/* * NVM Express device driver * Copyright (c) 2011, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NVME_Q_DEPTH 1024 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) #define NVME_MINORS 64 #define ADMIN_TIMEOUT (60 * HZ) static int nvme_major; module_param(nvme_major, int, 0); static int use_threaded_interrupts; module_param(use_threaded_interrupts, int, 0); static DEFINE_SPINLOCK(dev_list_lock); static LIST_HEAD(dev_list); static struct task_struct *nvme_thread; /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct device *q_dmadev; struct nvme_dev *dev; spinlock_t q_lock; struct nvme_command *sq_cmds; volatile struct nvme_completion *cqes; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; wait_queue_head_t sq_full; wait_queue_t sq_cong_wait; struct bio_list sq_cong; u32 __iomem *q_db; u16 q_depth; u16 cq_vector; u16 sq_head; u16 sq_tail; u16 cq_head; u8 cq_phase; u8 cqe_seen; u8 q_suspended; unsigned long cmdid_data[]; }; /* * Check we didin't inadvertently grow the command struct */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); } typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, struct nvme_completion *); struct nvme_cmd_info { nvme_completion_fn fn; void *ctx; unsigned long timeout; }; static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) { return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; } static unsigned nvme_queue_extra(int depth) { return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info)); } /** * alloc_cmdid() - Allocate a Command ID * @nvmeq: The queue that will be used for this command * @ctx: A pointer that will be passed to the handler * @handler: The function to call on completion * * Allocate a Command ID for a queue. The data passed in will * be passed to the completion handler. This is implemented by using * the bottom two bits of the ctx pointer to store the handler ID. * Passing in a pointer that's not 4-byte aligned will cause a BUG. * We can change this if it becomes a problem. * * May be called with local interrupts disabled and the q_lock held, * or with interrupts enabled and no locks held. */ static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, nvme_completion_fn handler, unsigned timeout) { int depth = nvmeq->q_depth - 1; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); int cmdid; do { cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); if (cmdid >= depth) return -EBUSY; } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); info[cmdid].fn = handler; info[cmdid].ctx = ctx; info[cmdid].timeout = jiffies + timeout; return cmdid; } static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, nvme_completion_fn handler, unsigned timeout) { int cmdid; wait_event_killable(nvmeq->sq_full, (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); return (cmdid < 0) ? -EINTR : cmdid; } /* Special values must be less than 0x1000 */ #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) static void special_completion(struct nvme_dev *dev, void *ctx, struct nvme_completion *cqe) { if (ctx == CMD_CTX_CANCELLED) return; if (ctx == CMD_CTX_FLUSH) return; if (ctx == CMD_CTX_COMPLETED) { dev_warn(&dev->pci_dev->dev, "completed id %d twice on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } if (ctx == CMD_CTX_INVALID) { dev_warn(&dev->pci_dev->dev, "invalid id %d completed on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); } /* * Called with local interrupts disabled and the q_lock held. May not sleep. */ static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid, nvme_completion_fn *fn) { void *ctx; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); if (cmdid >= nvmeq->q_depth) { *fn = special_completion; return CMD_CTX_INVALID; } if (fn) *fn = info[cmdid].fn; ctx = info[cmdid].ctx; info[cmdid].fn = special_completion; info[cmdid].ctx = CMD_CTX_COMPLETED; clear_bit(cmdid, nvmeq->cmdid_data); wake_up(&nvmeq->sq_full); return ctx; } static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, nvme_completion_fn *fn) { void *ctx; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); if (fn) *fn = info[cmdid].fn; ctx = info[cmdid].ctx; info[cmdid].fn = special_completion; info[cmdid].ctx = CMD_CTX_CANCELLED; return ctx; } struct nvme_queue *get_nvmeq(struct nvme_dev *dev) { return dev->queues[get_cpu() + 1]; } void put_nvmeq(struct nvme_queue *nvmeq) { put_cpu(); } /** * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell * @nvmeq: The queue to use * @cmd: The command to send * * Safe to use from interrupt context */ static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { unsigned long flags; u16 tail; spin_lock_irqsave(&nvmeq->q_lock, flags); tail = nvmeq->sq_tail; memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); if (++tail == nvmeq->q_depth) tail = 0; writel(tail, nvmeq->q_db); nvmeq->sq_tail = tail; spin_unlock_irqrestore(&nvmeq->q_lock, flags); return 0; } static __le64 **iod_list(struct nvme_iod *iod) { return ((void *)iod) + iod->offset; } /* * Will slightly overestimate the number of pages needed. This is OK * as it only leads to a small amount of wasted memory for the lifetime of * the I/O. */ static int nvme_npages(unsigned size) { unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE); return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); } static struct nvme_iod * nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) { struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + sizeof(__le64 *) * nvme_npages(nbytes) + sizeof(struct scatterlist) * nseg, gfp); if (iod) { iod->offset = offsetof(struct nvme_iod, sg[nseg]); iod->npages = -1; iod->length = nbytes; iod->nents = 0; iod->start_time = jiffies; } return iod; } void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) { const int last_prp = PAGE_SIZE / 8 - 1; int i; __le64 **list = iod_list(iod); dma_addr_t prp_dma = iod->first_dma; if (iod->npages == 0) dma_pool_free(dev->prp_small_pool, list[0], prp_dma); for (i = 0; i < iod->npages; i++) { __le64 *prp_list = list[i]; dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); prp_dma = next_prp_dma; } kfree(iod); } static void nvme_start_io_acct(struct bio *bio) { struct gendisk *disk = bio->bi_bdev->bd_disk; const int rw = bio_data_dir(bio); int cpu = part_stat_lock(); part_round_stats(cpu, &disk->part0); part_stat_inc(cpu, &disk->part0, ios[rw]); part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio)); part_inc_in_flight(&disk->part0, rw); part_stat_unlock(); } static void nvme_end_io_acct(struct bio *bio, unsigned long start_time) { struct gendisk *disk = bio->bi_bdev->bd_disk; const int rw = bio_data_dir(bio); unsigned long duration = jiffies - start_time; int cpu = part_stat_lock(); part_stat_add(cpu, &disk->part0, ticks[rw], duration); part_round_stats(cpu, &disk->part0); part_dec_in_flight(&disk->part0, rw); part_stat_unlock(); } static void bio_completion(struct nvme_dev *dev, void *ctx, struct nvme_completion *cqe) { struct nvme_iod *iod = ctx; struct bio *bio = iod->private; u16 status = le16_to_cpup(&cqe->status) >> 1; if (iod->nents) { dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); nvme_end_io_acct(bio, iod->start_time); } nvme_free_iod(dev, iod); if (status) bio_endio(bio, -EIO); else bio_endio(bio, 0); } /* length is in bytes. gfp flags indicates whether we may sleep. */ int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd, struct nvme_iod *iod, int total_len, gfp_t gfp) { struct dma_pool *pool; int length = total_len; struct scatterlist *sg = iod->sg; int dma_len = sg_dma_len(sg); u64 dma_addr = sg_dma_address(sg); int offset = offset_in_page(dma_addr); __le64 *prp_list; __le64 **list = iod_list(iod); dma_addr_t prp_dma; int nprps, i; cmd->prp1 = cpu_to_le64(dma_addr); length -= (PAGE_SIZE - offset); if (length <= 0) return total_len; dma_len -= (PAGE_SIZE - offset); if (dma_len) { dma_addr += (PAGE_SIZE - offset); } else { sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } if (length <= PAGE_SIZE) { cmd->prp2 = cpu_to_le64(dma_addr); return total_len; } nprps = DIV_ROUND_UP(length, PAGE_SIZE); if (nprps <= (256 / 8)) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } prp_list = dma_pool_alloc(pool, gfp, &prp_dma); if (!prp_list) { cmd->prp2 = cpu_to_le64(dma_addr); iod->npages = -1; return (total_len - length) + PAGE_SIZE; } list[0] = prp_list; iod->first_dma = prp_dma; cmd->prp2 = cpu_to_le64(prp_dma); i = 0; for (;;) { if (i == PAGE_SIZE / 8) { __le64 *old_prp_list = prp_list; prp_list = dma_pool_alloc(pool, gfp, &prp_dma); if (!prp_list) return total_len - length; list[iod->npages++] = prp_list; prp_list[0] = old_prp_list[i - 1]; old_prp_list[i - 1] = cpu_to_le64(prp_dma); i = 1; } prp_list[i++] = cpu_to_le64(dma_addr); dma_len -= PAGE_SIZE; dma_addr += PAGE_SIZE; length -= PAGE_SIZE; if (length <= 0) break; if (dma_len > 0) continue; BUG_ON(dma_len < 0); sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } return total_len; } struct nvme_bio_pair { struct bio b1, b2, *parent; struct bio_vec *bv1, *bv2; int err; atomic_t cnt; }; static void nvme_bio_pair_endio(struct bio *bio, int err) { struct nvme_bio_pair *bp = bio->bi_private; if (err) bp->err = err; if (atomic_dec_and_test(&bp->cnt)) { bio_endio(bp->parent, bp->err); kfree(bp->bv1); kfree(bp->bv2); kfree(bp); } } static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx, int len, int offset) { struct nvme_bio_pair *bp; BUG_ON(len > bio->bi_size); BUG_ON(idx > bio->bi_vcnt); bp = kmalloc(sizeof(*bp), GFP_ATOMIC); if (!bp) return NULL; bp->err = 0; bp->b1 = *bio; bp->b2 = *bio; bp->b1.bi_size = len; bp->b2.bi_size -= len; bp->b1.bi_vcnt = idx; bp->b2.bi_idx = idx; bp->b2.bi_sector += len >> 9; if (offset) { bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec), GFP_ATOMIC); if (!bp->bv1) goto split_fail_1; bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec), GFP_ATOMIC); if (!bp->bv2) goto split_fail_2; memcpy(bp->bv1, bio->bi_io_vec, bio->bi_max_vecs * sizeof(struct bio_vec)); memcpy(bp->bv2, bio->bi_io_vec, bio->bi_max_vecs * sizeof(struct bio_vec)); bp->b1.bi_io_vec = bp->bv1; bp->b2.bi_io_vec = bp->bv2; bp->b2.bi_io_vec[idx].bv_offset += offset; bp->b2.bi_io_vec[idx].bv_len -= offset; bp->b1.bi_io_vec[idx].bv_len = offset; bp->b1.bi_vcnt++; } else bp->bv1 = bp->bv2 = NULL; bp->b1.bi_private = bp; bp->b2.bi_private = bp; bp->b1.bi_end_io = nvme_bio_pair_endio; bp->b2.bi_end_io = nvme_bio_pair_endio; bp->parent = bio; atomic_set(&bp->cnt, 2); return bp; split_fail_2: kfree(bp->bv1); split_fail_1: kfree(bp); return NULL; } static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq, int idx, int len, int offset) { struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset); if (!bp) return -ENOMEM; if (bio_list_empty(&nvmeq->sq_cong)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add(&nvmeq->sq_cong, &bp->b1); bio_list_add(&nvmeq->sq_cong, &bp->b2); return 0; } /* NVMe scatterlists require no holes in the virtual address */ #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \ (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod, struct bio *bio, enum dma_data_direction dma_dir, int psegs) { struct bio_vec *bvec, *bvprv = NULL; struct scatterlist *sg = NULL; int i, length = 0, nsegs = 0, split_len = bio->bi_size; if (nvmeq->dev->stripe_size) split_len = nvmeq->dev->stripe_size - ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1)); sg_init_table(iod->sg, psegs); bio_for_each_segment(bvec, bio, i) { if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { sg->length += bvec->bv_len; } else { if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) return nvme_split_and_submit(bio, nvmeq, i, length, 0); sg = sg ? sg + 1 : iod->sg; sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset); nsegs++; } if (split_len - length < bvec->bv_len) return nvme_split_and_submit(bio, nvmeq, i, split_len, split_len - length); length += bvec->bv_len; bvprv = bvec; } iod->nents = nsegs; sg_mark_end(sg); if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0) return -ENOMEM; BUG_ON(length != bio->bi_size); return length; } /* * We reuse the small pool to allocate the 16-byte range here as it is not * worth having a special pool for these or additional cases to handle freeing * the iod. */ static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, struct bio *bio, struct nvme_iod *iod, int cmdid) { struct nvme_dsm_range *range; struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, &iod->first_dma); if (!range) return -ENOMEM; iod_list(iod)[0] = (__le64 *)range; iod->npages = 0; range->cattr = cpu_to_le32(0); range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift); range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector)); memset(cmnd, 0, sizeof(*cmnd)); cmnd->dsm.opcode = nvme_cmd_dsm; cmnd->dsm.command_id = cmdid; cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma); cmnd->dsm.nr = 0; cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; writel(nvmeq->sq_tail, nvmeq->q_db); return 0; } static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, int cmdid) { struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; memset(cmnd, 0, sizeof(*cmnd)); cmnd->common.opcode = nvme_cmd_flush; cmnd->common.command_id = cmdid; cmnd->common.nsid = cpu_to_le32(ns->ns_id); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; writel(nvmeq->sq_tail, nvmeq->q_db); return 0; } int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) { int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, special_completion, NVME_IO_TIMEOUT); if (unlikely(cmdid < 0)) return cmdid; return nvme_submit_flush(nvmeq, ns, cmdid); } /* * Called with local interrupts disabled and the q_lock held. May not sleep. */ static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, struct bio *bio) { struct nvme_command *cmnd; struct nvme_iod *iod; enum dma_data_direction dma_dir; int cmdid, length, result; u16 control; u32 dsmgmt; int psegs = bio_phys_segments(ns->queue, bio); if ((bio->bi_rw & REQ_FLUSH) && psegs) { result = nvme_submit_flush_data(nvmeq, ns); if (result) return result; } result = -ENOMEM; iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC); if (!iod) goto nomem; iod->private = bio; result = -EBUSY; cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); if (unlikely(cmdid < 0)) goto free_iod; if (bio->bi_rw & REQ_DISCARD) { result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid); if (result) goto free_cmdid; return result; } if ((bio->bi_rw & REQ_FLUSH) && !psegs) return nvme_submit_flush(nvmeq, ns, cmdid); control = 0; if (bio->bi_rw & REQ_FUA) control |= NVME_RW_FUA; if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; dsmgmt = 0; if (bio->bi_rw & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; memset(cmnd, 0, sizeof(*cmnd)); if (bio_data_dir(bio)) { cmnd->rw.opcode = nvme_cmd_write; dma_dir = DMA_TO_DEVICE; } else { cmnd->rw.opcode = nvme_cmd_read; dma_dir = DMA_FROM_DEVICE; } result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs); if (result <= 0) goto free_cmdid; length = result; cmnd->rw.command_id = cmdid; cmnd->rw.nsid = cpu_to_le32(ns->ns_id); length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, GFP_ATOMIC); cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector)); cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); nvme_start_io_acct(bio); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; writel(nvmeq->sq_tail, nvmeq->q_db); return 0; free_cmdid: free_cmdid(nvmeq, cmdid, NULL); free_iod: nvme_free_iod(nvmeq->dev, iod); nomem: return result; } static int nvme_process_cq(struct nvme_queue *nvmeq) { u16 head, phase; head = nvmeq->cq_head; phase = nvmeq->cq_phase; for (;;) { void *ctx; nvme_completion_fn fn; struct nvme_completion cqe = nvmeq->cqes[head]; if ((le16_to_cpu(cqe.status) & 1) != phase) break; nvmeq->sq_head = le16_to_cpu(cqe.sq_head); if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } ctx = free_cmdid(nvmeq, cqe.command_id, &fn); fn(nvmeq->dev, ctx, &cqe); } /* If the controller ignores the cq head doorbell and continuously * writes to the queue, it is theoretically possible to wrap around * the queue twice and mistakenly return IRQ_NONE. Linux only * requires that 0.1% of your interrupts are handled, so this isn't * a big problem. */ if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) return 0; writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride)); nvmeq->cq_head = head; nvmeq->cq_phase = phase; nvmeq->cqe_seen = 1; return 1; } static void nvme_make_request(struct request_queue *q, struct bio *bio) { struct nvme_ns *ns = q->queuedata; struct nvme_queue *nvmeq = get_nvmeq(ns->dev); int result = -EBUSY; spin_lock_irq(&nvmeq->q_lock); if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong)) result = nvme_submit_bio_queue(nvmeq, ns, bio); if (unlikely(result)) { if (bio_list_empty(&nvmeq->sq_cong)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add(&nvmeq->sq_cong, bio); } nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); put_nvmeq(nvmeq); } static