/* * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST * was acquired by Western Digital in 2012. * * Copyright 2012 sTec, Inc. * Copyright (c) 2017 Western Digital Corporation or its affiliates. * * This file is part of the Linux kernel, and is made available under * the terms of the GNU General Public License version 2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "skd_s1120.h" static int skd_dbg_level; static int skd_isr_comp_limit = 4; #define SKD_ASSERT(expr) \ do { \ if (unlikely(!(expr))) { \ pr_err("Assertion failed! %s,%s,%s,line=%d\n", \ # expr, __FILE__, __func__, __LINE__); \ } \ } while (0) #define DRV_NAME "skd" #define PFX DRV_NAME ": " MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver"); #define PCI_VENDOR_ID_STEC 0x1B39 #define PCI_DEVICE_ID_S1120 0x0001 #define SKD_FUA_NV (1 << 1) #define SKD_MINORS_PER_DEVICE 16 #define SKD_MAX_QUEUE_DEPTH 200u #define SKD_PAUSE_TIMEOUT (5 * 1000) #define SKD_N_FITMSG_BYTES (512u) #define SKD_MAX_REQ_PER_MSG 14 #define SKD_N_SPECIAL_FITMSG_BYTES (128u) /* SG elements are 32 bytes, so we can make this 4096 and still be under the * 128KB limit. That allows 4096*4K = 16M xfer size */ #define SKD_N_SG_PER_REQ_DEFAULT 256u #define SKD_N_COMPLETION_ENTRY 256u #define SKD_N_READ_CAP_BYTES (8u) #define SKD_N_INTERNAL_BYTES (512u) #define SKD_SKCOMP_SIZE \ ((sizeof(struct fit_completion_entry_v1) + \ sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY) /* 5 bits of uniqifier, 0xF800 */ #define SKD_ID_TABLE_MASK (3u << 8u) #define SKD_ID_RW_REQUEST (0u << 8u) #define SKD_ID_INTERNAL (1u << 8u) #define SKD_ID_FIT_MSG (3u << 8u) #define SKD_ID_SLOT_MASK 0x00FFu #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu #define SKD_N_MAX_SECTORS 2048u #define SKD_MAX_RETRIES 2u #define SKD_TIMER_SECONDS(seconds) (seconds) #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60)) #define INQ_STD_NBYTES 36 enum skd_drvr_state { SKD_DRVR_STATE_LOAD, SKD_DRVR_STATE_IDLE, SKD_DRVR_STATE_BUSY, SKD_DRVR_STATE_STARTING, SKD_DRVR_STATE_ONLINE, SKD_DRVR_STATE_PAUSING, SKD_DRVR_STATE_PAUSED, SKD_DRVR_STATE_RESTARTING, SKD_DRVR_STATE_RESUMING, SKD_DRVR_STATE_STOPPING, SKD_DRVR_STATE_FAULT, SKD_DRVR_STATE_DISAPPEARED, SKD_DRVR_STATE_PROTOCOL_MISMATCH, SKD_DRVR_STATE_BUSY_ERASE, SKD_DRVR_STATE_BUSY_SANITIZE, SKD_DRVR_STATE_BUSY_IMMINENT, SKD_DRVR_STATE_WAIT_BOOT, SKD_DRVR_STATE_SYNCING, }; #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u) #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u) #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u) #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u) #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u) #define SKD_START_WAIT_SECONDS 90u enum skd_req_state { SKD_REQ_STATE_IDLE, SKD_REQ_STATE_SETUP, SKD_REQ_STATE_BUSY, SKD_REQ_STATE_COMPLETED, SKD_REQ_STATE_TIMEOUT, }; enum skd_check_status_action { SKD_CHECK_STATUS_REPORT_GOOD, SKD_CHECK_STATUS_REPORT_SMART_ALERT, SKD_CHECK_STATUS_REQUEUE_REQUEST, SKD_CHECK_STATUS_REPORT_ERROR, SKD_CHECK_STATUS_BUSY_IMMINENT, }; struct skd_msg_buf { struct fit_msg_hdr fmh; struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG]; }; struct skd_fitmsg_context { u32 id; u32 length; struct skd_msg_buf *msg_buf; dma_addr_t mb_dma_address; }; struct skd_request_context { enum skd_req_state state; u16 id; u32 fitmsg_id; u8 flush_cmd; enum dma_data_direction data_dir; struct scatterlist *sg; u32 n_sg; u32 sg_byte_count; struct fit_sg_descriptor *sksg_list; dma_addr_t sksg_dma_address; struct fit_completion_entry_v1 completion; struct fit_comp_error_info err_info; blk_status_t status; }; struct skd_special_context { struct skd_request_context req; void *data_buf; dma_addr_t db_dma_address; struct skd_msg_buf *msg_buf; dma_addr_t mb_dma_address; }; typedef enum skd_irq_type { SKD_IRQ_LEGACY, SKD_IRQ_MSI, SKD_IRQ_MSIX } skd_irq_type_t; #define SKD_MAX_BARS 2 struct skd_device { void __iomem *mem_map[SKD_MAX_BARS]; resource_size_t mem_phys[SKD_MAX_BARS]; u32 mem_size[SKD_MAX_BARS]; struct skd_msix_entry *msix_entries; struct pci_dev *pdev; int pcie_error_reporting_is_enabled; spinlock_t lock; struct gendisk *disk; struct blk_mq_tag_set tag_set; struct request_queue *queue; struct skd_fitmsg_context *skmsg; struct device *class_dev; int gendisk_on; int sync_done; u32 devno; u32 major; char isr_name[30]; enum skd_drvr_state state; u32 drive_state; u32 cur_max_queue_depth; u32 queue_low_water_mark; u32 dev_max_queue_depth; u32 num_fitmsg_context; u32 num_req_context; struct skd_fitmsg_context *skmsg_table; struct skd_special_context internal_skspcl; u32 read_cap_blocksize; u32 read_cap_last_lba; int read_cap_is_valid; int inquiry_is_valid; u8 inq_serial_num[13]; /*12 chars plus null term */ u8 skcomp_cycle; u32 skcomp_ix; struct kmem_cache *msgbuf_cache; struct kmem_cache *sglist_cache; struct kmem_cache *databuf_cache; struct fit_completion_entry_v1 *skcomp_table; struct fit_comp_error_info *skerr_table; dma_addr_t cq_dma_address; wait_queue_head_t waitq; struct timer_list timer; u32 timer_countdown; u32 timer_substate; int sgs_per_request; u32 last_mtd; u32 proto_ver; int dbg_level; u32 connect_time_stamp; int connect_retries; #define SKD_MAX_CONNECT_RETRIES 16 u32 drive_jiffies; u32 timo_slot; struct work_struct start_queue; struct work_struct completion_worker; }; #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF) #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF) #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF) static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset) { u32 val = readl(skdev->mem_map[1] + offset); if (unlikely(skdev->dbg_level >= 2)) dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val); return val; } static inline void skd_reg_write32(struct skd_device *skdev, u32 val, u32 offset) { writel(val, skdev->mem_map[1] + offset); if (unlikely(skdev->dbg_level >= 2)) dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val); } static inline void skd_reg_write64(struct skd_device *skdev, u64 val, u32 offset) { writeq(val, skdev->mem_map[1] + offset); if (unlikely(skdev->dbg_level >= 2)) dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset, val); } #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX static int skd_isr_type = SKD_IRQ_DEFAULT; module_param(skd_isr_type, int, 0444); MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability." " (0==legacy, 1==MSI, 2==MSI-X, default==1)"); #define SKD_MAX_REQ_PER_MSG_DEFAULT 1 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT; module_param(skd_max_req_per_msg, int, 0444); MODULE_PARM_DESC(skd_max_req_per_msg, "Maximum SCSI requests packed in a single message." " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)"); #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64" static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT; module_param(skd_max_queue_depth, int, 0444); MODULE_PARM_DESC(skd_max_queue_depth, "Maximum SCSI requests issued to s1120." " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")"); static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT; module_param(skd_sgs_per_request, int, 0444); MODULE_PARM_DESC(skd_sgs_per_request, "Maximum SG elements per block request." " (1-4096, default==256)"); static int skd_max_pass_thru = 1; module_param(skd_max_pass_thru, int, 0444); MODULE_PARM_DESC(skd_max_pass_thru, "Maximum SCSI pass-thru at a time. IGNORED"); module_param(skd_dbg_level, int, 0444); MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)"); module_param(skd_isr_comp_limit, int, 0444); MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4"); /* Major device number dynamically assigned. */ static u32 skd_major; static void skd_destruct(struct skd_device *skdev); static const struct block_device_operations skd_blockdev_ops; static void skd_send_fitmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg); static void skd_send_special_fitmsg(struct skd_device *skdev, struct skd_special_context *skspcl); static bool skd_preop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq); static void skd_postop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq); static void skd_restart_device(struct skd_device *skdev); static int skd_quiesce_dev(struct skd_device *skdev); static int skd_unquiesce_dev(struct skd_device *skdev); static void skd_disable_interrupts(struct skd_device *skdev); static void skd_isr_fwstate(struct skd_device *skdev); static void skd_recover_requests(struct skd_device *skdev); static void skd_soft_reset(struct skd_device *skdev); const char *skd_drive_state_to_str(int state); const char *skd_skdev_state_to_str(enum skd_drvr_state state); static void skd_log_skdev(struct skd_device *skdev, const char *event); static void skd_log_skreq(struct skd_device *skdev, struct skd_request_context *skreq, const char *event); /* ***************************************************************************** * READ/WRITE REQUESTS ***************************************************************************** */ static void skd_inc_in_flight(struct request *rq, void *data, bool reserved) { int *count = data; count++; } static int skd_in_flight(struct skd_device *skdev) { int count = 0; blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count); return count; } static void skd_prep_rw_cdb(struct skd_scsi_request *scsi_req, int data_dir, unsigned lba, unsigned count) { if (data_dir == READ) scsi_req->cdb[0] = READ_10; else scsi_req->cdb[0] = WRITE_10; scsi_req->cdb[1] = 0; scsi_req->cdb[2] = (lba & 0xff000000) >> 24; scsi_req->cdb[3] = (lba & 0xff0000) >> 16; scsi_req->cdb[4] = (lba & 0xff00) >> 8; scsi_req->cdb[5] = (lba & 0xff); scsi_req->cdb[6] = 0; scsi_req->cdb[7] = (count & 0xff00) >> 8; scsi_req->cdb[8] = count & 0xff; scsi_req->cdb[9] = 0; } static void skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req, struct skd_request_context *skreq) { skreq->flush_cmd = 1; scsi_req->cdb[0] = SYNCHRONIZE_CACHE; scsi_req->cdb[1] = 0; scsi_req->cdb[2] = 0; scsi_req->cdb[3] = 0; scsi_req->cdb[4] = 0; scsi_req->cdb[5] = 0; scsi_req->cdb[6] = 0; scsi_req->cdb[7] = 0; scsi_req->cdb[8] = 0; scsi_req->cdb[9] = 0; } /* * Return true if and only if all pending requests should be failed. */ static bool skd_fail_all(struct request_queue *q) { struct skd_device *skdev = q->queuedata; SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE); skd_log_skdev(skdev, "req_not_online"); switch (skdev->state) { case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_WAIT_BOOT: /* In case of starting, we haven't started the queue, * so we can't get here... but requests are * possibly hanging out waiting for us because we * reported the dev/skd0 already. They'll wait * forever