/* * DMA Engine test module * * Copyright (C) 2007 Atmel Corporation * Copyright (C) 2013 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/freezer.h> #include <linux/init.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/wait.h> static unsigned int test_buf_size = 16384; module_param(test_buf_size, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer"); static char test_channel[20]; module_param_string(channel, test_channel, sizeof(test_channel), S_IRUGO | S_IWUSR); MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)"); static char test_device[32]; module_param_string(device, test_device, sizeof(test_device), S_IRUGO | S_IWUSR); MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)"); static unsigned int threads_per_chan = 1; module_param(threads_per_chan, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(threads_per_chan, "Number of threads to start per channel (default: 1)"); static unsigned int max_channels; module_param(max_channels, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_channels, "Maximum number of channels to use (default: all)"); static unsigned int iterations; module_param(iterations, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(iterations, "Iterations before stopping test (default: infinite)"); static unsigned int sg_buffers = 1; module_param(sg_buffers, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(sg_buffers, "Number of scatter gather buffers (default: 1)"); static unsigned int dmatest = 1; module_param(dmatest, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(dmatest, "dmatest 0-memcpy 1-slave_sg (default: 1)"); static unsigned int xor_sources = 3; module_param(xor_sources, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(xor_sources, "Number of xor source buffers (default: 3)"); static unsigned int pq_sources = 3; module_param(pq_sources, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(pq_sources, "Number of p+q source buffers (default: 3)"); static int timeout = 3000; module_param(timeout, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), " "Pass -1 for infinite timeout"); static bool noverify; module_param(noverify, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(noverify, "Disable random data setup and verification"); static bool verbose; module_param(verbose, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(verbose, "Enable \"success\" result messages (default: off)"); /** * struct dmatest_params - test parameters. * @buf_size: size of the memcpy test buffer * @channel: bus ID of the channel to test * @device: bus ID of the DMA Engine to test * @threads_per_chan: number of threads to start per channel * @max_channels: maximum number of channels to use * @iterations: iterations before stopping test * @xor_sources: number of xor source buffers * @pq_sources: number of p+q source buffers * @timeout: transfer timeout in msec, -1 for infinite timeout */ struct dmatest_params { unsigned int buf_size; char channel[20]; char device[32]; unsigned int threads_per_chan; unsigned int max_channels; unsigned int iterations; unsigned int xor_sources; unsigned int pq_sources; int timeout; bool noverify; }; /** * struct dmatest_info - test information. * @params: test parameters * @lock: access protection to the fields of this structure */ static struct dmatest_info { /* Test parameters */ struct dmatest_params params; /* Internal state */ struct list_head channels; unsigned int nr_channels; struct mutex lock; bool did_init; } test_info = { .channels = LIST_HEAD_INIT(test_info.channels), .lock = __MUTEX_INITIALIZER(test_info.lock), }; static int dmatest_run_set(const char *val, const struct kernel_param *kp); static int dmatest_run_get(char *val, const struct kernel_param *kp); static const struct kernel_param_ops run_ops = { .set = dmatest_run_set, .get = dmatest_run_get, }; static bool dmatest_run; module_param_cb(run, &run_ops, &dmatest_run, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(run, "Run the test (default: false)"); /* Maximum amount of mismatched bytes in buffer to print */ #define MAX_ERROR_COUNT 32 /* * Initialization