_irq_unmask(struct irq_data *d) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct mvebu_gpio_chip *mvchip = gc->private; struct irq_chip_type *ct = irq_data_get_chip_type(d); u32 mask = 1 << (d->irq - gc->irq_base); irq_gc_lock(gc); ct->mask_cache_priv |= mask; writel_relaxed(ct->mask_cache_priv, mvebu_gpioreg_edge_mask(mvchip)); irq_gc_unlock(gc); } static void mvebu_gpio_level_irq_mask(struct irq_data *d) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct mvebu_gpio_chip *mvchip = gc->private; struct irq_chip_type *ct = irq_data_get_chip_type(d); u32 mask = 1 << (d->irq - gc->irq_base); irq_gc_lock(gc); ct->mask_cache_priv &= ~mask; writel_relaxed(ct->mask_cache_priv, mvebu_gpioreg_level_mask(mvchip)); irq_gc_unlock(gc); } static void mvebu_gpio_level_irq_unmask(struct irq_data *d) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct mvebu_gpio_chip *mvchip = gc->private; struct irq_chip_type *ct = irq_data_get_chip_type(d); u32 mask = 1 << (d->irq - gc->irq_base); irq_gc_lock(gc); ct->mask_cache_priv |= mask; writel_relaxed(ct->mask_cache_priv, mvebu_gpioreg_level_mask(mvchip)); irq_gc_unlock(gc); } /***************************************************************************** * MVEBU GPIO IRQ * * GPIO_IN_POL register controls whether GPIO_DATA_IN will hold the same * value of the line or the opposite value. * * Level IRQ handlers: DATA_IN is used directly as cause register. * Interrupt are masked by LEVEL_MASK registers. * Edge IRQ handlers: Change in DATA_IN are latched in EDGE_CAUSE. * Interrupt are masked by EDGE_MASK registers. * Both-edge handlers: Similar to regular Edge handlers, but also swaps * the polarity to catch the next line transaction. * This is a race condition that might not perfectly * work on some use cases. * * Every eight GPIO lines are grouped (OR'ed) before going up to main * cause register. * * EDGE cause mask * data-in /--------| |-----| |----\ * -----| |----- ---- to main cause reg * X \----------------| |----/ * polarity LEVEL mask * ****************************************************************************/ static int mvebu_gpio_irq_set_type(struct irq_data *d, unsigned int type) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d); struct irq_chip_type *ct = irq_data_get_chip_type(d); struct mvebu_gpio_chip *mvchip = gc->private; int pin; u32 u; pin = d->hwirq; u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip)) & (1 << pin); if (!u) { return -EINVAL; } type &= IRQ_TYPE_SENSE_MASK; if (type == IRQ_TYPE_NONE) return -EINVAL; /* Check if we need to change chip and handler */ if (!(ct->type & type)) if (irq_setup_alt_chip(d, type)) return -EINVAL; /* * Configure interrupt polarity. */ switch (type) { case IRQ_TYPE_EDGE_RISING: case IRQ_TYPE_LEVEL_HIGH: u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); u &= ~(1 << pin); writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip)); break; case IRQ_TYPE_EDGE_FALLING: case IRQ_TYPE_LEVEL_LOW: u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); u |= 1 << pin; writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip)); break; case IRQ_TYPE_EDGE_BOTH: { u32 v; v = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)) ^ readl_relaxed(mvebu_gpioreg_data_in(mvchip)); /* * set initial polarity based on current input level */ u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); if (v & (1 << pin)) u |= 1 << pin; /* falling */ else u &= ~(1 << pin); /* rising */ writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip)); break; } } return 0; } static void mvebu_gpio_irq_handler(unsigned int irq, struct irq_desc *desc) { struct mvebu_gpio_chip *mvchip = irq_get_handler_data(irq); u32 cause, type; int i; if (mvchip == NULL) return; cause = readl_relaxed(mvebu_gpioreg_data_in(mvchip)) & readl_relaxed(mvebu_gpioreg_level_mask(mvchip)); cause |= readl_relaxed(mvebu_gpioreg_edge_cause(mvchip)) & readl_relaxed(mvebu_gpioreg_edge_mask(mvchip)); for (i = 0; i < mvchip->chip.ngpio; i++) { int irq; irq = mvchip->irqbase + i; if (!