if connect doesn't complete. * What to do??? delay dev/skd0 ?? */ case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: return false; case SKD_DRVR_STATE_BUSY_SANITIZE: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_DISAPPEARED: default: return true; } } static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *mqd) { struct request *const req = mqd->rq; struct request_queue *const q = req->q; struct skd_device *skdev = q->queuedata; struct skd_fitmsg_context *skmsg; struct fit_msg_hdr *fmh; const u32 tag = blk_mq_unique_tag(req); struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req); struct skd_scsi_request *scsi_req; unsigned long flags = 0; const u32 lba = blk_rq_pos(req); const u32 count = blk_rq_sectors(req); const int data_dir = rq_data_dir(req); if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE)) return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE; blk_mq_start_request(req); WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n", tag, skd_max_queue_depth, q->nr_requests); SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE); dev_dbg(&skdev->pdev->dev, "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba, count, count, data_dir); skreq->id = tag + SKD_ID_RW_REQUEST; skreq->flush_cmd = 0; skreq->n_sg = 0; skreq->sg_byte_count = 0; skreq->fitmsg_id = 0; skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (req->bio && !skd_preop_sg_list(skdev, skreq)) { dev_dbg(&skdev->pdev->dev, "error Out\n"); skreq->status = BLK_STS_RESOURCE; blk_mq_complete_request(req); return BLK_STS_OK; } dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address, skreq->n_sg * sizeof(struct fit_sg_descriptor), DMA_TO_DEVICE); /* Either a FIT msg is in progress or we have to start one. */ if (skd_max_req_per_msg == 1) { skmsg = NULL; } else { spin_lock_irqsave(&skdev->lock, flags); skmsg = skdev->skmsg; } if (!skmsg) { skmsg = &skdev->skmsg_table[tag]; skdev->skmsg = skmsg; /* Initialize the FIT msg header */ fmh = &skmsg->msg_buf->fmh; memset(fmh, 0, sizeof(*fmh)); fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT; skmsg->length = sizeof(*fmh); } else { fmh = &skmsg->msg_buf->fmh; } skreq->fitmsg_id = skmsg->id; scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced]; memset(scsi_req, 0, sizeof(*scsi_req)); scsi_req->hdr.tag = skreq->id; scsi_req->hdr.sg_list_dma_address = cpu_to_be64(skreq->sksg_dma_address); if (req_op(req) == REQ_OP_FLUSH) { skd_prep_zerosize_flush_cdb(scsi_req, skreq); SKD_ASSERT(skreq->flush_cmd == 1); } else { skd_prep_rw_cdb(scsi_req, data_dir, lba, count); } if (req->cmd_flags & REQ_FUA) scsi_req->cdb[1] |= SKD_FUA_NV; scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count); /* Complete resource allocations. */ skreq->state = SKD_REQ_STATE_BUSY; skmsg->length += sizeof(struct skd_scsi_request); fmh->num_protocol_cmds_coalesced++; dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id, skd_in_flight(skdev)); /* * If the FIT msg buffer is full send it. */ if (skd_max_req_per_msg == 1) { skd_send_fitmsg(skdev, skmsg); } else { if (mqd->last || fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) { skd_send_fitmsg(skdev, skmsg); skdev->skmsg = NULL; } spin_unlock_irqrestore(&skdev->lock, flags); } return BLK_STS_OK; } static enum blk_eh_timer_return skd_timed_out(struct request *req, bool reserved) { struct skd_device *skdev = req->q->queuedata; dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n", blk_mq_unique_tag(req)); return BLK_EH_RESET_TIMER; } static void skd_complete_rq(struct request *req) { struct skd_request_context *skreq = blk_mq_rq_to_pdu(req); blk_mq_end_request(req, skreq->status); } static bool skd_preop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq) { struct request *req = blk_mq_rq_from_pdu(skreq); struct scatterlist *sgl = &skreq->sg[0], *sg; int n_sg; int i; skreq->sg_byte_count = 0; WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE && skreq->data_dir != DMA_FROM_DEVICE); n_sg = blk_rq_map_sg(skdev->queue, req, sgl); if (n_sg <= 0) return false; /* * Map scatterlist to PCI bus addresses. * Note PCI might change the number of entries. */ n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir); if (n_sg <= 0) return false; SKD_ASSERT(n_sg <= skdev->sgs_per_request); skreq->n_sg = n_sg; for_each_sg(sgl, sg, n_sg, i) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; u32 cnt = sg_dma_len(sg); uint64_t dma_addr = sg_dma_address(sg); sgd->control = FIT_SGD_CONTROL_NOT_LAST; sgd->byte_count = cnt; skreq->sg_byte_count += cnt; sgd->host_side_addr = dma_addr; sgd->dev_side_addr = 0; } skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL; skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST; if (unlikely(skdev->dbg_level > 1)) { dev_dbg(&skdev->pdev->dev, "skreq=%x sksg_list=%p sksg_dma=%llx\n", skreq->id, skreq->sksg_list, skreq->sksg_dma_address); for (i = 0; i < n_sg; i++) { struct fit_sg_descriptor *sgd = &skreq->sksg_list[i]; dev_dbg(&skdev->pdev->dev, " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n", i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } return true; } static void skd_postop_sg_list(struct skd_device *skdev, struct skd_request_context *skreq) { /* * restore the next ptr for next IO request so we * don't have to set it every time. */ skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr = skreq->sksg_dma_address + ((skreq->n_sg) * sizeof(struct fit_sg_descriptor)); pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir); } /* ***************************************************************************** * TIMER ***************************************************************************** */ static void skd_timer_tick_not_online(struct skd_device *skdev); static void skd_start_queue(struct work_struct *work) { struct skd_device *skdev = container_of(work, typeof(*skdev), start_queue); /* * Although it is safe to call blk_start_queue() from interrupt * context, blk_mq_start_hw_queues() must not be called from * interrupt context. */ blk_mq_start_hw_queues(skdev->queue); } static void skd_timer_tick(ulong arg) { struct skd_device *skdev = (struct skd_device *)arg; unsigned long reqflags; u32 state; if (skdev->state == SKD_DRVR_STATE_FAULT) /* The driver has declared fault, and we want it to * stay that way until driver is reloaded. */ return; spin_lock_irqsave(&skdev->lock, reqflags); state = SKD_READL(skdev, FIT_STATUS); state &= FIT_SR_DRIVE_STATE_MASK; if (state != skdev->drive_state) skd_isr_fwstate(skdev); if (skdev->state != SKD_DRVR_STATE_ONLINE) skd_timer_tick_not_online(skdev); mod_timer(&skdev->timer, (jiffies + HZ)); spin_unlock_irqrestore(&skdev->lock, reqflags); } static void skd_timer_tick_not_online(struct skd_device *skdev) { switch (skdev->state) { case SKD_DRVR_STATE_IDLE: case SKD_DRVR_STATE_LOAD: break; case SKD_DRVR_STATE_BUSY_SANITIZE: dev_dbg(&skdev->pdev->dev, "drive busy sanitize[%x], driver[%x]\n", skdev->drive_state, skdev->state); /* If we've been in sanitize for 3 seconds, we figure we're not * going to get anymore completions, so recover requests now */ if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } skd_recover_requests(skdev); break; case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n", skdev->state, skdev->timer_countdown); if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } dev_dbg(&skdev->pdev->dev, "busy[%x], timedout=%d, restarting device.", skdev->state, skdev->timer_countdown); skd_restart_device(skdev); break; case SKD_DRVR_STATE_WAIT_BOOT: case SKD_DRVR_STATE_STARTING: if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } /* For now, we fault the drive. Could attempt resets to * revcover at some point. */ skdev->state = SKD_DRVR_STATE_FAULT; dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n", skdev->drive_state); /*start the queue so we can respond with error to requests */ /* wakeup anyone waiting for startup complete */ schedule_work(&skdev->start_queue); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_ONLINE: /* shouldn't get here. */ break; case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: break; case SKD_DRVR_STATE_RESTARTING: if (skdev->timer_countdown > 0) { skdev->timer_countdown--; return; } /* For now, we fault the drive. Could attempt resets to * revcover at some point. */ skdev->state = SKD_DRVR_STATE_FAULT; dev_err(&skdev->pdev->dev, "DriveFault Reconnect Timeout (%x)\n", skdev->drive_state); /* * Recovering does two things: * 1. completes IO with error * 2. reclaims dma resources * When is it safe to recover requests? * - if the drive state is faulted * - if the state is still soft reset after out timeout * - if the drive registers are dead (state = FF) * If it is "unsafe", we still need to recover, so we will * disable pci bus mastering and disable our interrupts. */ if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) || (skdev->drive_state == FIT_SR_DRIVE_FAULT) || (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK)) /* It never came out of soft reset. Try to * recover the requests and then let them * fail. This is to mitigate hung processes. */ skd_recover_requests(skdev); else { dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n", skdev->drive_state); pci_disable_device(skdev->pdev); skd_disable_interrupts(skdev); skd_recover_requests(skdev); } /*start the queue so we can respond with error to requests */ /* wakeup anyone waiting for startup complete */ schedule_work(&skdev->start_queue); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_RESUMING: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_DISAPPEARED: default: break; } } static int skd_start_timer(struct skd_device *skdev) { int rc; setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev); rc = mod_timer(&skdev->timer, (jiffies + HZ)); if (rc) dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc); return rc; } static void skd_kill_timer(struct skd_device *skdev) { del_timer_sync(&skdev->timer); } /* ***************************************************************************** * INTERNAL REQUESTS -- generated by driver itself ***************************************************************************** */ static int skd_format_internal_skspcl(struct skd_device *skdev) { struct skd_special_context *skspcl = &skdev->internal_skspcl; struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0]; struct fit_msg_hdr *fmh; uint64_t dma_address; struct skd_scsi_request *scsi; fmh = &skspcl->msg_buf->fmh; fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT; fmh->num_protocol_cmds_coalesced = 1; scsi = &skspcl->msg_buf->scsi[0]; memset(scsi, 0, sizeof(*scsi)); dma_address = skspcl->req.sksg_dma_address; scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address); skspcl->req.n_sg = 1; sgd->control = FIT_SGD_CONTROL_LAST; sgd->byte_count = 0; sgd->host_side_addr = skspcl->db_dma_address; sgd->dev_side_addr = 0; sgd->next_desc_ptr = 0LL; return 1; } #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES static void skd_send_internal_skspcl(struct skd_device *skdev, struct skd_special_context *skspcl, u8 opcode) { struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0]; struct skd_scsi_request *scsi; unsigned char *buf = skspcl->data_buf; int i; if (skspcl->req.state != SKD_REQ_STATE_IDLE) /* * A refresh is already in progress. * Just wait for it to finish. */ return; skspcl->req.state = SKD_REQ_STATE_BUSY; scsi = &skspcl->msg_buf->scsi[0]; scsi->hdr.tag = skspcl->req.id; memset(scsi->cdb, 0, sizeof(scsi->cdb)); switch (opcode) { case TEST_UNIT_READY: scsi->cdb[0] = TEST_UNIT_READY; sgd->byte_count = 0; scsi->hdr.sg_list_len_bytes = 0; break; case READ_CAPACITY: scsi->cdb[0] = READ_CAPACITY; sgd->byte_count = SKD_N_READ_CAP_BYTES; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); break; case INQUIRY: scsi->cdb[0] = INQUIRY; scsi->cdb[1] = 0x01; /* evpd */ scsi->cdb[2] = 0x80; /* serial number page */ scsi->cdb[4] = 0x10; sgd->byte_count = 16; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); break; case SYNCHRONIZE_CACHE: scsi->cdb[0] = SYNCHRONIZE_CACHE; sgd->byte_count = 0; scsi->hdr.sg_list_len_bytes = 0; break; case WRITE_BUFFER: scsi->cdb[0] = WRITE_BUFFER; scsi->cdb[1] = 0x02; scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8; scsi->cdb[8] = WR_BUF_SIZE & 0xFF; sgd->byte_count = WR_BUF_SIZE; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); /* fill incrementing byte pattern */ for (i = 0; i < sgd->byte_count; i++) buf[i] = i & 0xFF; break; case READ_BUFFER: scsi->cdb[0] = READ_BUFFER; scsi->cdb[1] = 0x02; scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8; scsi->cdb[8] = WR_BUF_SIZE & 0xFF; sgd->byte_count = WR_BUF_SIZE; scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count); memset(skspcl->data_buf, 0, sgd->byte_count); break; default: SKD_ASSERT("Don't know what to send"); return; } skd_send_special_fitmsg(skdev, skspcl); } static void skd_refresh_device_data(struct skd_device *skdev) { struct skd_special_context *skspcl = &skdev->internal_skspcl; skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } static int skd_chk_read_buf(struct skd_device *skdev, struct skd_special_context *skspcl) { unsigned char *buf = skspcl->data_buf; int i; /* check for incrementing byte pattern */ for (i = 0; i < WR_BUF_SIZE; i++) if (buf[i] != (i & 0xFF)) return 1; return 0; } static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key, u8 code, u8 qual, u8 fruc) { /* If the check condition is of special interest, log a message */ if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02) && (code == 0x04) && (qual == 0x06)) { dev_err(&skdev->pdev->dev, "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n", key, code, qual, fruc); } } static void skd_complete_internal(struct skd_device *skdev, struct fit_completion_entry_v1 *skcomp, struct fit_comp_error_info *skerr, struct skd_special_context *skspcl) { u8 *buf = skspcl->data_buf; u8 status; int i; struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0]; lockdep_assert_held(&skdev->lock); SKD_ASSERT(skspcl == &skdev->internal_skspcl); dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]); dma_sync_single_for_cpu(&skdev->pdev->dev, skspcl->db_dma_address, skspcl->req.sksg_list[0].byte_count, DMA_BIDIRECTIONAL); skspcl->req.completion = *skcomp; skspcl->req.state = SKD_REQ_STATE_IDLE; status = skspcl->req.completion.status; skd_log_check_status(skdev, status, skerr->key, skerr->code, skerr->qual, skerr->fruc); switch (scsi->cdb[0]) { case TEST_UNIT_READY: if (status == SAM_STAT_GOOD) skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER); else if ((status == SAM_STAT_CHECK_CONDITION) && (skerr->key == MEDIUM_ERROR)) skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER); else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { dev_dbg(&skdev->pdev->dev, "TUR failed, don't send anymore state 0x%x\n", skdev->state); return; } dev_dbg(&skdev->pdev->dev, "**** TUR failed, retry skerr\n"); skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } break; case WRITE_BUFFER: if (status == SAM_STAT_GOOD) skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER); else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { dev_dbg(&skdev->pdev->dev, "write buffer failed, don't send anymore state 0x%x\n", skdev->state); return; } dev_dbg(&skdev->pdev->dev, "**** write buffer failed, retry skerr\n"); skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } break; case READ_BUFFER: if (status == SAM_STAT_GOOD) { if (skd_chk_read_buf(skdev, skspcl) == 0) skd_send_internal_skspcl(skdev, skspcl, READ_CAPACITY); else { dev_err(&skdev->pdev->dev, "*** W/R Buffer mismatch %d ***\n", skdev->connect_retries); if (skdev->connect_retries < SKD_MAX_CONNECT_RETRIES) { skdev->connect_retries++; skd_soft_reset(skdev); } else { dev_err(&skdev->pdev->dev, "W/R Buffer Connect Error\n"); return; } } } else { if (skdev->state == SKD_DRVR_STATE_STOPPING) { dev_dbg(&skdev->pdev->dev, "read buffer failed, don't send anymore state 0x%x\n", skdev->state); return; } dev_dbg(&skdev->pdev->dev, "**** read buffer failed, retry skerr\n"); skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } break; case READ_CAPACITY: skdev->read_cap_is_valid = 0; if (status == SAM_STAT_GOOD) { skdev->read_cap_last_lba = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; skdev->read_cap_blocksize = (buf[4] << 24) | (buf[5] << 16) | (buf[6] << 8) | buf[7]; dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n", skdev->read_cap_last_lba, skdev->read_cap_blocksize); set_capacity(skdev->disk, skdev->read_cap_last_lba + 1); skdev->read_cap_is_valid = 1; skd_send_internal_skspcl(skdev, skspcl, INQUIRY); } else if ((status == SAM_STAT_CHECK_CONDITION) && (skerr->key == MEDIUM_ERROR)) { skdev->read_cap_last_lba = ~0; set_capacity(skdev->disk, skdev->read_cap_last_lba + 1); dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n"); skd_send_internal_skspcl(skdev, skspcl, INQUIRY); } else { dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n"); skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY); } break; case INQUIRY: skdev->inquiry_is_valid = 0; if (status == SAM_STAT_GOOD) { skdev->inquiry_is_valid = 1; for (i = 0; i < 12; i++) skdev->inq_serial_num[i] = buf[i + 4]; skdev->inq_serial_num[12] = 0; } if (skd_unquiesce_dev(skdev) < 0) dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n"); /* connection is complete */ skdev->connect_retries = 0; break; case SYNCHRONIZE_CACHE: if (status == SAM_STAT_GOOD) skdev->sync_done = 1; else skdev->sync_done = -1; wake_up_interruptible(&skdev->waitq); break; default: SKD_ASSERT("we didn't send this"); } } /* ***************************************************************************** * FIT MESSAGES ***************************************************************************** */ static void skd_send_fitmsg(struct skd_device *skdev, struct skd_fitmsg_context *skmsg) { u64 qcmd; dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n", skmsg->mb_dma_address, skd_in_flight(skdev)); dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf); qcmd = skmsg->mb_dma_address; qcmd |= FIT_QCMD_QID_NORMAL; if (unlikely(skdev->dbg_level > 1)) { u8 *bp = (u8 *)skmsg->msg_buf; int i; for (i = 0; i < skmsg->length; i += 8) { dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i, &bp[i]); if (i == 0) i = 64 - 8; } } if (skmsg->length > 256) qcmd |= FIT_QCMD_MSGSIZE_512; else if (skmsg->length > 128) qcmd |= FIT_QCMD_MSGSIZE_256; else if (skmsg->length > 64) qcmd |= FIT_QCMD_MSGSIZE_128; else /* * This makes no sense because the FIT msg header is * 64 bytes. If the msg is only 64 bytes long it has * no payload. */ qcmd |= FIT_QCMD_MSGSIZE_64; dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address, skmsg->length, DMA_TO_DEVICE); /* Make sure skd_msg_buf is written before the doorbell is triggered. */ smp_wmb(); SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND); } static void skd_send_special_fitmsg(struct skd_device *skdev, struct skd_special_context *skspcl) { u64 qcmd; WARN_ON_ONCE(skspcl->req.n_sg != 1); if (unlikely(skdev->dbg_level > 1)) { u8 *bp = (u8 *)skspcl->msg_buf; int i; for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) { dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i, &bp[i]); if (i == 0) i = 64 - 8; } dev_dbg(&skdev->pdev->dev, "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n", skspcl, skspcl->req.id, skspcl->req.sksg_list, skspcl->req.sksg_dma_address); for (i = 0; i < skspcl->req.n_sg; i++) { struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[i]; dev_dbg(&skdev->pdev->dev, " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n", i, sgd->byte_count, sgd->control, sgd->host_side_addr, sgd->next_desc_ptr); } } /* * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr * and one 64-byte SSDI command. */ qcmd = skspcl->mb_dma_address; qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128; dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address, SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE); dma_sync_single_for_device(&skdev->pdev->dev, skspcl->req.sksg_dma_address, 1 * sizeof(struct fit_sg_descriptor), DMA_TO_DEVICE); dma_sync_single_for_device(&skdev->pdev->dev, skspcl->db_dma_address, skspcl->req.sksg_list[0].byte_count, DMA_BIDIRECTIONAL); /* Make sure skd_msg_buf is written before the doorbell is triggered. */ smp_wmb(); SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND); } /* ***************************************************************************** * COMPLETION QUEUE ***************************************************************************** */ static void skd_complete_other(struct skd_device *skdev, struct fit_completion_entry_v1 *skcomp, struct fit_comp_error_info *skerr); struct sns_info { u8 type; u8 stat; u8 key; u8 asc; u8 ascq; u8 mask; enum skd_check_status_action action; }; static struct sns_info skd_chkstat_table[] = { /* Good */ { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c, SKD_CHECK_STATUS_REPORT_GOOD }, /* Smart alerts */ { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */ SKD_CHECK_STATUS_REPORT_SMART_ALERT }, /* Retry (with limits) */ { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */ SKD_CHECK_STATUS_REQUEUE_REQUEST }, /* Busy (or about to be) */ { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */ SKD_CHECK_STATUS_BUSY_IMMINENT }, }; /* * Look