irqreturn_t nvme_irq(int irq, void *data) { irqreturn_t result; struct nvme_queue *nvmeq = data; spin_lock(&nvmeq->q_lock); nvme_process_cq(nvmeq); result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; nvmeq->cqe_seen = 0; spin_unlock(&nvmeq->q_lock); return result; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) return IRQ_NONE; return IRQ_WAKE_THREAD; } static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) { spin_lock_irq(&nvmeq->q_lock); cancel_cmdid(nvmeq, cmdid, NULL); spin_unlock_irq(&nvmeq->q_lock); } struct sync_cmd_info { struct task_struct *task; u32 result; int status; }; static void sync_completion(struct nvme_dev *dev, void *ctx, struct nvme_completion *cqe) { struct sync_cmd_info *cmdinfo = ctx; cmdinfo->result = le32_to_cpup(&cqe->result); cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; wake_up_process(cmdinfo->task); } /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, u32 *result, unsigned timeout) { int cmdid; struct sync_cmd_info cmdinfo; cmdinfo.task = current; cmdinfo.status = -EINTR; cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, timeout); if (cmdid < 0) return cmdid; cmd->common.command_id = cmdid; set_current_state(TASK_KILLABLE); nvme_submit_cmd(nvmeq, cmd); schedule_timeout(timeout); if (cmdinfo.status == -EINTR) { nvme_abort_command(nvmeq, cmdid); return -EINTR; } if (result) *result = cmdinfo.result; return cmdinfo.status; } int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, u32 *result) { return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { int status; struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { int status; struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { int status; struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) { return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) { return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, dma_addr_t dma_addr) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.prp1 = cpu_to_le64(dma_addr); c.identify.cns = cpu_to_le32(cns); return nvme_submit_admin_cmd(dev, &c, NULL); } int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.nsid = cpu_to_le32(nsid); c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); return nvme_submit_admin_cmd(dev, &c, result); } int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_set_features; c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); return nvme_submit_admin_cmd(dev, &c, result); } /** * nvme_cancel_ios - Cancel outstanding I/Os * @queue: The queue to cancel I/Os on * @timeout: True to only cancel I/Os which have timed out */ static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout) { int depth = nvmeq->q_depth - 1; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); unsigned long now = jiffies; int cmdid; for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { void *ctx; nvme_completion_fn fn; static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1), }; if (timeout && !time_after(now, info[cmdid].timeout)) continue; if (info[cmdid].ctx == CMD_CTX_CANCELLED) continue; dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid); ctx = cancel_cmdid(nvmeq, cmdid, &fn); fn(nvmeq->dev, ctx, &cqe); } } static void nvme_free_queue(struct nvme_queue *nvmeq) { spin_lock_irq(&nvmeq->q_lock); while (bio_list_peek(&nvmeq->sq_cong)) { struct bio *bio = bio_list_pop(&nvmeq->sq_cong); bio_endio(bio, -EIO); } spin_unlock_irq(&nvmeq->q_lock); dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); kfree(nvmeq); } static void nvme_free_queues(struct nvme_dev *dev) { int i; for (i = dev->queue_count - 1; i >= 0; i--) { nvme_free_queue(dev->queues[i]); dev->queue_count--; dev->queues[i] = NULL; } } static void nvme_disable_queue(struct nvme_dev *dev, int qid) { struct nvme_queue *nvmeq = dev->queues[qid]; int vector = dev->entry[nvmeq->cq_vector].vector; spin_lock_irq(&nvmeq->q_lock); if (nvmeq->q_suspended) { spin_unlock_irq(&nvmeq->q_lock); return; } nvmeq->q_suspended = 1; spin_unlock_irq(&nvmeq->q_lock); irq_set_affinity_hint(vector, NULL); free_irq(vector, nvmeq); /* Don't tell the adapter to delete the admin queue */ if (qid) { adapter_delete_sq(dev, qid); adapter_delete_cq(dev, qid); } spin_lock_irq(&nvmeq->q_lock); nvme_process_cq(nvmeq); nvme_cancel_ios(nvmeq, false); spin_unlock_irq(&nvmeq->q_lock); } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth, int vector) { struct device *dmadev = &dev->pci_dev->dev; unsigned extra = nvme_queue_extra(depth); struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); if (!nvmeq) return NULL; nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) goto free_cqdma; nvmeq->q_dmadev = dmadev; nvmeq->dev = dev; spin_lock_init(&nvmeq->q_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; init_waitqueue_head(&nvmeq->sq_full); init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); bio_list_init(&nvmeq->sq_cong); nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; nvmeq->q_depth = depth; nvmeq->cq_vector = vector; nvmeq->q_suspended = 1; dev->queue_count++; return nvmeq; free_cqdma: dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); free_nvmeq: kfree(nvmeq); return NULL; } static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, const char *name) { if (use_threaded_interrupts) return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq_check, nvme_irq, IRQF_DISABLED | IRQF_SHARED, name, nvmeq); return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, IRQF_DISABLED | IRQF_SHARED, name, nvmeq); } static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) { struct