patterns. All bytes in the source buffer has bit 7 * set, all bytes in the destination buffer has bit 7 cleared. * * Bit 6 is set for all bytes which are to be copied by the DMA * engine. Bit 5 is set for all bytes which are to be overwritten by * the DMA engine. * * The remaining bits are the inverse of a counter which increments by * one for each byte address. */ #define PATTERN_SRC 0x80 #define PATTERN_DST 0x00 #define PATTERN_COPY 0x40 #define PATTERN_OVERWRITE 0x20 #define PATTERN_COUNT_MASK 0x1f struct dmatest_thread { struct list_head node; struct dmatest_info *info; struct task_struct *task; struct dma_chan *chan; u8 **srcs; u8 **dsts; enum dma_transaction_type type; bool done; }; struct dmatest_chan { struct list_head node; struct dma_chan *chan; struct list_head threads; }; static DECLARE_WAIT_QUEUE_HEAD(thread_wait); static bool wait; static bool is_threaded_test_run(struct dmatest_info *info) { struct dmatest_chan *dtc; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; list_for_each_entry(thread, &dtc->threads, node) { if (!thread->done) return true; } } return false; } static int dmatest_wait_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; struct dmatest_params *params = &info->params; if (params->iterations) wait_event(thread_wait, !is_threaded_test_run(info)); wait = true; return param_get_bool(val, kp); } static const struct kernel_param_ops wait_ops = { .get = dmatest_wait_get, .set = param_set_bool, }; module_param_cb(wait, &wait_ops, &wait, S_IRUGO); MODULE_PARM_DESC(wait, "Wait for tests to complete (default: false)"); static bool dmatest_match_channel(struct dmatest_params *params, struct dma_chan *chan) { if (params->channel[0] == '\0') return true; return strcmp(dma_chan_name(chan), params->channel) == 0; } static bool dmatest_match_device(struct dmatest_params *params, struct dma_device *device) { if (params->device[0] == '\0') return true; return strcmp(dev_name(device->dev), params->device) == 0; } static unsigned long dmatest_random(void) { unsigned long buf; prandom_bytes(&buf, sizeof(buf)); return buf; } static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); for ( ; i < start + len; i++) buf[i] = PATTERN_SRC | PATTERN_COPY | (~i & PATTERN_COUNT_MASK); for ( ; i < buf_size; i++) buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); buf++; } } static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); for ( ; i < start + len; i++) buf[i] = PATTERN_DST | PATTERN_OVERWRITE | (~i & PATTERN_COUNT_MASK); for ( ; i < buf_size; i++) buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); } } static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index, unsigned int counter, bool is_srcbuf) { u8 diff = actual ^ pattern; u8 expected = pattern | (~counter & PATTERN_COUNT_MASK); const char *thread_name = current->comm; if (is_srcbuf) pr_warn("%s: srcbuf[0x%x] overwritten! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if ((pattern & PATTERN_COPY) && (diff & (PATTERN_COPY | PATTERN_OVERWRITE))) pr_warn("%s: dstbuf[0x%x] not copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if (diff & PATTERN_SRC) pr_warn("%s: dstbuf[0x%x] was copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else pr_warn("%s: dstbuf[0x%x] mismatch! Expected %02x, got %02x\n", thread_name, index, expected, actual); } static unsigned int dmatest_verify(u8 **bufs, unsigned int start, unsigned int end, unsigned int counter, u8 pattern, bool is_srcbuf) { unsigned int i; unsigned int error_count = 0; u8 actual; u8 expected; u8 *buf; unsigned int counter_orig = counter; for (; (buf = *bufs); bufs++) { counter = counter_orig; for (i = start; i < end; i++) { actual = buf[i]; expected = pattern | (~counter & PATTERN_COUNT_MASK); if (actual != expected) { if (error_count < MAX_ERROR_COUNT) dmatest_mismatch(actual, pattern, i, counter, is_srcbuf); error_count++; } counter++; } } if (error_count > MAX_ERROR_COUNT) pr_warn("%s: %u errors suppressed\n", current->comm, error_count - MAX_ERROR_COUNT); return error_count; } /* poor man's completion - we want to use wait_event_freezable() on