(cause & (1 << i))) continue; type = irq_get_trigger_type(irq); if ((type & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) { /* Swap polarity (race with GPIO line) */ u32 polarity; polarity = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); polarity ^= 1 << i; writel_relaxed(polarity, mvebu_gpioreg_in_pol(mvchip)); } generic_handle_irq(irq); } } #ifdef CONFIG_DEBUG_FS #include static void mvebu_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) { struct mvebu_gpio_chip *mvchip = container_of(chip, struct mvebu_gpio_chip, chip); u32 out, io_conf, blink, in_pol, data_in, cause, edg_msk, lvl_msk; int i; out = readl_relaxed(mvebu_gpioreg_out(mvchip)); io_conf = readl_relaxed(mvebu_gpioreg_io_conf(mvchip)); blink = readl_relaxed(mvebu_gpioreg_blink(mvchip)); in_pol = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)); data_in = readl_relaxed(mvebu_gpioreg_data_in(mvchip)); cause = readl_relaxed(mvebu_gpioreg_edge_cause(mvchip)); edg_msk = readl_relaxed(mvebu_gpioreg_edge_mask(mvchip)); lvl_msk = readl_relaxed(mvebu_gpioreg_level_mask(mvchip)); for (i = 0; i < chip->ngpio; i++) { const char *label; u32 msk; bool is_out; label = gpiochip_is_requested(chip, i); if (!label) continue; msk = 1 << i; is_out = !(io_conf & msk); seq_printf(s, " gpio-%-3d (%-20.20s)", chip->base + i, label); if (is_out) { seq_printf(s, " out %s %s\n", out & msk ? "hi" : "lo", blink & msk ? "(blink )" : ""); continue; } seq_printf(s, " in %s (act %s) - IRQ", (data_in ^ in_pol) & msk ? "hi" : "lo", in_pol & msk ? "lo" : "hi"); if (!((edg_msk | lvl_msk) & msk)) { seq_printf(s, " disabled\n"); continue; } if (edg_msk & msk) seq_printf(s, " edge "); if (lvl_msk & msk) seq_printf(s, " level"); seq_printf(s, " (%s)\n", cause & msk ? "pending" : "clear "); } } #else #define mvebu_gpio_dbg_show NULL #endif static struct of_device_id mvebu_gpio_of_match[] = { { .compatible = "marvell,orion-gpio", .data = (void *) MVEBU_GPIO_SOC_VARIANT_ORION, }, { .compatible = "marvell,mv78200-gpio", .data = (void *) MVEBU_GPIO_SOC_VARIANT_MV78200, }, { .compatible = "marvell,armadaxp-gpio", .data = (void *) MVEBU_GPIO_SOC_VARIANT_ARMADAXP, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mvebu_gpio_of_match); static int mvebu_gpio_probe(struct platform_device *pdev) { struct mvebu_gpio_chip *mvchip; const struct of_device_id *match; struct device_node *np = pdev->dev.of_node; struct resource *res; struct irq_chip_generic *gc; struct irq_chip_type *ct; struct clk *clk; unsigned int ngpios; int soc_variant; int i, cpu, id; match = of_match_device(mvebu_gpio_of_match, &pdev->dev); if (match) soc_variant = (int) match->data; else soc_variant = MVEBU_GPIO_SOC_VARIANT_ORION; mvchip = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_gpio_chip), GFP_KERNEL); if (!mvchip) { dev_err(&pdev->dev, "Cannot allocate memory\n"); return -ENOMEM; } if (of_property_read_u32(pdev->dev.of_node, "ngpios", &ngpios)) { dev_err(&pdev->dev, "Missing ngpios OF property\n"); return -ENODEV; } id = of_alias_get_id(pdev->dev.of_node, "gpio"); if (id < 0) { dev_err(&pdev->dev, "Couldn't get OF id\n"); return id; } clk = devm_clk_get(&pdev->dev, NULL); /* Not all SoCs require a clock.*/ if (!IS_ERR(clk)) clk_prepare_enable(clk); mvchip->soc_variant = soc_variant; mvchip->chip.label = dev_name(&pdev->dev); mvchip->chip.dev = &pdev->dev; mvchip->chip.request = mvebu_gpio_request; mvchip->chip.free = mvebu_gpio_free; mvchip->chip.direction_input = mvebu_gpio_direction_input; mvchip->chip.get = mvebu_gpio_get; mvchip->chip.direction_output = mvebu_gpio_direction_output; mvchip->chip.set = mvebu_gpio_set; mvchip->chip.to_irq = mvebu_gpio_to_irq; mvchip->chip.base = id * MVEBU_MAX_GPIO_PER_BANK; mvchip->chip.ngpio = ngpios; mvchip->chip.can_sleep = 0; mvchip->chip.of_node = np; mvchip->chip.dbg_show = mvebu_gpio_dbg_show; spin_lock_init(&mvchip->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mvchip->membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mvchip->membase)) return PTR_ERR(mvchip->membase); /* The Armada XP has a second range of registers for the * per-CPU registers */ if (soc_variant == MVEBU_GPIO_SOC_VARIANT_ARMADAXP) { res = platform_get_resource(pdev, IORESOURCE_MEM, 1); mvchip->percpu_membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mvchip->percpu_membase)) return PTR_ERR(mvchip->percpu_membase); } /* * Mask and clear GPIO interrupts. */ switch (soc_variant) { case MVEBU_GPIO_SOC_VARIANT_ORION: writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF); writel_relaxed(0, mvchip->membase + GPIO_EDGE_MASK_OFF); writel_relaxed(0, mvchip->membase + GPIO_LEVEL_MASK_OFF); break; case MVEBU_GPIO_SOC_VARIANT_MV78200: writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF); for (cpu = 0; cpu < 2; cpu++) { writel_relaxed(0, mvchip->membase + GPIO_EDGE_MASK_MV78200_OFF(cpu)); writel_relaxed(0, mvchip->membase + GPIO_LEVEL_MASK_MV78200_OFF(cpu)); } break; case MVEBU_GPIO_SOC_VARIANT_ARMADAXP: writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF); writel_relaxed(0, mvchip->membase + GPIO_EDGE_MASK_OFF); writel_relaxed(0, mvchip->membase + GPIO_LEVEL_MASK_OFF); for (cpu = 0; cpu < 4; cpu++) { writel_relaxed(0, mvchip->percpu_membase + GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu)); writel_relaxed(0, mvchip->percpu_membase + GPIO_EDGE_MASK_ARMADAXP_OFF(cpu)); writel_relaxed(0, mvchip->percpu_membase + GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu)); } break; default: BUG(); } gpiochip_add(&mvchip->chip); /* Some gpio controllers do not provide irq support */ if (!of_irq_count(np)) return 0; /* Setup the interrupt handlers. Each chip can have up to 4 * interrupt handlers, with each handler dealing with 8 GPIO * pins. */ for (i = 0; i < 4; i++) { int irq; irq = platform_get_irq(pdev, i); if (irq < 0) continue; irq_set_handler_data(irq, mvchip); irq_set_chained_handler(irq, mvebu_gpio_irq_handler); } mvchip->irqbase = irq_alloc_descs(-1, 0, ngpios, -1); if (mvchip->irqbase < 0) { dev_err(&pdev->dev, "no irqs\n"); return -ENOMEM; } gc = irq_alloc_generic_chip("mvebu_gpio_irq", 2, mvchip->irqbase, mvchip->membase, handle_level_irq); if (!gc) { dev_err(&pdev->dev, "Cannot allocate generic irq_chip\n"); return -ENOMEM; } gc->private = mvchip; ct = &gc->chip_types[0]; ct->type = IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW; ct->chip.irq_mask = mvebu_gpio_level_irq_mask; ct->chip.irq_unmask = mvebu_gpio_level_irq_unmask; ct->chip.irq_set_type = mvebu_gpio_irq_set_type; ct->chip.name = mvchip->chip.label; ct = &gc->chip_types[1]; ct->type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; ct->chip.irq_ack = mvebu_gpio_irq_ack; ct->chip.irq_mask = mvebu_gpio_edge_irq_mask; ct->chip.irq_unmask = mvebu_gpio_edge_irq_unmask; ct->chip.irq_set_type = mvebu_gpio_irq_set_type; ct->handler = handle_edge_irq; ct->chip.name = mvchip->chip.label; irq_setup_generic_chip(gc, IRQ_MSK(ngpios), 0, IRQ_NOREQUEST, IRQ_LEVEL | IRQ_NOPROBE); /* Setup irq domain on top of the generic chip. */ mvchip->domain = irq_domain_add_simple(np, mvchip->chip.ngpio, mvchip->irqbase, &irq_domain_simple_ops, mvchip); if (!mvchip->domain) { dev_err(&pdev->dev, "couldn't allocate irq domain %s (DT).\n", mvchip->chip.label); irq_remove_generic_chip(gc, IRQ_MSK(ngpios), IRQ_NOREQUEST, IRQ_LEVEL | IRQ_NOPROBE); kfree(gc); return -ENODEV; } return 0; } static struct platform_driver mvebu_gpio_driver = { .driver = { .name = "mvebu-gpio", .owner = THIS_MODULE, .of_match_table = mvebu_gpio_of_match, }, .probe = mvebu_gpio_probe, }; static int __init mvebu_gpio_init(void) { return platform_driver_register(&mvebu_gpio_driver); } postcore_initcall(mvebu_gpio_init);