nvme_dev *dev = nvmeq->dev; unsigned extra = nvme_queue_extra(nvmeq->q_depth); nvmeq->sq_tail = 0; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; memset(nvmeq->cmdid_data, 0, extra); memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); nvme_cancel_ios(nvmeq, false); nvmeq->q_suspended = 0; } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) { struct nvme_dev *dev = nvmeq->dev; int result; result = adapter_alloc_cq(dev, qid, nvmeq); if (result < 0) return result; result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) goto release_cq; result = queue_request_irq(dev, nvmeq, "nvme"); if (result < 0) goto release_sq; spin_lock(&nvmeq->q_lock); nvme_init_queue(nvmeq, qid); spin_unlock(&nvmeq->q_lock); return result; release_sq: adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); return result; } static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled) { unsigned long timeout; u32 bit = enabled ? NVME_CSTS_RDY : 0; timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) { msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(&dev->pci_dev->dev, "Device not ready; aborting initialisation\n"); return -ENODEV; } } return 0; } /* * If the device has been passed off to us in an enabled state, just clear * the enabled bit. The spec says we should set the 'shutdown notification * bits', but doing so may cause the device to complete commands to the * admin queue ... and we don't know what memory that might be pointing at! */ static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap) { u32 cc = readl(&dev->bar->cc); if (cc & NVME_CC_ENABLE) writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc); return nvme_wait_ready(dev, cap, false); } static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap) { return nvme_wait_ready(dev, cap, true); } static int nvme_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; u64 cap = readq(&dev->bar->cap); struct nvme_queue *nvmeq; result = nvme_disable_ctrl(dev, cap); if (result < 0) return result; nvmeq = nvme_alloc_queue(dev, 0, 64, 0); if (!nvmeq) return -ENOMEM; aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; writel(aqa, &dev->bar->aqa); writeq(nvmeq->sq_dma_addr, &dev->bar->asq); writeq(nvmeq->cq_dma_addr, &dev->bar->acq); writel(dev->ctrl_config, &dev->bar->cc); result = nvme_enable_ctrl(dev, cap); if (result) goto free_q; result = queue_request_irq(dev, nvmeq, "nvme admin"); if (result) goto free_q; dev->queues[0] = nvmeq; spin_lock(&nvmeq->q_lock); nvme_init_queue(nvmeq, 0); spin_unlock(&nvmeq->q_lock); return result; free_q: nvme_free_queue(nvmeq); return result; } struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, unsigned long addr, unsigned length) { int i, err, count, nents, offset; struct scatterlist *sg; struct page **pages; struct nvme_iod *iod; if (addr & 3) return ERR_PTR(-EINVAL); if (!length || length > INT_MAX - PAGE_SIZE) return ERR_PTR(-EINVAL); offset = offset_in_page(addr); count = DIV_ROUND_UP(offset + length, PAGE_SIZE); pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); if (!pages) return ERR_PTR(-ENOMEM); err = get_user_pages_fast(addr, count, 1, pages); if (err < count) { count = err; err = -EFAULT; goto put_pages; } iod = nvme_alloc_iod(count, length, GFP_KERNEL); sg = iod->sg; sg_init_table(sg, count); for (i = 0; i < count; i++) { sg_set_page(&sg[i], pages[i], min_t(unsigned, length, PAGE_SIZE - offset), offset); length -= (PAGE_SIZE - offset); offset = 0; } sg_mark_end(&sg[i - 1]); iod->nents = count; err = -ENOMEM; nents = dma_map_sg(&dev->pci_dev->dev, sg, count, write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (!nents) goto free_iod; kfree(pages); return iod; free_iod: kfree(iod); put_pages: for (i = 0; i < count; i++) put_page(pages[i]); kfree(pages); return ERR_PTR(err); } void nvme_unmap_user_pages(struct nvme_dev *dev, int write, struct nvme_iod *iod) { int i; dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); for (i = 0; i < iod->nents; i++) put_page(sg_page(&iod->sg[i])); } static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_dev *dev = ns->dev; struct nvme_queue *nvmeq; struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; int status, i; struct nvme_iod *iod, *meta_iod = NULL; dma_addr_t meta_dma_addr; void *meta, *uninitialized_var(meta_mem); if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; length = (io.nblocks + 1) << ns->lba_shift; meta_len = (io.nblocks + 1) * ns->ms; if (meta_len && ((io.metadata & 3) || !io.metadata)) return -EINVAL; switch (io.opcode) { case nvme_cmd_write: case nvme_cmd_read: case nvme_cmd_compare: iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length); break; default: return -EINVAL; } if (IS_ERR(iod)) return PTR_ERR(iod); memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); if (meta_len) { meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len); if (IS_ERR(meta_iod)) { status = PTR_ERR(meta_iod); meta_iod = NULL; goto unmap; } meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len, &meta_dma_addr, GFP_KERNEL); if (!meta_mem) { status = -ENOMEM; goto unmap; } if (io.opcode & 1) { int meta_offset = 0; for (i = 0; i < meta_iod->nents; i++) { meta = kmap_atomic(sg_page(&meta_iod->sg[i])) + meta_iod->sg[i].offset; memcpy(meta_mem + meta_offset, meta, meta_iod->sg[i].length); kunmap_atomic(meta); meta_offset += meta_iod->sg[i].length; } } c.rw.metadata = cpu_to_le64(meta_dma_addr); } length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); nvmeq = get_nvmeq(dev); /* * Since nvme_submit_sync_cmd sleeps, we can't keep preemption * disabled. We may be preempted at any point, and be