up status and sense data to decide how to handle the error * from the device. * mask says which fields must match e.g., mask=0x18 means check * type and stat, ignore key, asc, ascq. */ static enum skd_check_status_action skd_check_status(struct skd_device *skdev, u8 cmp_status, struct fit_comp_error_info *skerr) { int i; dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n", skerr->key, skerr->code, skerr->qual, skerr->fruc); dev_dbg(&skdev->pdev->dev, "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n", skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual, skerr->fruc); /* Does the info match an entry in the good category? */ for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) { struct sns_info *sns = &skd_chkstat_table[i]; if (sns->mask & 0x10) if (skerr->type != sns->type) continue; if (sns->mask & 0x08) if (cmp_status != sns->stat) continue; if (sns->mask & 0x04) if (skerr->key != sns->key) continue; if (sns->mask & 0x02) if (skerr->code != sns->asc) continue; if (sns->mask & 0x01) if (skerr->qual != sns->ascq) continue; if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) { dev_err(&skdev->pdev->dev, "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n", skerr->key, skerr->code, skerr->qual); } return sns->action; } /* No other match, so nonzero status means error, * zero status means good */ if (cmp_status) { dev_dbg(&skdev->pdev->dev, "status check: error\n"); return SKD_CHECK_STATUS_REPORT_ERROR; } dev_dbg(&skdev->pdev->dev, "status check good default\n"); return SKD_CHECK_STATUS_REPORT_GOOD; } static void skd_resolve_req_exception(struct skd_device *skdev, struct skd_request_context *skreq, struct request *req) { u8 cmp_status = skreq->completion.status; switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) { case SKD_CHECK_STATUS_REPORT_GOOD: case SKD_CHECK_STATUS_REPORT_SMART_ALERT: skreq->status = BLK_STS_OK; blk_mq_complete_request(req); break; case SKD_CHECK_STATUS_BUSY_IMMINENT: skd_log_skreq(skdev, skreq, "retry(busy)"); blk_requeue_request(skdev->queue, req); dev_info(&skdev->pdev->dev, "drive BUSY imminent\n"); skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT; skdev->timer_countdown = SKD_TIMER_MINUTES(20); skd_quiesce_dev(skdev); break; case SKD_CHECK_STATUS_REQUEUE_REQUEST: if ((unsigned long) ++req->special < SKD_MAX_RETRIES) { skd_log_skreq(skdev, skreq, "retry"); blk_requeue_request(skdev->queue, req); break; } /* fall through */ case SKD_CHECK_STATUS_REPORT_ERROR: default: skreq->status = BLK_STS_IOERR; blk_mq_complete_request(req); break; } } static void skd_release_skreq(struct skd_device *skdev, struct skd_request_context *skreq) { /* * Reclaim the skd_request_context */ skreq->state = SKD_REQ_STATE_IDLE; } static int skd_isr_completion_posted(struct skd_device *skdev, int limit, int *enqueued) { struct fit_completion_entry_v1 *skcmp; struct fit_comp_error_info *skerr; u16 req_id; u32 tag; u16 hwq = 0; struct request *rq; struct skd_request_context *skreq; u16 cmp_cntxt; u8 cmp_status; u8 cmp_cycle; u32 cmp_bytes; int rc = 0; int processed = 0; lockdep_assert_held(&skdev->lock); for (;; ) { SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY); skcmp = &skdev->skcomp_table[skdev->skcomp_ix]; cmp_cycle = skcmp->cycle; cmp_cntxt = skcmp->tag; cmp_status = skcmp->status; cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes); skerr = &skdev->skerr_table[skdev->skcomp_ix]; dev_dbg(&skdev->pdev->dev, "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n", skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status, skd_in_flight(skdev), cmp_bytes, skdev->proto_ver); if (cmp_cycle != skdev->skcomp_cycle) { dev_dbg(&skdev->pdev->dev, "end of completions\n"); break; } /* * Update the completion queue head index and possibly * the completion cycle count. 8-bit wrap-around. */ skdev->skcomp_ix++; if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) { skdev->skcomp_ix = 0; skdev->skcomp_cycle++; } /* * The command context is a unique 32-bit ID. The low order * bits help locate the request. The request is usually a * r/w request (see skd_start() above) or a special request. */ req_id = cmp_cntxt; tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK; /* Is this other than a r/w request? */ if (tag >= skdev->num_req_context) { /* * This is not a completion for a r/w request. */ WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag)); skd_complete_other(skdev, skcmp, skerr); continue; } rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag); if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt, tag)) continue; skreq = blk_mq_rq_to_pdu(rq); /* * Make sure the request ID for the slot matches. */ if (skreq->id != req_id) { dev_err(&skdev->pdev->dev, "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n", req_id, skreq->id, cmp_cntxt); continue; } SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY); skreq->completion = *skcmp; if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) { skreq->err_info = *skerr; skd_log_check_status(skdev, cmp_status, skerr->key, skerr->code, skerr->qual, skerr->fruc); } /* Release DMA resources for the request. */ if (skreq->n_sg > 0) skd_postop_sg_list(skdev, skreq); skd_release_skreq(skdev, skreq); /* * Capture the outcome and post it back to the native request. */ if (likely(cmp_status == SAM_STAT_GOOD)) { skreq->status = BLK_STS_OK; blk_mq_complete_request(rq); } else { skd_resolve_req_exception(skdev, skreq, rq); } /* skd_isr_comp_limit equal zero means no limit */ if (limit) { if (++processed >= limit) { rc = 1; break; } } } if (skdev->state == SKD_DRVR_STATE_PAUSING && skd_in_flight(skdev) == 0) { skdev->state = SKD_DRVR_STATE_PAUSED; wake_up_interruptible(&skdev->waitq); } return rc; } static void skd_complete_other(struct skd_device *skdev, struct fit_completion_entry_v1 *skcomp, struct fit_comp_error_info *skerr) { u32 req_id = 0; u32 req_table; u32 req_slot; struct skd_special_context *skspcl; lockdep_assert_held(&skdev->lock); req_id = skcomp->tag; req_table = req_id & SKD_ID_TABLE_MASK; req_slot = req_id & SKD_ID_SLOT_MASK; dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table, req_id, req_slot); /* * Based on the request id, determine how to dispatch this completion. * This swich/case is finding the good cases and forwarding the * completion entry. Errors are reported below the switch. */ switch (req_table) { case SKD_ID_RW_REQUEST: /* * The caller, skd_isr_completion_posted() above, * handles r/w requests. The only way we get here * is if the req_slot is out of bounds. */ break; case SKD_ID_INTERNAL: if (req_slot == 0) { skspcl = &skdev->internal_skspcl; if (skspcl->req.id == req_id && skspcl->req.state == SKD_REQ_STATE_BUSY) { skd_complete_internal(skdev, skcomp, skerr, skspcl); return; } } break; case SKD_ID_FIT_MSG: /* * These id's should never appear in a completion record. */ break; default: /* * These id's should never appear anywhere; */ break; } /* * If we get here it is a bad or stale id. */ } static void skd_reset_skcomp(struct skd_device *skdev) { memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE); skdev->skcomp_ix = 0; skdev->skcomp_cycle = 1; } /* ***************************************************************************** * INTERRUPTS ***************************************************************************** */ static void skd_completion_worker(struct work_struct *work) { struct skd_device *skdev = container_of(work, struct skd_device, completion_worker); unsigned long flags; int flush_enqueued = 0; spin_lock_irqsave(&skdev->lock, flags); /* * pass in limit=0, which means no limit.. * process everything in compq */ skd_isr_completion_posted(skdev, 0, &flush_enqueued); schedule_work(&skdev->start_queue); spin_unlock_irqrestore(&skdev->lock, flags); } static void skd_isr_msg_from_dev(struct skd_device *skdev); static irqreturn_t skd_isr(int irq, void *ptr) { struct skd_device *skdev = ptr; u32 intstat; u32 ack; int rc = 0; int deferred = 0; int flush_enqueued = 0; spin_lock(&skdev->lock); for (;; ) { intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST); ack = FIT_INT_DEF_MASK; ack &= intstat; dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat, ack); /* As long as there is an int pending on device, keep * running loop. When none, get out, but if we've never * done any processing, call completion handler? */ if (ack == 0) { /* No interrupts on device, but run the completion * processor anyway? */ if (rc == 0) if (likely (skdev->state == SKD_DRVR_STATE_ONLINE)) deferred = 1; break; } rc = IRQ_HANDLED; SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST); if (likely((skdev->state != SKD_DRVR_STATE_LOAD) && (skdev->state != SKD_DRVR_STATE_STOPPING))) { if (intstat & FIT_ISH_COMPLETION_POSTED) { /* * If we have already deferred completion * processing, don't bother running it again */ if (deferred == 0) deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit, &flush_enqueued); } if (intstat & FIT_ISH_FW_STATE_CHANGE) { skd_isr_fwstate(skdev); if (skdev->state == SKD_DRVR_STATE_FAULT || skdev->state == SKD_DRVR_STATE_DISAPPEARED) { spin_unlock(&skdev->lock); return rc; } } if (intstat & FIT_ISH_MSG_FROM_DEV) skd_isr_msg_from_dev(skdev); } } if (unlikely(flush_enqueued)) schedule_work(&skdev->start_queue); if (deferred) schedule_work(&skdev->completion_worker); else if (!flush_enqueued) schedule_work(&skdev->start_queue); spin_unlock(&skdev->lock); return rc; } static void skd_drive_fault(struct skd_device *skdev) { skdev->state = SKD_DRVR_STATE_FAULT; dev_err(&skdev->pdev->dev, "Drive FAULT\n"); } static void skd_drive_disappeared(struct skd_device *skdev) { skdev->state = SKD_DRVR_STATE_DISAPPEARED; dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n"); } static void skd_isr_fwstate(struct skd_device *skdev) { u32 sense; u32 state; u32 mtd; int prev_driver_state = skdev->state; sense = SKD_READL(skdev, FIT_STATUS); state = sense & FIT_SR_DRIVE_STATE_MASK; dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n", skd_drive_state_to_str(skdev->drive_state), skdev->drive_state, skd_drive_state_to_str(state), state); skdev->drive_state = state; switch (skdev->drive_state) { case FIT_SR_DRIVE_INIT: if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) { skd_disable_interrupts(skdev); break; } if (skdev->state == SKD_DRVR_STATE_RESTARTING) skd_recover_requests(skdev); if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) { skdev->timer_countdown = SKD_STARTING_TIMO; skdev->state = SKD_DRVR_STATE_STARTING; skd_soft_reset(skdev); break; } mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_SR_DRIVE_ONLINE: skdev->cur_max_queue_depth = skd_max_queue_depth; if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth) skdev->cur_max_queue_depth = skdev->dev_max_queue_depth; skdev->queue_low_water_mark = skdev->cur_max_queue_depth * 2 / 3 + 1; if (skdev->queue_low_water_mark < 1) skdev->queue_low_water_mark = 1; dev_info(&skdev->pdev->dev, "Queue depth limit=%d dev=%d lowat=%d\n", skdev->cur_max_queue_depth, skdev->dev_max_queue_depth, skdev->queue_low_water_mark); skd_refresh_device_data(skdev); break; case FIT_SR_DRIVE_BUSY: skdev->state = SKD_DRVR_STATE_BUSY; skdev->timer_countdown = SKD_BUSY_TIMO; skd_quiesce_dev(skdev); break; case FIT_SR_DRIVE_BUSY_SANITIZE: /* set timer for 3 seconds, we'll abort any unfinished * commands after that expires */ skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE; skdev->timer_countdown = SKD_TIMER_SECONDS(3); schedule_work(&skdev->start_queue); break; case FIT_SR_DRIVE_BUSY_ERASE: skdev->state = SKD_DRVR_STATE_BUSY_ERASE; skdev->timer_countdown = SKD_BUSY_TIMO; break; case FIT_SR_DRIVE_OFFLINE: skdev->state = SKD_DRVR_STATE_IDLE; break; case FIT_SR_DRIVE_SOFT_RESET: switch (skdev->state) { case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: /* Expected by a caller of skd_soft_reset() */ break; default: skdev->state = SKD_DRVR_STATE_RESTARTING; break; } break; case FIT_SR_DRIVE_FW_BOOTING: dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n"); skdev->state = SKD_DRVR_STATE_WAIT_BOOT; skdev->timer_countdown = SKD_WAIT_BOOT_TIMO; break; case FIT_SR_DRIVE_DEGRADED: case FIT_SR_PCIE_LINK_DOWN: case FIT_SR_DRIVE_NEED_FW_DOWNLOAD: break; case FIT_SR_DRIVE_FAULT: skd_drive_fault(skdev); skd_recover_requests(skdev); schedule_work(&skdev->start_queue); break; /* PCIe bus returned all Fs? */ case 0xFF: dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state, sense); skd_drive_disappeared(skdev); skd_recover_requests(skdev); schedule_work(&skdev->start_queue); break; default: /* * Uknown FW State. Wait for a state we recognize. */ break; } dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n", skd_skdev_state_to_str(prev_driver_state), prev_driver_state, skd_skdev_state_to_str(skdev->state), skdev->state); } static void skd_recover_request(struct request *req, void *data, bool reserved) { struct skd_device *const skdev = data; struct skd_request_context *skreq = blk_mq_rq_to_pdu(req); if (skreq->state != SKD_REQ_STATE_BUSY) return; skd_log_skreq(skdev, skreq, "recover"); /* Release DMA resources for the request. */ if (skreq->n_sg > 0) skd_postop_sg_list(skdev, skreq); skreq->state = SKD_REQ_STATE_IDLE; skreq->status = BLK_STS_IOERR; blk_mq_complete_request(req); } static void skd_recover_requests(struct skd_device *skdev) { blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev); } static void skd_isr_msg_from_dev(struct skd_device *skdev) { u32 mfd; u32 mtd; u32 data; mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE); dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd, skdev->last_mtd); /* ignore any mtd that is an ack for something we didn't send */ if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd)) return; switch (FIT_MXD_TYPE(mfd)) { case FIT_MTD_FITFW_INIT: skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd); if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) { dev_err(&skdev->pdev->dev, "protocol mismatch\n"); dev_err(&skdev->pdev->dev, " got=%d support=%d\n", skdev->proto_ver, FIT_PROTOCOL_VERSION_1); dev_err(&skdev->pdev->dev, " please upgrade driver\n"); skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH; skd_soft_reset(skdev); break; } mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_GET_CMDQ_DEPTH: skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd); mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0, SKD_N_COMPLETION_ENTRY); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_SET_COMPQ_DEPTH: SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG); mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_SET_COMPQ_ADDR: skd_reset_skcomp(skdev); mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_HOST_ID: skdev->connect_time_stamp = get_seconds(); data = skdev->connect_time_stamp & 0xFFFF; mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_TIME_STAMP_LO: skdev->drive_jiffies = FIT_MXD_DATA(mfd); data = (skdev->connect_time_stamp >> 16) & 0xFFFF; mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; break; case FIT_MTD_CMD_LOG_TIME_STAMP_HI: skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16); mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0); SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE); skdev->last_mtd = mtd; dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n", skdev->connect_time_stamp, skdev->drive_jiffies); break; case FIT_MTD_ARM_QUEUE: skdev->last_mtd = 0; /* * State should be, or soon will be, FIT_SR_DRIVE_ONLINE. */ break; default: break; } } static void skd_disable_interrupts(struct skd_device *skdev) { u32 sense; sense = SKD_READL(skdev, FIT_CONTROL); sense &= ~FIT_CR_ENABLE_INTERRUPTS; SKD_WRITEL(skdev, sense, FIT_CONTROL); dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense); /* Note that the 1s is written. A 1-bit means * disable, a 0 means enable. */ SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST); } static void skd_enable_interrupts(struct skd_device *skdev) { u32 val; /* unmask interrupts first */ val = FIT_ISH_FW_STATE_CHANGE + FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV; /* Note that the compliment of mask is written. A 1-bit means * disable, a 0 means enable. */ SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST); dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val); val = SKD_READL(skdev, FIT_CONTROL); val |= FIT_CR_ENABLE_INTERRUPTS; dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val); SKD_WRITEL(skdev, val, FIT_CONTROL); } /* ***************************************************************************** * START, STOP, RESTART, QUIESCE, UNQUIESCE ***************************************************************************** */ static void skd_soft_reset(struct skd_device *skdev) { u32 val; val = SKD_READL(skdev, FIT_CONTROL); val |= (FIT_CR_SOFT_RESET); dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val); SKD_WRITEL(skdev, val, FIT_CONTROL); } static void skd_start_device(struct skd_device *skdev) { unsigned long flags; u32 sense; u32 state; spin_lock_irqsave(&skdev->lock, flags); /* ack all ghost interrupts */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); sense = SKD_READL(skdev, FIT_STATUS); dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense); state = sense & FIT_SR_DRIVE_STATE_MASK; skdev->drive_state = state; skdev->last_mtd = 0; skdev->state = SKD_DRVR_STATE_STARTING; skdev->timer_countdown = SKD_STARTING_TIMO; skd_enable_interrupts(skdev); switch (skdev->drive_state) { case FIT_SR_DRIVE_OFFLINE: dev_err(&skdev->pdev->dev, "Drive offline...\n"); break; case FIT_SR_DRIVE_FW_BOOTING: dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n"); skdev->state = SKD_DRVR_STATE_WAIT_BOOT; skdev->timer_countdown = SKD_WAIT_BOOT_TIMO; break; case FIT_SR_DRIVE_BUSY_SANITIZE: dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n"); skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_BUSY_ERASE: dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n"); skdev->state = SKD_DRVR_STATE_BUSY_ERASE; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_INIT: case FIT_SR_DRIVE_ONLINE: skd_soft_reset(skdev); break; case FIT_SR_DRIVE_BUSY: dev_err(&skdev->pdev->dev, "Drive Busy...\n"); skdev->state = SKD_DRVR_STATE_BUSY; skdev->timer_countdown = SKD_STARTED_BUSY_TIMO; break; case FIT_SR_DRIVE_SOFT_RESET: dev_err(&skdev->pdev->dev, "drive soft reset in prog\n"); break; case FIT_SR_DRIVE_FAULT: /* Fault state is bad...soft reset won't do it... * Hard reset, maybe, but does it work on device? * For now, just fault so the system doesn't hang. */ skd_drive_fault(skdev); /*start the queue so we can respond with error to requests */ dev_dbg(&skdev->pdev->dev, "starting queue\n"); schedule_work(&skdev->start_queue); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; case 0xFF: /* Most likely the device isn't there or isn't responding * to the BAR1 addresses. */ skd_drive_disappeared(skdev); /*start the queue so we can respond with error to requests */ dev_dbg(&skdev->pdev->dev, "starting queue to error-out reqs\n"); schedule_work(&skdev->start_queue); skdev->gendisk_on = -1; wake_up_interruptible(&skdev->waitq); break; default: dev_err(&skdev->pdev->dev, "Start: unknown state %x\n", skdev->drive_state); break; } state = SKD_READL(skdev, FIT_CONTROL); dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state); state = SKD_READL(skdev, FIT_INT_STATUS_HOST); dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state); state = SKD_READL(skdev, FIT_INT_MASK_HOST); dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state); state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE); dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state); state = SKD_READL(skdev, FIT_HW_VERSION); dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state); spin_unlock_irqrestore(&skdev->lock, flags); } static void skd_stop_device(struct skd_device *skdev) { unsigned long flags; struct skd_special_context *skspcl = &skdev->internal_skspcl; u32 dev_state; int i; spin_lock_irqsave(&skdev->lock, flags); if (skdev->state != SKD_DRVR_STATE_ONLINE) { dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__); goto stop_out; } if (skspcl->req.state != SKD_REQ_STATE_IDLE) { dev_err(&skdev->pdev->dev, "%s no special\n", __func__); goto stop_out; } skdev->state = SKD_DRVR_STATE_SYNCING; skdev->sync_done = 0; skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE); spin_unlock_irqrestore(&skdev->lock, flags); wait_event_interruptible_timeout(skdev->waitq, (skdev->sync_done), (10 * HZ)); spin_lock_irqsave(&skdev->lock, flags); switch (skdev->sync_done) { case 0: dev_err(&skdev->pdev->dev, "%s no sync\n", __func__); break; case 1: dev_err(&skdev->pdev->dev, "%s sync done\n", __func__); break; default: dev_err(&skdev->pdev->dev, "%s sync error\n", __func__); } stop_out: skdev->state = SKD_DRVR_STATE_STOPPING; spin_unlock_irqrestore(&skdev->lock, flags); skd_kill_timer(skdev); spin_lock_irqsave(&skdev->lock, flags); skd_disable_interrupts(skdev); /* ensure all ints on device are cleared */ /* soft reset the device to unload with a clean slate */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL); spin_unlock_irqrestore(&skdev->lock, flags); /* poll every 100ms, 1 second timeout */ for (i = 0; i < 10; i++) { dev_state = SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK; if (dev_state == FIT_SR_DRIVE_INIT) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(100)); } if (dev_state != FIT_SR_DRIVE_INIT) dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__, dev_state); } /* assume spinlock is held */ static void skd_restart_device(struct skd_device *skdev) { u32 state; /* ack all ghost interrupts */ SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST); state = SKD_READL(skdev, FIT_STATUS); dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state); state &= FIT_SR_DRIVE_STATE_MASK; skdev->drive_state = state; skdev->last_mtd = 0; skdev->state = SKD_DRVR_STATE_RESTARTING; skdev->timer_countdown = SKD_RESTARTING_TIMO; skd_soft_reset(skdev); } /* assume spinlock is held */ static int skd_quiesce_dev(struct skd_device *skdev) { int rc = 0; switch (skdev->state) { case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: dev_dbg(&skdev->pdev->dev, "stopping queue\n"); blk_mq_stop_hw_queues(skdev->queue); break; case SKD_DRVR_STATE_ONLINE: case SKD_DRVR_STATE_STOPPING: case SKD_DRVR_STATE_SYNCING: case SKD_DRVR_STATE_PAUSING: case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_RESUMING: default: rc = -EINVAL; dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n", skdev->state); } return rc; } /* assume spinlock is held */ static int skd_unquiesce_dev(struct skd_device *skdev) { int prev_driver_state = skdev->state; skd_log_skdev(skdev, "unquiesce"); if (skdev->state == SKD_DRVR_STATE_ONLINE) { dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n"); return 0; } if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) { /* * If there has been an state change to other than * ONLINE, we will rely on controller state change * to come back online and restart the queue. * The BUSY state means that driver is ready to * continue normal processing but waiting for controller * to become available. */ skdev->state = SKD_DRVR_STATE_BUSY; dev_dbg(&skdev->pdev->dev, "drive BUSY state\n"); return 0; } /* * Drive has just come online, driver is either in startup, * paused performing a task, or bust waiting for hardware. */ switch (skdev->state) { case SKD_DRVR_STATE_PAUSED: case SKD_DRVR_STATE_BUSY: case SKD_DRVR_STATE_BUSY_IMMINENT: case SKD_DRVR_STATE_BUSY_ERASE: case SKD_DRVR_STATE_STARTING: case SKD_DRVR_STATE_RESTARTING: case SKD_DRVR_STATE_FAULT: case SKD_DRVR_STATE_IDLE: case SKD_DRVR_STATE_LOAD: skdev->state = SKD_DRVR_STATE_ONLINE; dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n", skd_skdev_state_to_str(prev_driver_state), prev_driver_state, skd_skdev_state_to_str(skdev->state), skdev->state); dev_dbg(&skdev->pdev->dev, "**** device ONLINE...starting block queue\n"); dev_dbg(&skdev->pdev->dev, "starting queue\n"); dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n"); schedule_work(&skdev->start_queue); skdev->gendisk_on = 1; wake_up_interruptible(&skdev->waitq); break; case SKD_DRVR_STATE_DISAPPEARED: default: dev_dbg(&skdev->pdev->dev, "**** driver state %d, not implemented\n", skdev->state); return -EBUSY; } return 0; } /* ***************************************************************************** * PCIe MSI/MSI-X INTERRUPT HANDLERS ***************************************************************************** */ static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST)); dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq, SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_statec_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST); skd_isr_fwstate(skdev); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_comp_q(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; int flush_enqueued = 0; int deferred; spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST); deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit, &flush_enqueued); if (flush_enqueued) schedule_work(&skdev->start_queue); if (deferred) schedule_work(&skdev->completion_worker); else if (!flush_enqueued) schedule_work(&skdev->start_queue); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_msg_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST); skd_isr_msg_from_dev(skdev); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data) { struct skd_device *skdev = skd_host_data; unsigned long flags; spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n", SKD_READL(skdev, FIT_INT_STATUS_HOST)); SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST); spin_unlock_irqrestore(&skdev->lock, flags); return IRQ_HANDLED; } /* ***************************************************************************** * PCIe MSI/MSI-X SETUP ***************************************************************************** */ struct skd_msix_entry { char isr_name[30]; }; struct skd_init_msix_entry { const char *name; irq_handler_t handler; }; #define SKD_MAX_MSIX_COUNT 13 #define SKD_MIN_MSIX_COUNT 7 #define SKD_BASE_MSIX_IRQ 4 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = { { "(DMA 0)", skd_reserved_isr }, { "(DMA 1)", skd_reserved_isr }, { "(DMA 2)", skd_reserved_isr }, { "(DMA 3)", skd_reserved_isr }, { "(State Change)", skd_statec_isr }, { "(COMPL_Q)", skd_comp_q }, { "(MSG)", skd_msg_isr }, { "(Reserved)", skd_reserved_isr }, { "(Reserved)", skd_reserved_isr }, { "(Queue Full 0)", skd_qfull_isr }, { "(Queue Full 1)", skd_qfull_isr }, { "(Queue Full 2)", skd_qfull_isr }, { "(Queue Full 3)", skd_qfull_isr }, }; static int skd_acquire_msix(struct skd_device *skdev) { int i, rc; struct pci_dev *pdev = skdev->pdev; rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT, PCI_IRQ_MSIX); if (rc < 0) { dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc); goto out; } skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT, sizeof(struct skd_msix_entry), GFP_KERNEL); if (!skdev->msix_entries) { rc = -ENOMEM; dev_err(&skdev->pdev->dev, "msix table allocation error\n"); goto out; } /* Enable MSI-X vectors for the base queue */ for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) { struct skd_msix_entry *qentry = &skdev->msix_entries[i]; snprintf(qentry->isr_name, sizeof(qentry->isr_name), "%s%d-msix %s", DRV_NAME, skdev->devno, msix_entries[i].name); rc = devm_request_irq(&skdev->pdev->dev, pci_irq_vector(skdev->pdev, i), msix_entries[i].handler, 0, qentry->isr_name, skdev); if (rc) { dev_err(&skdev->pdev->dev, "Unable to register(%d) MSI-X handler %d: %s\n", rc, i, qentry->isr_name); goto msix_out; } } dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n", SKD_MAX_MSIX_COUNT); return 0; msix_out: while (--i >= 0) devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev); out: kfree(skdev->msix_entries); skdev->msix_entries = NULL; return rc; } static int skd_acquire_irq(struct skd_device *skdev) { struct pci_dev *pdev = skdev->pdev; unsigned int irq_flag = PCI_IRQ_LEGACY; int rc; if (skd_isr_type == SKD_IRQ_MSIX) { rc = skd_acquire_msix(skdev); if (!rc) return 0; dev_err(&skdev->pdev->dev, "failed to enable MSI-X, re-trying with MSI %d\n", rc); } snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME, skdev->devno); if (skd_isr_type != SKD_IRQ_LEGACY) irq_flag |= PCI_IRQ_MSI; rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag); if (rc < 0) { dev_err(&skdev->pdev->dev, "failed to allocate the MSI interrupt %d\n", rc); return rc; } rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, pdev->msi_enabled ? 0 : IRQF_SHARED, skdev->isr_name, skdev); if (rc) { pci_free_irq_vectors(pdev); dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n", rc); return rc; } return 0; } static void skd_release_irq(struct skd_device *skdev) { struct pci_dev *pdev = skdev->pdev; if (skdev->msix_entries) { int i; for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) { devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev); } kfree(skdev->msix_entries); skdev->msix_entries = NULL; } else { devm_free_irq(&pdev->dev, pdev->irq, skdev); } pci_free_irq_vectors(pdev); } /* ***************************************************************************** * CONSTRUCT ***************************************************************************** */ static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s, dma_addr_t *dma_handle, gfp_t gfp, enum dma_data_direction dir) { struct device *dev = &skdev->pdev->dev; void *buf; buf = kmem_cache_alloc(s, gfp); if (!buf) return NULL; *dma_handle = dma_map_single(dev, buf, s->size, dir); if (dma_mapping_error(dev, *dma_handle)) { kfree(buf); buf = NULL; } return buf; } static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s, void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir) { if (!vaddr) return; dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir); kmem_cache_free(s, vaddr); } static int skd_cons_skcomp(struct skd_device *skdev) { int rc = 0; struct fit_completion_entry_v1 *skcomp; dev_dbg(&skdev->pdev->dev, "comp pci_alloc, total bytes %zd entries %d\n", SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY); skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE, &skdev->cq_dma_address); if (skcomp == NULL) { rc = -ENOMEM; goto err_out; } skdev->skcomp_table = skcomp; skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp + sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY); err_out: return rc; } static int skd_cons_skmsg(struct skd_device *skdev) { int rc = 0; u32 i; dev_dbg(&skdev->pdev->dev, "skmsg_table kcalloc, struct %lu, count %u total %lu\n", sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context, sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context); skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context, sizeof(struct skd_fitmsg_context), GFP_KERNEL); if (skdev->skmsg_table == NULL) { rc = -ENOMEM; goto err_out; } for (i = 0; i < skdev->num_fitmsg_context; i++) { struct skd_fitmsg_context *skmsg; skmsg = &skdev->skmsg_table[i]; skmsg->id = i + SKD_ID_FIT_MSG; skmsg->msg_buf = pci_alloc_consistent(skdev->pdev, SKD_N_FITMSG_BYTES, &skmsg->mb_dma_address); if (skmsg->msg_buf == NULL) { rc = -ENOMEM; goto err_out; } WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) & (FIT_QCMD_ALIGN - 1), "not aligned: msg_buf %p mb_dma_address %#llx\n", skmsg->msg_buf, skmsg->mb_dma_address); memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES); } err_out: return rc; } static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev, u32 n_sg, dma_addr_t *ret_dma_addr) { struct fit_sg_descriptor *sg_list; sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr, GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE); if (sg_list != NULL) { uint64_t dma_address = *ret_dma_addr; u32 i; for (i = 0; i < n_sg - 1; i++) { uint64_t ndp_off; ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor); sg_list[i].next_desc_ptr = dma_address + ndp_off; } sg_list[i].next_desc_ptr = 0LL; } return sg_list; } static void skd_free_sg_list(struct skd_device *skdev, struct fit_sg_descriptor *sg_list, dma_addr_t dma_addr) { if (WARN_ON_ONCE(!sg_list)) return; skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr, DMA_TO_DEVICE); } static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node) { struct skd_device *skdev = set->driver_data; struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq); skreq->state = SKD_REQ_STATE_IDLE; skreq->sg = (void *)(skreq + 1); sg_init_table(skreq->sg, skd_sgs_per_request); skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request, &skreq->sksg_dma_address); return skreq->sksg_list ? 