it */ struct dmatest_done { bool done; wait_queue_head_t *wait; }; static void dmatest_callback(void *arg) { struct dmatest_done *done = arg; done->done = true; wake_up_all(done->wait); } static unsigned int min_odd(unsigned int x, unsigned int y) { unsigned int val = min(x, y); return val % 2 ? val : val - 1; } static void result(const char *err, unsigned int n, unsigned int src_off, unsigned int dst_off, unsigned int len, unsigned long data) { pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n", current->comm, n, err, src_off, dst_off, len, data); } static void dbg_result(const char *err, unsigned int n, unsigned int src_off, unsigned int dst_off, unsigned int len, unsigned long data) { pr_debug("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n", current->comm, n, err, src_off, dst_off, len, data); } #define verbose_result(err, n, src_off, dst_off, len, data) ({ \ if (verbose) \ result(err, n, src_off, dst_off, len, data); \ else \ dbg_result(err, n, src_off, dst_off, len, data);\ }) static unsigned long long dmatest_persec(s64 runtime, unsigned int val) { unsigned long long per_sec = 1000000; if (runtime <= 0) return 0; /* drop precision until runtime is 32-bits */ while (runtime > UINT_MAX) { runtime >>= 1; per_sec <<= 1; } per_sec *= val; do_div(per_sec, runtime); return per_sec; } static unsigned long long dmatest_KBs(s64 runtime, unsigned long long len) { return dmatest_persec(runtime, len >> 10); } /* * This function repeatedly tests DMA transfers of various lengths and * offsets for a given operation type until it is told to exit by * kthread_stop(). There may be multiple threads running this function * in parallel for a single channel, and there may be multiple channels * being tested in parallel. * * Before each test, the source and destination buffer is initialized * with a known pattern. This pattern is different depending on * whether it's in an area which is supposed to be copied or * overwritten, and different in the source and destination buffers. * So if the DMA engine doesn't copy exactly what we tell it to copy, * we'll notice. */ static int dmatest_func(void *data) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_wait); struct dmatest_thread *thread = data; struct dmatest_done done = { .wait = &done_wait }; struct dmatest_info *info; struct dmatest_params *params; struct dma_chan *chan; struct dma_device *dev; unsigned int error_count; unsigned int failed_tests = 0; unsigned int total_tests = 0; dma_cookie_t cookie; enum dma_status status; enum dma_ctrl_flags flags; u8 *pq_coefs = NULL; int ret; int src_cnt; int dst_cnt; int i; ktime_t ktime; s64 runtime = 0; unsigned long long total_len = 0; set_freezable(); ret = -ENOMEM; smp_rmb(); info = thread->info; params = &info->params; chan = thread->chan; dev = chan->device; if (thread->type == DMA_MEMCPY) src_cnt = dst_cnt = 1; else if (thread->type == DMA_SG) src_cnt = dst_cnt = sg_buffers; else if (thread->type == DMA_XOR) { /* force odd to ensure dst = src */ src_cnt = min_odd(params->xor_sources | 1, dev->max_xor); dst_cnt = 1; } else if (thread->type == DMA_PQ) { /* force odd to ensure dst = src */ src_cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0)); dst_cnt = 2; pq_coefs = kmalloc(params->pq_sources+1, GFP_KERNEL); if (!pq_coefs) goto err_thread_type; for (i = 0; i < src_cnt; i++) pq_coefs[i] = 1; } else goto err_thread_type; thread->srcs = kcalloc(src_cnt+1, sizeof(u8 *), GFP_KERNEL); if (!thread->srcs) goto err_srcs; for (i = 0; i < src_cnt; i++) { thread->srcs[i] = kmalloc(params->buf_size, GFP_KERNEL); if (!thread->srcs[i]) goto err_srcbuf; } thread->srcs[i] = NULL; thread->dsts = kcalloc(dst_cnt+1, sizeof(u8 *), GFP_KERNEL); if (!thread->dsts) goto err_dsts; for (i = 0; i < dst_cnt; i++) { thread->dsts[i] = kmalloc(params->buf_size, GFP_KERNEL); if (!thread->dsts[i]) goto err_dstbuf; } thread->dsts[i] = NULL; set_user_nice(current, 10); /* * src and dst buffers are freed by ourselves below */ flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; ktime = ktime_get(); while (!kthread_should_stop() && !