rescheduled * to a different CPU. That will cause cacheline bouncing, but no * additional races since q_lock already protects against other CPUs. */ put_nvmeq(nvmeq); if (length != (io.nblocks + 1) << ns->lba_shift) status = -ENOMEM; else if (!nvmeq || nvmeq->q_suspended) status = -EBUSY; else status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); if (meta_len) { if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) { int meta_offset = 0; for (i = 0; i < meta_iod->nents; i++) { meta = kmap_atomic(sg_page(&meta_iod->sg[i])) + meta_iod->sg[i].offset; memcpy(meta, meta_mem + meta_offset, meta_iod->sg[i].length); kunmap_atomic(meta); meta_offset += meta_iod->sg[i].length; } } dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem, meta_dma_addr); } unmap: nvme_unmap_user_pages(dev, io.opcode & 1, iod); nvme_free_iod(dev, iod); if (meta_iod) { nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod); nvme_free_iod(dev, meta_iod); } return status; } static int nvme_user_admin_cmd(struct nvme_dev *dev, struct nvme_admin_cmd __user *ucmd) { struct nvme_admin_cmd cmd; struct nvme_command c; int status, length; struct nvme_iod *uninitialized_var(iod); unsigned timeout; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); length = cmd.data_len; if (cmd.data_len) { iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr, length); if (IS_ERR(iod)) return PTR_ERR(iod); length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); } timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) : ADMIN_TIMEOUT; if (length != cmd.data_len) status = -ENOMEM; else status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result, timeout); if (cmd.data_len) { nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); nvme_free_iod(dev, iod); } if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result, sizeof(cmd.result))) status = -EFAULT; return status; } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns *ns = bdev->bd_disk->private_data; switch (cmd) { case NVME_IOCTL_ID: force_successful_syscall_return(); return ns->ns_id; case NVME_IOCTL_ADMIN_CMD: return nvme_user_admin_cmd(ns->dev, (void __user *)arg); case NVME_IOCTL_SUBMIT_IO: return nvme_submit_io(ns, (void __user *)arg); case SG_GET_VERSION_NUM: return nvme_sg_get_version_num((void __user *)arg); case SG_IO: return nvme_sg_io(ns, (void __user *)arg); default: return -ENOTTY; } } static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_ioctl, }; static void nvme_resubmit_bios(struct nvme_queue *nvmeq) { while (bio_list_peek(&nvmeq->sq_cong)) { struct bio *bio = bio_list_pop(&nvmeq->sq_cong); struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; if (bio_list_empty(&nvmeq->sq_cong)) remove_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); if (nvme_submit_bio_queue(nvmeq, ns, bio)) { if (bio_list_empty(&nvmeq->sq_cong)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add_head(&nvmeq->sq_cong, bio); break; } } } static int nvme_kthread(void *data) { struct nvme_dev *dev; while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&dev_list_lock); list_for_each_entry(dev, &dev_list, node) { int i; for (i = 0; i < dev->queue_count; i++) { struct nvme_queue *nvmeq = dev->queues[i]; if (!nvmeq) continue; spin_lock_irq(&nvmeq->q_lock); if (nvmeq->q_suspended) goto unlock; nvme_process_cq(nvmeq); nvme_cancel_ios(nvmeq, true); nvme_resubmit_bios(nvmeq); unlock: spin_unlock_irq(&nvmeq->q_lock); } } spin_unlock(&dev_list_lock); schedule_timeout(round_jiffies_relative(HZ)); } return 0; } static DEFINE_IDA(nvme_index_ida); static int nvme_get_ns_idx(void) { int index, error; do { if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) return -1; spin_lock(&dev_list_lock); error = ida_get_new(&nvme_index_ida, &index); spin_unlock(&dev_list_lock); } while (error == -EAGAIN); if (error) index = -1; return index; } static void nvme_put_ns_idx(int index) { spin_lock(&dev_list_lock); ida_remove(&nvme_index_ida, index); spin_unlock(&dev_list_lock); } static void nvme_config_discard(struct nvme_ns *ns) { u32 logical_block_size = queue_logical_block_size(ns->queue); ns->queue->limits.discard_zeroes_data = 0; ns->queue->limits.discard_alignment = logical_block_size; ns->queue->limits.discard_granularity = logical_block_size; ns->queue->limits.max_discard_sectors = 0xffffffff; queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); } static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid, struct nvme_id_ns *id, struct nvme_lba_range_type *rt) { struct nvme_ns *ns; struct gendisk *disk; int lbaf; if (rt->attributes & NVME_LBART_ATTRIB_HIDE) return NULL; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return NULL; ns->queue = blk_alloc_queue(GFP_KERNEL); if (!ns->queue) goto out_free_ns; ns->queue->queue_flags = QUEUE_FLAG_DEFAULT; queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); blk_queue_make_request(ns->queue, nvme_make_request); ns->dev = dev; ns->queue->queuedata = ns; disk = alloc_disk(NVME_MINORS); if (!disk) goto out_free_queue; ns->ns_id = nsid; ns->disk = disk; lbaf = id->flbas & 0xf; ns->lba_shift = id->lbaf[lbaf].ds; ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); if (dev->max_hw_sectors) blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); disk->major = nvme_major; disk->minors = NVME_MINORS; disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->driverfs_dev = &dev->pci_dev->dev; sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); if (dev->oncs & NVME_CTRL_ONCS_DSM) nvme_config_discard(ns); return ns; out_free_queue: blk_cleanup_queue(ns->queue); out_free_ns: kfree(ns); return NULL; } static void nvme_ns_free(struct