0 : -ENOMEM; } static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx) { struct skd_device *skdev = set->driver_data; struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq); skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address); } static int skd_cons_sksb(struct skd_device *skdev) { int rc = 0; struct skd_special_context *skspcl; skspcl = &skdev->internal_skspcl; skspcl->req.id = 0 + SKD_ID_INTERNAL; skspcl->req.state = SKD_REQ_STATE_IDLE; skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache, &skspcl->db_dma_address, GFP_DMA | __GFP_ZERO, DMA_BIDIRECTIONAL); if (skspcl->data_buf == NULL) { rc = -ENOMEM; goto err_out; } skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache, &skspcl->mb_dma_address, GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE); if (skspcl->msg_buf == NULL) { rc = -ENOMEM; goto err_out; } skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1, &skspcl->req.sksg_dma_address); if (skspcl->req.sksg_list == NULL) { rc = -ENOMEM; goto err_out; } if (!skd_format_internal_skspcl(skdev)) { rc = -EINVAL; goto err_out; } err_out: return rc; } static const struct blk_mq_ops skd_mq_ops = { .queue_rq = skd_mq_queue_rq, .complete = skd_complete_rq, .timeout = skd_timed_out, .init_request = skd_init_request, .exit_request = skd_exit_request, }; static int skd_cons_disk(struct skd_device *skdev) { int rc = 0; struct gendisk *disk; struct request_queue *q; unsigned long flags; disk = alloc_disk(SKD_MINORS_PER_DEVICE); if (!disk) { rc = -ENOMEM; goto err_out; } skdev->disk = disk; sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno); disk->major = skdev->major; disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE; disk->fops = &skd_blockdev_ops; disk->private_data = skdev; memset(&skdev->tag_set, 0, sizeof(skdev->tag_set)); skdev->tag_set.ops = &skd_mq_ops; skdev->tag_set.nr_hw_queues = 1; skdev->tag_set.queue_depth = skd_max_queue_depth; skdev->tag_set.cmd_size = sizeof(struct skd_request_context) + skdev->sgs_per_request * sizeof(struct scatterlist); skdev->tag_set.numa_node = NUMA_NO_NODE; skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE | BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO); skdev->tag_set.driver_data = skdev; rc = blk_mq_alloc_tag_set(&skdev->tag_set); if (rc) goto err_out; q = blk_mq_init_queue(&skdev->tag_set); if (IS_ERR(q)) { blk_mq_free_tag_set(&skdev->tag_set); rc = PTR_ERR(q); goto err_out; } blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); q->queuedata = skdev; q->nr_requests = skd_max_queue_depth / 2; skdev->queue = q; disk->queue = q; blk_queue_write_cache(q, true, true); blk_queue_max_segments(q, skdev->sgs_per_request); blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS); /* set optimal I/O size to 8KB */ blk_queue_io_opt(q, 8192); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); blk_queue_rq_timeout(q, 8 * HZ); spin_lock_irqsave(&skdev->lock, flags); dev_dbg(&skdev->pdev->dev, "stopping queue\n"); blk_mq_stop_hw_queues(skdev->queue); spin_unlock_irqrestore(&skdev->lock, flags); err_out: return rc; } #define SKD_N_DEV_TABLE 16u static u32 skd_next_devno; static struct skd_device *skd_construct(struct pci_dev *pdev) { struct skd_device *skdev; int blk_major = skd_major; size_t size; int rc; skdev = kzalloc(sizeof(*skdev), GFP_KERNEL); if (!skdev) { dev_err(&pdev->dev, "memory alloc failure\n"); return NULL; } skdev->state = SKD_DRVR_STATE_LOAD; skdev->pdev = pdev; skdev->devno = skd_next_devno++; skdev->major = blk_major; skdev->dev_max_queue_depth = 0; skdev->num_req_context = skd_max_queue_depth; skdev->num_fitmsg_context = skd_max_queue_depth; skdev->cur_max_queue_depth = 1; skdev->queue_low_water_mark = 1; skdev->proto_ver = 99; skdev->sgs_per_request = skd_sgs_per_request; skdev->dbg_level = skd_dbg_level; spin_lock_init(&skdev->lock); INIT_WORK(&skdev->start_queue, skd_start_queue); INIT_WORK(&skdev->completion_worker, skd_completion_worker); size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES); skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0, SLAB_HWCACHE_ALIGN, NULL); if (!skdev->msgbuf_cache) goto err_out; WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size, "skd-msgbuf: %d < %zd\n", kmem_cache_size(skdev->msgbuf_cache), size); size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor); skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0, SLAB_HWCACHE_ALIGN, NULL); if (!skdev->sglist_cache) goto err_out; WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size, "skd-sglist: %d < %zd\n", kmem_cache_size(skdev->sglist_cache), size); size = SKD_N_INTERNAL_BYTES; skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0, SLAB_HWCACHE_ALIGN, NULL); if (!skdev->databuf_cache) goto err_out; WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size, "skd-databuf: %d < %zd\n", kmem_cache_size(skdev->databuf_cache), size); dev_dbg(&skdev->pdev->dev, "skcomp\n"); rc = skd_cons_skcomp(skdev); if (rc < 0) goto err_out; dev_dbg(&skdev->pdev->dev, "skmsg\n"); rc = skd_cons_skmsg(skdev); if (rc < 0) goto err_out; dev_dbg(&skdev->pdev->dev, "sksb\n"); rc = skd_cons_sksb(skdev); if (rc < 0) goto err_out; dev_dbg(&skdev->pdev->dev, "disk\n"); rc = skd_cons_disk(skdev); if (rc < 0) goto err_out; dev_dbg(&skdev->pdev->dev, "VICTORY\n"); return skdev; err_out: dev_dbg(&skdev->pdev->dev, "construct failed\n"); skd_destruct(skdev); return NULL; } /* ***************************************************************************** * DESTRUCT (FREE) ***************************************************************************** */ static void skd_free_skcomp(struct skd_device *skdev) { if (skdev->skcomp_table) pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE, skdev->skcomp_table, skdev->cq_dma_address); skdev->skcomp_table = NULL; skdev->cq_dma_address = 0; } static void skd_free_skmsg(struct skd_device *skdev) { u32 i; if (skdev->skmsg_table == NULL) return; for (i = 0; i < skdev->num_fitmsg_context; i++) { struct skd_fitmsg_context *skmsg; skmsg = &skdev->skmsg_table[i]; if (skmsg->msg_buf != NULL) { pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES, skmsg->msg_buf, skmsg->mb_dma_address); } skmsg->msg_buf = NULL; skmsg->mb_dma_address = 0; } kfree(skdev->skmsg_table); skdev->skmsg_table = NULL; } static void skd_free_sksb(struct skd_device *skdev) { struct skd_special_context *skspcl = &skdev->internal_skspcl; skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf, skspcl->db_dma_address, DMA_BIDIRECTIONAL); skspcl->data_buf = NULL; skspcl->db_dma_address = 0; skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf, skspcl->mb_dma_address, DMA_TO_DEVICE); skspcl->msg_buf = NULL; skspcl->mb_dma_address = 0; skd_free_sg_list(skdev, skspcl->req.sksg_list, skspcl->req.sksg_dma_address); skspcl->req.sksg_list = NULL; skspcl->req.sksg_dma_address = 0; } static void skd_free_disk(struct skd_device *skdev) { struct gendisk *disk = skdev->disk; if (disk && (disk->flags & GENHD_FL_UP)) del_gendisk(disk); if (skdev->queue) { blk_cleanup_queue(skdev->queue); skdev->queue = NULL; if (disk) disk->queue = NULL; } if (skdev->tag_set.tags) blk_mq_free_tag_set(&skdev->tag_set); put_disk(disk); skdev->disk = NULL; } static void skd_destruct(struct skd_device *skdev) { if (skdev == NULL) return; cancel_work_sync(&skdev->start_queue); dev_dbg(&skdev->pdev->dev, "disk\n"); skd_free_disk(skdev); dev_dbg(&skdev->pdev->dev, "sksb\n"); skd_free_sksb(skdev); dev_dbg(&skdev->pdev->dev, "skmsg\n"); skd_free_skmsg(skdev); dev_dbg(&skdev->pdev->dev, "skcomp\n"); skd_free_skcomp(skdev); kmem_cache_destroy(skdev->databuf_cache); kmem_cache_destroy(skdev->sglist_cache); kmem_cache_destroy(skdev->msgbuf_cache); dev_dbg(&skdev->pdev->dev, "skdev\n"); kfree(skdev); } /* ***************************************************************************** * BLOCK DEVICE (BDEV) GLUE ***************************************************************************** */ static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct skd_device *skdev; u64 capacity; skdev = bdev->bd_disk->private_data; dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n", bdev->bd_disk->disk_name, current->comm); if (skdev->read_cap_is_valid) { capacity = get_capacity(skdev->disk); geo->heads = 64; geo->sectors = 255; geo->cylinders = (capacity) / (255 * 64); return 0; } return -EIO; } static int skd_bdev_attach(struct device *parent, struct skd_device *skdev) { dev_dbg(&skdev->pdev->dev, "add_disk\n"); device_add_disk(parent, skdev->disk); return 0; } static const struct block_device_operations skd_blockdev_ops = { .owner = THIS_MODULE, .getgeo = skd_bdev_getgeo, }; /* ***************************************************************************** * PCIe DRIVER GLUE ***************************************************************************** */ static const struct pci_device_id skd_pci_tbl[] = { { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { 0 } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, skd_pci_tbl); static char *skd_pci_info(struct skd_device *skdev, char *str) { int pcie_reg; strcpy(str, "PCIe ("); pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP); if (pcie_reg) { char lwstr[6]; uint16_t pcie_lstat, lspeed, lwidth; pcie_reg += 0x12; pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat); lspeed = pcie_lstat & (0xF); lwidth = (pcie_lstat & 0x3F0) >> 4; if (lspeed == 1) strcat(str, "2.5GT/s "); else if (lspeed == 2) strcat(str, "5.0GT/s "); else strcat(str, " "); snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth); strcat(str, lwstr); } return str; } static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int i; int rc = 0; char pci_str[32]; struct skd_device *skdev; dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor, pdev->device); rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!rc) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { dev_err(&pdev->dev, "consistent DMA mask error %d\n", rc); } } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { dev_err(&pdev->dev, "DMA mask error %d\n", rc); goto err_out_regions; } } if (!skd_major) { rc = register_blkdev(0, DRV_NAME); if (rc < 0) goto err_out_regions; BUG_ON(!rc); skd_major = rc; } skdev = skd_construct(pdev); if (skdev == NULL) { rc = -ENOMEM; goto err_out_regions; } skd_pci_info(skdev, pci_str); dev_info(&pdev->dev, "%s 64bit\n", pci_str); pci_set_master(pdev); rc = pci_enable_pcie_error_reporting(pdev); if (rc) { dev_err(&pdev->dev, "bad enable of PCIe error reporting rc=%d\n", rc); skdev->pcie_error_reporting_is_enabled = 0; } else skdev->pcie_error_reporting_is_enabled = 1; pci_set_drvdata(pdev, skdev); for (i = 0; i < SKD_MAX_BARS; i++) { skdev->mem_phys[i] = pci_resource_start(pdev, i); skdev->mem_size[i] = (u32)pci_resource_len(pdev, i); skdev->mem_map[i] = ioremap(skdev->mem_phys[i], skdev->mem_size[i]); if (!skdev->mem_map[i]) { dev_err(&pdev->dev, "Unable to map adapter memory!