(params->iterations && total_tests >= params->iterations)) { struct dma_async_tx_descriptor *tx = NULL; struct dmaengine_unmap_data *um; dma_addr_t srcs[src_cnt]; dma_addr_t *dsts; unsigned int src_off, dst_off, len; u8 align = 0; struct scatterlist tx_sg[src_cnt]; struct scatterlist rx_sg[src_cnt]; total_tests++; /* honor alignment restrictions */ if (thread->type == DMA_MEMCPY) align = dev->copy_align; else if (thread->type == DMA_XOR) align = dev->xor_align; else if (thread->type == DMA_PQ) align = dev->pq_align; if (1 << align > params->buf_size) { pr_err("%u-byte buffer too small for %d-byte alignment\n", params->buf_size, 1 << align); break; } if (params->noverify) len = params->buf_size; else len = dmatest_random() % params->buf_size + 1; len = (len >> align) << align; if (!len) len = 1 << align; total_len += len; if (params->noverify) { src_off = 0; dst_off = 0; } else { src_off = dmatest_random() % (params->buf_size - len + 1); dst_off = dmatest_random() % (params->buf_size - len + 1); src_off = (src_off >> align) << align; dst_off = (dst_off >> align) << align; dmatest_init_srcs(thread->srcs, src_off, len, params->buf_size); dmatest_init_dsts(thread->dsts, dst_off, len, params->buf_size); } um = dmaengine_get_unmap_data(dev->dev, src_cnt+dst_cnt, GFP_KERNEL); if (!um) { failed_tests++; result("unmap data NULL", total_tests, src_off, dst_off, len, ret); continue; } um->len = params->buf_size; for (i = 0; i < src_cnt; i++) { void *buf = thread->srcs[i]; struct page *pg = virt_to_page(buf); unsigned pg_off = (unsigned long) buf & ~PAGE_MASK; um->addr[i] = dma_map_page(dev->dev, pg, pg_off, um->len, DMA_TO_DEVICE); srcs[i] = um->addr[i] + src_off; ret = dma_mapping_error(dev->dev, um->addr[i]); if (ret) { dmaengine_unmap_put(um); result("src mapping error", total_tests, src_off, dst_off, len, ret); failed_tests++; continue; } um->to_cnt++; } /* map with DMA_BIDIRECTIONAL to force writeback/invalidate */ dsts = &um->addr[src_cnt]; for (i = 0; i < dst_cnt; i++) { void *buf = thread->dsts[i]; struct page *pg = virt_to_page(buf); unsigned pg_off = (unsigned long) buf & ~PAGE_MASK; dsts[i] = dma_map_page(dev->dev, pg, pg_off, um->len, DMA_BIDIRECTIONAL); ret = dma_mapping_error(dev->dev, dsts[i]); if (ret) { dmaengine_unmap_put(um); result("dst mapping error", total_tests, src_off, dst_off, len, ret); failed_tests++; continue; } um->bidi_cnt++; } sg_init_table(tx_sg, src_cnt); sg_init_table(rx_sg, src_cnt); for (i = 0; i < src_cnt; i++) { sg_dma_address(&rx_sg[i]) = srcs[i]; sg_dma_address(&tx_sg[i]) = dsts[i] + dst_off; sg_dma_len(&tx_sg[i]) = len; sg_dma_len(&rx_sg[i]) = len; } if (thread->type == DMA_MEMCPY) tx = dev->device_prep_dma_memcpy(chan, dsts[0] + dst_off, srcs[0], len, flags); else if (thread->type == DMA_SG) tx = dev->device_prep_dma_sg(chan, tx_sg, src_cnt, rx_sg, src_cnt, flags); else if (thread->type == DMA_XOR) tx = dev->device_prep_dma_xor(chan, dsts[0] + dst_off, srcs, src_cnt, len, flags); else if (thread->type == DMA_PQ) { dma_addr_t dma_pq[dst_cnt]; for (i = 0; i < dst_cnt; i++) dma_pq[i] = dsts[i] + dst_off; tx = dev->device_prep_dma_pq(chan, dma_pq, srcs, src_cnt, pq_coefs, len, flags); } if (!tx) { dmaengine_unmap_put(um); result("prep error", total_tests, src_off, dst_off, len, ret); msleep(100); failed_tests++; continue; } done.done = false; tx->callback = dmatest_callback; tx->callback_param = &done; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { dmaengine_unmap_put(um); result("submit error", total_tests, src_off, dst_off, len, ret); msleep(100); failed_tests++; continue; } dma_async_issue_pending(chan); wait_event_freezable_timeout(done_wait, done.done, msecs_to_jiffies(params->timeout)); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (!done.done) { /* * We're leaving the timed out dma operation with * dangling pointer to done_wait. To make this * correct, we'll need to allocate wait_done for * each test iteration and perform "who's gonna * free it this time?" dancing. For now, just * leave it dangling. */ dmaengine_unmap_put(um); result("test timed out", total_tests, src_off, dst_off, len, 0); failed_tests++; continue; } else if (status != DMA_COMPLETE) { dmaengine_unmap_put(um); result(status == DMA_ERROR ? "completion error status" : "completion busy status", total_tests, src_off, dst_off, len, ret); failed_tests++; continue; } dmaengine_unmap_put(um); if (params->noverify) { verbose_result("test passed", total_tests, src_off, dst_off, len, 0); continue; } pr_debug("%s: verifying source buffer...