// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2024 Google LLC
 */

#include <linux/arch_topology.h>
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

/*
 * CPU0..CPUn
 * +-------------+-------------------------------+--------+-------+
 * | Register    | Description                   | Offset |   Len |
 * +-------------+-------------------------------+--------+-------+
 * | cur_perf    | read this register to get     |    0x0 |   0x4 |
 * |             | the current perf (integer val |        |       |
 * |             | representing perf relative to |        |       |
 * |             | max performance)              |        |       |
 * |             | that vCPU is running at       |        |       |
 * +-------------+-------------------------------+--------+-------+
 * | set_perf    | write to this register to set |    0x4 |   0x4 |
 * |             | perf value of the vCPU        |        |       |
 * +-------------+-------------------------------+--------+-------+
 * | perftbl_len | number of entries in perf     |    0x8 |   0x4 |
 * |             | table. A single entry in the  |        |       |
 * |             | perf table denotes no table   |        |       |
 * |             | and the entry contains        |        |       |
 * |             | the maximum perf value        |        |       |
 * |             | that this vCPU supports.      |        |       |
 * |             | The guest can request any     |        |       |
 * |             | value between 1 and max perf  |        |       |
 * |             | when perftbls are not used.   |        |       |
 * +---------------------------------------------+--------+-------+
 * | perftbl_sel | write to this register to     |    0xc |   0x4 |
 * |             | select perf table entry to    |        |       |
 * |             | read from                     |        |       |
 * +---------------------------------------------+--------+-------+
 * | perftbl_rd  | read this register to get     |   0x10 |   0x4 |
 * |             | perf value of the selected    |        |       |
 * |             | entry based on perftbl_sel    |        |       |
 * +---------------------------------------------+--------+-------+
 * | perf_domain | performance domain number     |   0x14 |   0x4 |
 * |             | that this vCPU belongs to.    |        |       |
 * |             | vCPUs sharing the same perf   |        |       |
 * |             | domain number are part of the |        |       |
 * |             | same performance domain.      |        |       |
 * +-------------+-------------------------------+--------+-------+
 */

#define REG_CUR_PERF_STATE_OFFSET 0x0
#define REG_SET_PERF_STATE_OFFSET 0x4
#define REG_PERFTBL_LEN_OFFSET 0x8
#define REG_PERFTBL_SEL_OFFSET 0xc
#define REG_PERFTBL_RD_OFFSET 0x10
#define REG_PERF_DOMAIN_OFFSET 0x14
#define PER_CPU_OFFSET 0x1000

#define PERFTBL_MAX_ENTRIES 64U

static void __iomem *base;
static DEFINE_PER_CPU(u32, perftbl_num_entries);

static void virt_scale_freq_tick(void)
{
	int cpu = smp_processor_id();
	u32 max_freq = (u32)cpufreq_get_hw_max_freq(cpu);
	u64 cur_freq;
	unsigned long scale;

	cur_freq = (u64)readl_relaxed(base + cpu * PER_CPU_OFFSET
			+ REG_CUR_PERF_STATE_OFFSET);

	cur_freq <<= SCHED_CAPACITY_SHIFT;
	scale = (unsigned long)div_u64(cur_freq, max_freq);
	scale = min(scale, SCHED_CAPACITY_SCALE);

	this_cpu_write(arch_freq_scale, scale);
}

static struct scale_freq_data virt_sfd = {
	.source = SCALE_FREQ_SOURCE_VIRT,
	.set_freq_scale = virt_scale_freq_tick,
};

static unsigned int virt_cpufreq_set_perf(struct cpufreq_policy *policy,
					  unsigned int target_freq)
{
	writel_relaxed(target_freq,
		       base + policy->cpu * PER_CPU_OFFSET + REG_SET_PERF_STATE_OFFSET);
	return 0;
}

static unsigned int virt_cpufreq_fast_switch(struct cpufreq_policy *policy,
					     unsigned int target_freq)
{
	virt_cpufreq_set_perf(policy, target_freq);
	return target_freq;
}

static u32 virt_cpufreq_get_perftbl_entry(int cpu, u32 idx)
{
	writel_relaxed(idx, base + cpu * PER_CPU_OFFSET +
		       REG_PERFTBL_SEL_OFFSET);
	return readl_relaxed(base + cpu * PER_CPU_OFFSET +
			     REG_PERFTBL_RD_OFFSET);
}

static int virt_cpufreq_target(struct cpufreq_policy *policy,
			       unsigned int target_freq,
			       unsigned int relation)
{
	struct cpufreq_freqs freqs;
	int ret = 0;

	freqs.old = policy->cur;
	freqs.new = target_freq;

	cpufreq_freq_transition_begin(policy, &freqs);
	ret = virt_cpufreq_set_perf(policy, target_freq);
	cpufreq_freq_transition_end(policy, &freqs, ret != 0);

	return ret;
}

static int virt_cpufreq_get_sharing_cpus(struct cpufreq_policy *policy)
{
	u32 cur_perf_domain, perf_domain;
	struct device *cpu_dev;
	int cpu;

	cur_perf_domain = readl_relaxed(base + policy->cpu *
					PER_CPU_OFFSET + REG_PERF_DOMAIN_OFFSET);

	for_each_possible_cpu(cpu) {
		cpu_dev = get_cpu_device(cpu);
		if (!cpu_dev)
			continue;

		perf_domain = readl_relaxed(base + cpu *
					    PER_CPU_OFFSET + REG_PERF_DOMAIN_OFFSET);

		if (perf_domain == cur_perf_domain)
			cpumask_set_cpu(cpu, policy->cpus);
	}

	return 0;
}

static int virt_cpufreq_get_freq_info(struct cpufreq_policy *policy)
{
	struct cpufreq_frequency_table *table;
	u32 num_perftbl_entries, idx;