\n"); rc = -ENODEV; goto err_out_iounmap; } dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n", skdev->mem_map[i], (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]); } rc = skd_acquire_irq(skdev); if (rc) { dev_err(&pdev->dev, "interrupt resource error %d\n", rc); goto err_out_iounmap; } rc = skd_start_timer(skdev); if (rc) goto err_out_timer; init_waitqueue_head(&skdev->waitq); skd_start_device(skdev); rc = wait_event_interruptible_timeout(skdev->waitq, (skdev->gendisk_on), (SKD_START_WAIT_SECONDS * HZ)); if (skdev->gendisk_on > 0) { /* device came on-line after reset */ skd_bdev_attach(&pdev->dev, skdev); rc = 0; } else { /* we timed out, something is wrong with the device, don't add the disk structure */ dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n", rc); /* in case of no error; we timeout with ENXIO */ if (!rc) rc = -ENXIO; goto err_out_timer; } return rc; err_out_timer: skd_stop_device(skdev); skd_release_irq(skdev); err_out_iounmap: for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); skd_destruct(skdev); err_out_regions: pci_release_regions(pdev); err_out: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return rc; } static void skd_pci_remove(struct pci_dev *pdev) { int i; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { dev_err(&pdev->dev, "no device data for PCI\n"); return; } skd_stop_device(skdev); skd_release_irq(skdev); for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); skd_destruct(skdev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return; } static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state) { int i; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { dev_err(&pdev->dev, "no device data for PCI\n"); return -EIO; } skd_stop_device(skdev); skd_release_irq(skdev); for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); pci_release_regions(pdev); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int skd_pci_resume(struct pci_dev *pdev) { int i; int rc = 0; struct skd_device *skdev; skdev = pci_get_drvdata(pdev); if (!skdev) { dev_err(&pdev->dev, "no device data for PCI\n"); return -1; } pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!rc) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { dev_err(&pdev->dev, "consistent DMA mask error %d\n", rc); } } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { dev_err(&pdev->dev, "DMA mask error %d\n", rc); goto err_out_regions; } } pci_set_master(pdev); rc = pci_enable_pcie_error_reporting(pdev); if (rc) { dev_err(&pdev->dev, "bad enable of PCIe error reporting rc=%d\n", rc); skdev->pcie_error_reporting_is_enabled = 0; } else skdev->pcie_error_reporting_is_enabled = 1; for (i = 0; i < SKD_MAX_BARS; i++) { skdev->mem_phys[i] = pci_resource_start(pdev, i); skdev->mem_size[i] = (u32)pci_resource_len(pdev, i); skdev->mem_map[i] = ioremap(skdev->mem_phys[i], skdev->mem_size[i]); if (!skdev->mem_map[i]) { dev_err(&pdev->dev, "Unable to map adapter memory!\n"); rc = -ENODEV; goto err_out_iounmap; } dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n", skdev->mem_map[i], (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]); } rc = skd_acquire_irq(skdev); if (rc) { dev_err(&pdev->dev, "interrupt resource error %d\n", rc); goto err_out_iounmap; } rc = skd_start_timer(skdev); if (rc) goto err_out_timer; init_waitqueue_head(&skdev->waitq); skd_start_device(skdev); return rc; err_out_timer: skd_stop_device(skdev); skd_release_irq(skdev); err_out_iounmap: for (i = 0; i < SKD_MAX_BARS; i++) if (skdev->mem_map[i]) iounmap(skdev->mem_map[i]); if (skdev->pcie_error_reporting_is_enabled) pci_disable_pcie_error_reporting(pdev); err_out_regions: pci_release_regions(pdev); err_out: pci_disable_device(pdev); return rc; } static void skd_pci_shutdown(struct pci_dev *pdev) { struct skd_device *skdev; dev_err(&pdev->dev, "%s called\n", __func__); skdev = pci_get_drvdata(pdev); if (!skdev) { dev_err(&pdev->dev, "no device data for PCI\n"); return; } dev_err(&pdev->dev, "calling stop\n"); skd_stop_device(skdev); } static struct pci_driver skd_driver = { .name = DRV_NAME, .id_table = skd_pci_tbl, .probe = skd_pci_probe, .remove = skd_pci_remove, .suspend = skd_pci_suspend, .resume = skd_pci_resume, .shutdown = skd_pci_shutdown, }; /* ***************************************************************************** * LOGGING SUPPORT ***************************************************************************** */ const char *skd_drive_state_to_str(int state) { switch (state) { case FIT_SR_DRIVE_OFFLINE: return "OFFLINE"; case FIT_SR_DRIVE_INIT: return "INIT"; case FIT_SR_DRIVE_ONLINE: return "ONLINE"; case FIT_SR_DRIVE_BUSY: return "BUSY"; case FIT_SR_DRIVE_FAULT: return "FAULT"; case FIT_SR_DRIVE_DEGRADED: return "DEGRADED"; case FIT_SR_PCIE_LINK_DOWN: return "INK_DOWN"; case FIT_SR_DRIVE_SOFT_RESET: return "SOFT_RESET"; case FIT_SR_DRIVE_NEED_FW_DOWNLOAD: return "NEED_FW"; case FIT_SR_DRIVE_INIT_FAULT: return "INIT_FAULT"; case FIT_SR_DRIVE_BUSY_SANITIZE: return "BUSY_SANITIZE"; case FIT_SR_DRIVE_BUSY_ERASE: return "BUSY_ERASE"; case FIT_SR_DRIVE_FW_BOOTING: return "FW_BOOTING"; default: return "???"; } } const char *skd_skdev_state_to_str(enum skd_drvr_state state) { switch (state) { case SKD_DRVR_STATE_LOAD: return "LOAD"; case SKD_DRVR_STATE_IDLE: return "IDLE"; case SKD_DRVR_STATE_BUSY: return "BUSY"; case SKD_DRVR_STATE_STARTING: return "STARTING"; case SKD_DRVR_STATE_ONLINE: return "ONLINE"; case SKD_DRVR_STATE_PAUSING: return "PAUSING"; case SKD_DRVR_STATE_PAUSED: return "PAUSED"; case SKD_DRVR_STATE_RESTARTING: return "RESTARTING"; case SKD_DRVR_STATE_RESUMING: return "RESUMING"; case SKD_DRVR_STATE_STOPPING: return "STOPPING"; case SKD_DRVR_STATE_SYNCING: return "SYNCING"; case SKD_DRVR_STATE_FAULT: return "FAULT"; case SKD_DRVR_STATE_DISAPPEARED: return "DISAPPEARED"; case SKD_DRVR_STATE_BUSY_ERASE: return "BUSY_ERASE"; case SKD_DRVR_STATE_BUSY_SANITIZE: return "BUSY_SANITIZE"; case SKD_DRVR_STATE_BUSY_IMMINENT: return "BUSY_IMMINENT"; case SKD_DRVR_STATE_WAIT_BOOT: return "WAIT_BOOT"; default: return "???"; } } static const char *skd_skreq_state_to_str(enum skd_req_state state) { switch (state) { case SKD_REQ_STATE_IDLE: return "IDLE"; case SKD_REQ_STATE_SETUP: return "SETUP"; case SKD_REQ_STATE_BUSY: return "BUSY"; case SKD_REQ_STATE_COMPLETED: return "COMPLETED"; case SKD_REQ_STATE_TIMEOUT: return "TIMEOUT"; default: return "???"; } } static void skd_log_skdev(struct skd_device *skdev, const char *event) { dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event); dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n", skd_drive_state_to_str(skdev->drive_state), skdev->drive_state, skd_skdev_state_to_str(skdev->state), skdev->state); dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n", skd_in_flight(skdev), skdev->cur_max_queue_depth, skdev->dev_max_queue_depth, skdev->queue_low_water_mark); dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n", skdev->skcomp_cycle, skdev->skcomp_ix); } static void skd_log_skreq(struct skd_device *skdev, struct skd_request_context *skreq, const char *event) { struct request *req = blk_mq_rq_from_pdu(skreq); u32 lba = blk_rq_pos(req); u32 count = blk_rq_sectors(req); dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event); dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n", skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id, skreq->fitmsg_id); dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n", skreq->data_dir, skreq->n_sg); dev_dbg(&skdev->pdev->dev, "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba, count, count, (int)rq_data_dir(req)); } /* ***************************************************************************** * MODULE GLUE ***************************************************************************** */ static int __init skd_init(void) { BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8); BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32); BUILD_BUG_ON(sizeof(struct skd_command_header) != 16); BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32); BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44); BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0); BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64); BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES); switch (skd_isr_type) { case SKD_IRQ_LEGACY: case SKD_IRQ_MSI: case SKD_IRQ_MSIX: break; default: pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n", skd_isr_type, SKD_IRQ_DEFAULT); skd_isr_type = SKD_IRQ_DEFAULT; } if (skd_max_queue_depth < 1 || skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) { pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n", skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT); skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT; } if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) { pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n", skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT); skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT; } if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) { pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n", skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT); skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT; } if (skd_dbg_level < 0 || skd_dbg_level > 2) { pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n", skd_dbg_level, 0); skd_dbg_level = 0; } if (skd_isr_comp_limit < 0) { pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n", skd_isr_comp_limit, 0); skd_isr_comp_limit = 0; } return pci_register_driver(&skd_driver); } static void __exit skd_exit(void) { pci_unregister_driver(&skd_driver); if (skd_major) unregister_blkdev(skd_major, DRV_NAME); } module_init(skd_init); module_exit(skd_exit);