\n", current->comm); error_count = dmatest_verify(thread->srcs, 0, src_off, 0, PATTERN_SRC, true); error_count += dmatest_verify(thread->srcs, src_off, src_off + len, src_off, PATTERN_SRC | PATTERN_COPY, true); error_count += dmatest_verify(thread->srcs, src_off + len, params->buf_size, src_off + len, PATTERN_SRC, true); pr_debug("%s: verifying dest buffer...\n", current->comm); error_count += dmatest_verify(thread->dsts, 0, dst_off, 0, PATTERN_DST, false); error_count += dmatest_verify(thread->dsts, dst_off, dst_off + len, src_off, PATTERN_SRC | PATTERN_COPY, false); error_count += dmatest_verify(thread->dsts, dst_off + len, params->buf_size, dst_off + len, PATTERN_DST, false); if (error_count) { result("data error", total_tests, src_off, dst_off, len, error_count); failed_tests++; } else { verbose_result("test passed", total_tests, src_off, dst_off, len, 0); } } runtime = ktime_us_delta(ktime_get(), ktime); ret = 0; err_dstbuf: for (i = 0; thread->dsts[i]; i++) kfree(thread->dsts[i]); kfree(thread->dsts); err_dsts: err_srcbuf: for (i = 0; thread->srcs[i]; i++) kfree(thread->srcs[i]); kfree(thread->srcs); err_srcs: kfree(pq_coefs); err_thread_type: pr_info("%s: summary %u tests, %u failures %llu iops %llu KB/s (%d)\n", current->comm, total_tests, failed_tests, dmatest_persec(runtime, total_tests), dmatest_KBs(runtime, total_len), ret); /* terminate all transfers on specified channels */ if (ret) dmaengine_terminate_all(chan); thread->done = true; wake_up(&thread_wait); return ret; } static void dmatest_cleanup_channel(struct dmatest_chan *dtc) { struct dmatest_thread *thread; struct dmatest_thread *_thread; int ret; list_for_each_entry_safe(thread, _thread, &dtc->threads, node) { ret = kthread_stop(thread->task); pr_debug("thread %s exited with status %d\n", thread->task->comm, ret); list_del(&thread->node); put_task_struct(thread->task); kfree(thread); } /* terminate all transfers on specified channels */ dmaengine_terminate_all(dtc->chan); kfree(dtc); } static int dmatest_add_threads(struct dmatest_info *info, struct dmatest_chan *dtc, enum dma_transaction_type type) { struct dmatest_params *params = &info->params; struct dmatest_thread *thread; struct dma_chan *chan = dtc->chan; char *op; unsigned int i; if (type == DMA_MEMCPY) op = "copy"; else if (type == DMA_SG) op = "sg"; else if (type == DMA_XOR) op = "xor"; else if (type == DMA_PQ) op = "pq"; else return -EINVAL; for (i = 0; i < params->threads_per_chan; i++) { thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL); if (!thread) { pr_warn("No memory for %s-%s%u\n", dma_chan_name(chan), op, i); break; } thread->info = info; thread->chan = dtc->chan; thread->type = type; smp_wmb(); thread->task = kthread_create(dmatest_func, thread, "%s-%s%u", dma_chan_name(chan), op, i); if (IS_ERR(thread->task)) { pr_warn("Failed to create thread %s-%s%u\n", dma_chan_name(chan), op, i); kfree(thread); break; } /* srcbuf and dstbuf are allocated by the thread itself */ get_task_struct(thread->task); list_add_tail(&thread->node, &dtc->threads); wake_up_process(thread->task); } return i; } static int dmatest_add_channel(struct dmatest_info *info, struct dma_chan *chan) { struct dmatest_chan *dtc; struct dma_device *dma_dev = chan->device; unsigned int thread_count = 0; int cnt; dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL); if (!dtc) { pr_warn("No memory for %s\n", dma_chan_name(chan)); return -ENOMEM; } dtc->chan = chan; INIT_LIST_HEAD(&dtc->threads); if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { if (dmatest == 0) { cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY); thread_count += cnt > 0 ? cnt : 