	num_perftbl_entries = per_cpu(perftbl_num_entries, policy->cpu);

	if (num_perftbl_entries == 1) {
		policy->cpuinfo.min_freq = 1;
		policy->cpuinfo.max_freq = virt_cpufreq_get_perftbl_entry(policy->cpu, 0);

		policy->min = policy->cpuinfo.min_freq;
		policy->max = policy->cpuinfo.max_freq;

		policy->cur = policy->max;
		return 0;
	}

	table = kcalloc(num_perftbl_entries + 1, sizeof(*table), GFP_KERNEL);
	if (!table)
		return -ENOMEM;

	for (idx = 0; idx < num_perftbl_entries; idx++)
		table[idx].frequency = virt_cpufreq_get_perftbl_entry(policy->cpu, idx);

	table[idx].frequency = CPUFREQ_TABLE_END;
	policy->freq_table = table;

	return 0;
}

static int virt_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	struct device *cpu_dev;
	int ret;

	cpu_dev = get_cpu_device(policy->cpu);
	if (!cpu_dev)
		return -ENODEV;

	ret = virt_cpufreq_get_freq_info(policy);
	if (ret) {
		dev_warn(cpu_dev, "failed to get cpufreq info\n");
		return ret;
	}

	ret = virt_cpufreq_get_sharing_cpus(policy);
	if (ret) {
		dev_warn(cpu_dev, "failed to get sharing cpumask\n");
		return ret;
	}

	/*
	 * To simplify and improve latency of handling frequency requests on
	 * the host side, this ensures that the vCPU thread triggering the MMIO
	 * abort is the same thread whose performance constraints (Ex. uclamp
	 * settings) need to be updated. This simplifies the VMM (Virtual
	 * Machine Manager) having to find the correct vCPU thread and/or
	 * facing permission issues when configuring other threads.
	 */
	policy->dvfs_possible_from_any_cpu = false;
	policy->fast_switch_possible = true;

	/*
	 * Using the default SCALE_FREQ_SOURCE_CPUFREQ is insufficient since
	 * the actual physical CPU frequency may not match requested frequency
	 * from the vCPU thread due to frequency update latencies or other
	 * inputs to the physical CPU frequency selection. This additional FIE
	 * source allows for more accurate freq_scale updates and only takes
	 * effect if another FIE source such as AMUs have not been registered.
	 */
	topology_set_scale_freq_source(&virt_sfd, policy->cpus);

	return 0;
}

static void virt_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_VIRT, policy->related_cpus);
	kfree(policy->freq_table);
}

static int virt_cpufreq_online(struct cpufreq_policy *policy)
{
	/* Nothing to restore. */
	return 0;
}

static int virt_cpufreq_offline(struct cpufreq_policy *policy)
{
	/* Dummy offline() to avoid exit() being called and freeing resources. */
	return 0;
}

static int virt_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
{
	if (policy->freq_table)
		return cpufreq_frequency_table_verify(policy, policy->freq_table);

	cpufreq_verify_within_cpu_limits(policy);
	return 0;
}

static struct cpufreq_driver cpufreq_virt_driver = {
	.name		= "virt-cpufreq",
	.init		= virt_cpufreq_cpu_init,
	.exit		= virt_cpufreq_cpu_exit,
	.online         = virt_cpufreq_online,
	.offline        = virt_cpufreq_offline,
	.verify		= virt_cpufreq_verify_policy,
	.target		= virt_cpufreq_target,
	.fast_switch	= virt_cpufreq_fast_switch,
	.attr		= cpufreq_generic_attr,
};

static int virt_cpufreq_driver_probe(struct platform_device *pdev)
{
	u32 num_perftbl_entries;
	int ret, cpu;

	base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(base))
		return PTR_ERR(base);

	for_each_possible_cpu(cpu) {
		num_perftbl_entries = readl_relaxed(base + cpu * PER_CPU_OFFSET +
						    REG_PERFTBL_LEN_OFFSET);

		if (!num_perftbl_entries || num_perftbl_entries > PERFTBL_MAX_ENTRIES)
			return -ENODEV;

		per_cpu(perftbl_num_entries, cpu) = num_perftbl_entries;
	}

	ret = cpufreq_register_driver(&cpufreq_virt_driver);
	if (ret) {
		dev_err(&pdev->dev, "Virtual CPUFreq driver failed to register: %d\n", ret);
		return ret;
	}

	dev_dbg(&pdev->dev, "Virtual CPUFreq driver initialized\n");
	return 0;
}

static void virt_cpufreq_driver_remove(struct platform_device *pdev)
{
	cpufreq_unregister_driver(&cpufreq_virt_driver);
}

static const struct of_device_id virt_cpufreq_match[] = {
	{ .compatible = "qemu,virtual-cpufreq", .data = NULL},
	{}
};
MODULE_DEVICE_TABLE(of, virt_cpufreq_match);

static struct platform_driver virt_cpufreq_driver = {
	.probe = virt_cpufreq_driver_probe,
	.remove = virt_cpufreq_driver_remove,
	.driver = {
		.name = "virt-cpufreq",
		.of_match_table = virt_cpufreq_match,
	},
};

static int __init virt_cpufreq_init(void)
{
	return platform_driver_register(&virt_cpufreq_driver);
}
postcore_initcall(virt_cpufreq_init);

static void __exit virt_cpufreq_exit(void)
{
	platform_driver_unregister(&virt_cpufreq_driver);
}
module_exit(virt_cpufreq_exit);

MODULE_DESCRIPTION("Virtual cpufreq driver");
MODULE_LICENSE("GPL");