nvme_ns *ns) { int index = ns->disk->first_minor / NVME_MINORS; put_disk(ns->disk); nvme_put_ns_idx(index); blk_cleanup_queue(ns->queue); kfree(ns); } static int set_queue_count(struct nvme_dev *dev, int count) { int status; u32 result; u32 q_count = (count - 1) | ((count - 1) << 16); status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, &result); if (status) return status < 0 ? -EIO : -EBUSY; return min(result & 0xffff, result >> 16) + 1; } static int nvme_setup_io_queues(struct nvme_dev *dev) { struct pci_dev *pdev = dev->pci_dev; int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth; nr_io_queues = num_online_cpus(); result = set_queue_count(dev, nr_io_queues); if (result < 0) return result; if (result < nr_io_queues) nr_io_queues = result; /* Deregister the admin queue's interrupt */ free_irq(dev->entry[0].vector, dev->queues[0]); db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3)); if (db_bar_size > 8192) { iounmap(dev->bar); dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size); dev->dbs = ((void __iomem *)dev->bar) + 4096; dev->queues[0]->q_db = dev->dbs; } vecs = nr_io_queues; for (i = 0; i < vecs; i++) dev->entry[i].entry = i; for (;;) { result = pci_enable_msix(pdev, dev->entry, vecs); if (result <= 0) break; vecs = result; } if (result < 0) { vecs = nr_io_queues; if (vecs > 32) vecs = 32; for (;;) { result = pci_enable_msi_block(pdev, vecs); if (result == 0) { for (i = 0; i < vecs; i++) dev->entry[i].vector = i + pdev->irq; break; } else if (result < 0) { vecs = 1; break; } vecs = result; } } /* * Should investigate if there's a performance win from allocating * more queues than interrupt vectors; it might allow the submission * path to scale better, even if the receive path is limited by the * number of interrupts. */ nr_io_queues = vecs; result = queue_request_irq(dev, dev->queues[0], "nvme admin"); if (result) goto free_queues; cpu = cpumask_first(cpu_online_mask); for (i = 0; i < nr_io_queues; i++) { irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); cpu = cpumask_next(cpu, cpu_online_mask); } q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1, NVME_Q_DEPTH); for (i = 0; i < nr_io_queues; i++) { dev->queues[i + 1] = nvme_alloc_queue(dev, i + 1, q_depth, i); if (!dev->queues[i + 1]) { result = -ENOMEM; goto free_queues; } } for (; i < num_possible_cpus(); i++) { int target = i % rounddown_pow_of_two(dev->queue_count - 1); dev->queues[i + 1] = dev->queues[target + 1]; } for (i = 1; i < dev->queue_count; i++) { result = nvme_create_queue(dev->queues[i], i); if (result) { for (--i; i > 0; i--) nvme_disable_queue(dev, i); goto free_queues; } } return 0; free_queues: nvme_free_queues(dev); return result; } /* * Return: error value if an error occurred setting up the queues or calling * Identify Device. 0 if these succeeded, even if adding some of the * namespaces failed. At the moment, these failures are silent. TBD which * failures should be reported. */ static int nvme_dev_add(struct nvme_dev *dev) { int res; unsigned nn, i; struct nvme_ns *ns; struct nvme_id_ctrl *ctrl; struct nvme_id_ns *id_ns; void *mem; dma_addr_t dma_addr; int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12; mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, GFP_KERNEL); if (!mem) return -ENOMEM; res = nvme_identify(dev, 0, 1, dma_addr); if (res) { res = -EIO; goto out; } ctrl = mem; nn = le32_to_cpup(&ctrl->nn); dev->oncs = le16_to_cpup(&ctrl->oncs); memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); if (ctrl->mdts) dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9); if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) && (dev->pci_dev->device == 0x0953) && ctrl->vs[3]) dev->stripe_size = 1 << (ctrl->vs[3] + shift); id_ns = mem; for (i = 1; i <= nn; i++) { res = nvme_identify(dev, i, 0, dma_addr); if (res) continue; if (id_ns->ncap == 0) continue; res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i, dma_addr + 4096, NULL); if (res) memset(mem + 4096, 0, 4096); ns = nvme_alloc_ns(dev, i, mem, mem + 4096); if (ns) list_add_tail(&ns->list, &dev->namespaces); } list_for_each_entry(ns, &dev->namespaces, list) add_disk(ns->disk); res = 0; out: dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr); return res; } static int nvme_dev_map(struct nvme_dev *dev) { int bars, result = -ENOMEM; struct pci_dev *pdev = dev->pci_dev; if (pci_enable_device_mem(pdev)) return result; dev->entry[0].vector = pdev->irq; pci_set_master(pdev); bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_request_selected_regions(pdev, bars, "nvme")) goto disable_pci; if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); else goto disable_pci; pci_set_drvdata(pdev, dev); dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); if (!dev->bar) goto disable; dev->db_stride = NVME_CAP_STRIDE(readq(&dev->bar->cap)); dev->dbs = ((void __iomem *)dev->bar) + 4096; return 0; disable: pci_release_regions(pdev); disable_pci: pci_disable_device(pdev); return result; } static void nvme_dev_unmap(struct nvme_dev *dev) { if (dev->pci_dev->msi_enabled) pci_disable_msi(dev->pci_dev); else if (dev->pci_dev->msix_enabled) pci_disable_msix(dev->pci_dev); if (dev->bar) { iounmap(dev->bar); dev->bar = NULL; } pci_release_regions(dev->pci_dev); if (pci_is_enabled(dev->pci_dev)) pci_disable_device(dev->pci_dev); } static void nvme_dev_shutdown(struct nvme_dev *dev) { int i; for (i = dev->queue_count - 1; i >= 0; i--) nvme_disable_queue(dev, i); spin_lock(&dev_list_lock); list_del_init(&dev->node); spin_unlock(&dev_list_lock); nvme_dev_unmap(dev); } static void nvme_dev_remove(struct nvme_dev *dev) { struct