0; } } if (dma_has_cap(DMA_SG, dma_dev->cap_mask)) { if (dmatest == 1) { cnt = dmatest_add_threads(info, dtc, DMA_SG); thread_count += cnt > 0 ? cnt : 0; } } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_XOR); thread_count += cnt > 0 ? cnt : 0; } if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_PQ); thread_count += cnt > 0 ? cnt : 0; } pr_info("Started %u threads using %s\n", thread_count, dma_chan_name(chan)); list_add_tail(&dtc->node, &info->channels); info->nr_channels++; return 0; } static bool filter(struct dma_chan *chan, void *param) { struct dmatest_params *params = param; if (!dmatest_match_channel(params, chan) || !dmatest_match_device(params, chan->device)) return false; else return true; } static void request_channels(struct dmatest_info *info, enum dma_transaction_type type) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(type, mask); for (;;) { struct dmatest_params *params = &info->params; struct dma_chan *chan; chan = dma_request_channel(mask, filter, params); if (chan) { if (dmatest_add_channel(info, chan)) { dma_release_channel(chan); break; /* add_channel failed, punt */ } } else break; /* no more channels available */ if (params->max_channels && info->nr_channels >= params->max_channels) break; /* we have all we need */ } } static void run_threaded_test(struct dmatest_info *info) { struct dmatest_params *params = &info->params; /* Copy test parameters */ params->buf_size = test_buf_size; strlcpy(params->channel, strim(test_channel), sizeof(params->channel)); strlcpy(params->device, strim(test_device), sizeof(params->device)); params->threads_per_chan = threads_per_chan; params->max_channels = max_channels; params->iterations = iterations; params->xor_sources = xor_sources; params->pq_sources = pq_sources; params->timeout = timeout; params->noverify = noverify; request_channels(info, DMA_MEMCPY); request_channels(info, DMA_XOR); request_channels(info, DMA_SG); request_channels(info, DMA_PQ); } static void stop_threaded_test(struct dmatest_info *info) { struct dmatest_chan *dtc, *_dtc; struct dma_chan *chan; list_for_each_entry_safe(dtc, _dtc, &info->channels, node) { list_del(&dtc->node); chan = dtc->chan; dmatest_cleanup_channel(dtc); pr_debug("dropped channel %s\n", dma_chan_name(chan)); dma_release_channel(chan); } info->nr_channels = 0; } static void restart_threaded_test(struct dmatest_info *info, bool run) { /* we might be called early to set run=, defer running until all * parameters have been evaluated */ if (!info->did_init) return; /* Stop any running test first */ stop_threaded_test(info); /* Run test with new parameters */ run_threaded_test(info); } static int dmatest_run_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; mutex_lock(&info->lock); if (is_threaded_test_run(info)) { dmatest_run = true; } else { stop_threaded_test(info); dmatest_run = false; } mutex_unlock(&info->lock); return param_get_bool(val, kp); } static int dmatest_run_set(const char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; int ret; mutex_lock(&info->lock); ret = param_set_bool(val, kp); if (ret) { mutex_unlock(&info->lock); return ret; } if (is_threaded_test_run(info)) ret = -EBUSY; else if (dmatest_run) restart_threaded_test(info, dmatest_run); mutex_unlock(&info->lock); return ret; } static int __init dmatest_init(void) { struct dmatest_info *info = &test_info; struct dmatest_params *params = &info->params; if (dmatest_run) { mutex_lock(&info->lock); run_threaded_test(info); mutex_unlock(&info->lock); } if (params->iterations && wait) wait_event(thread_wait, !is_threaded_test_run(info)); /* module parameters are stable, inittime tests are started, * let userspace take over 'run' control */ info->did_init = true; return 0; } /* when compiled-in wait for drivers to load first */ late_initcall(dmatest_init); static void __exit dmatest_exit(void) { struct dmatest_info *info = &test_info; mutex_lock(&info->lock); stop_threaded_test(info); mutex_unlock(&info->lock); } module_exit(dmatest_exit); MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); MODULE_LICENSE("GPL v2");