nvme_ns *ns, *next; list_for_each_entry_safe(ns, next, &dev->namespaces, list) { list_del(&ns->list); del_gendisk(ns->disk); nvme_ns_free(ns); } } static int nvme_setup_prp_pools(struct nvme_dev *dev) { struct device *dmadev = &dev->pci_dev->dev; dev->prp_page_pool = dma_pool_create("prp list page", dmadev, PAGE_SIZE, PAGE_SIZE, 0); if (!dev->prp_page_pool) return -ENOMEM; /* Optimisation for I/Os between 4k and 128k */ dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, 256, 256, 0); if (!dev->prp_small_pool) { dma_pool_destroy(dev->prp_page_pool); return -ENOMEM; } return 0; } static void nvme_release_prp_pools(struct nvme_dev *dev) { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } static DEFINE_IDA(nvme_instance_ida); static int nvme_set_instance(struct nvme_dev *dev) { int instance, error; do { if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) return -ENODEV; spin_lock(&dev_list_lock); error = ida_get_new(&nvme_instance_ida, &instance); spin_unlock(&dev_list_lock); } while (error == -EAGAIN); if (error) return -ENODEV; dev->instance = instance; return 0; } static void nvme_release_instance(struct nvme_dev *dev) { spin_lock(&dev_list_lock); ida_remove(&nvme_instance_ida, dev->instance); spin_unlock(&dev_list_lock); } static void nvme_free_dev(struct kref *kref) { struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref); nvme_dev_remove(dev); nvme_dev_shutdown(dev); nvme_free_queues(dev); nvme_release_instance(dev); nvme_release_prp_pools(dev); kfree(dev->queues); kfree(dev->entry); kfree(dev); } static int nvme_dev_open(struct inode *inode, struct file *f) { struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev, miscdev); kref_get(&dev->kref); f->private_data = dev; return 0; } static int nvme_dev_release(struct inode *inode, struct file *f) { struct nvme_dev *dev = f->private_data; kref_put(&dev->kref, nvme_free_dev); return 0; } static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { struct nvme_dev *dev = f->private_data; switch (cmd) { case NVME_IOCTL_ADMIN_CMD: return nvme_user_admin_cmd(dev, (void __user *)arg); default: return -ENOTTY; } } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .release = nvme_dev_release, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = nvme_dev_ioctl, }; static int nvme_dev_start(struct nvme_dev *dev) { int result; result = nvme_dev_map(dev); if (result) return result; result = nvme_configure_admin_queue(dev); if (result) goto unmap; spin_lock(&dev_list_lock); list_add(&dev->node, &dev_list); spin_unlock(&dev_list_lock); result = nvme_setup_io_queues(dev); if (result) goto disable; return 0; disable: spin_lock(&dev_list_lock); list_del_init(&dev->node); spin_unlock(&dev_list_lock); unmap: nvme_dev_unmap(dev); return result; } static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int result = -ENOMEM; struct nvme_dev *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), GFP_KERNEL); if (!dev->entry) goto free; dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), GFP_KERNEL); if (!dev->queues) goto free; INIT_LIST_HEAD(&dev->namespaces); dev->pci_dev = pdev; result = nvme_set_instance(dev); if (result) goto free; result = nvme_setup_prp_pools(dev); if (result) goto release; result = nvme_dev_start(dev); if (result) goto release_pools; result = nvme_dev_add(dev); if (result && result != -EBUSY) goto shutdown; scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance); dev->miscdev.minor = MISC_DYNAMIC_MINOR; dev->miscdev.parent = &pdev->dev; dev->miscdev.name = dev->name; dev->miscdev.fops = &nvme_dev_fops; result = misc_register(&dev->miscdev); if (result) goto remove; kref_init(&dev->kref); return 0; remove: nvme_dev_remove(dev); shutdown: nvme_dev_shutdown(dev); release_pools: nvme_free_queues(dev); nvme_release_prp_pools(dev); release: nvme_release_instance(dev); free: kfree(dev->queues); kfree(dev->entry); kfree(dev); return result; } static void nvme_remove(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); misc_deregister(&dev->miscdev); kref_put(&dev->kref, nvme_free_dev); } /* These functions are yet to be implemented */ #define nvme_error_detected NULL #define nvme_dump_registers NULL #define nvme_link_reset NULL #define nvme_slot_reset NULL #define nvme_error_resume NULL #define nvme_suspend NULL #define nvme_resume NULL static const struct pci_error_handlers nvme_err_handler = { .error_detected = nvme_error_detected, .mmio_enabled = nvme_dump_registers, .link_reset = nvme_link_reset, .slot_reset = nvme_slot_reset, .resume = nvme_error_resume, }; /* Move to pci_ids.h later */ #define PCI_CLASS_STORAGE_EXPRESS 0x010802 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); static struct pci_driver nvme_driver = { .name = "nvme", .id_table = nvme_id_table, .probe = nvme_probe, .remove = nvme_remove, .suspend = nvme_suspend, .resume = nvme_resume, .err_handler = &nvme_err_handler, }; static int __init nvme_init(void) { int result; nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); if (IS_ERR(nvme_thread)) return PTR_ERR(nvme_thread); result = register_blkdev(nvme_major, "nvme"); if (result < 0) goto kill_kthread; else if (result > 0) nvme_major = result; result = pci_register_driver(&nvme_driver); if (result) goto unregister_blkdev; return 0; unregister_blkdev: unregister_blkdev(nvme_major, "nvme"); kill_kthread: kthread_stop(nvme_thread); return result; } static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); unregister_blkdev(nvme_major, "nvme"); kthread_stop(nvme_thread); } MODULE_AUTHOR("Matthew Wilcox "); MODULE_LICENSE("GPL"); MODULE_VERSION("0.8"); module_init(nvme_init); module_exit(nvme_exit);