/* drbd_state.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev from Logicworks, Inc. for making SDP replication support possible. drbd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. drbd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with drbd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/drbd_limits.h> #include "drbd_int.h" #include "drbd_protocol.h" #include "drbd_req.h" #include "drbd_state_change.h" struct after_state_chg_work { struct drbd_work w; struct drbd_device *device; union drbd_state os; union drbd_state ns; enum chg_state_flags flags; struct completion *done; struct drbd_state_change *state_change; }; enum sanitize_state_warnings { NO_WARNING, ABORTED_ONLINE_VERIFY, ABORTED_RESYNC, CONNECTION_LOST_NEGOTIATING, IMPLICITLY_UPGRADED_DISK, IMPLICITLY_UPGRADED_PDSK, }; static void count_objects(struct drbd_resource *resource, unsigned int *n_devices, unsigned int *n_connections) { struct drbd_device *device; struct drbd_connection *connection; int vnr; *n_devices = 0; *n_connections = 0; idr_for_each_entry(&resource->devices, device, vnr) (*n_devices)++; for_each_connection(connection, resource) (*n_connections)++; } static struct drbd_state_change *alloc_state_change(unsigned int n_devices, unsigned int n_connections, gfp_t gfp) { struct drbd_state_change *state_change; unsigned int size, n; size = sizeof(struct drbd_state_change) + n_devices * sizeof(struct drbd_device_state_change) + n_connections * sizeof(struct drbd_connection_state_change) + n_devices * n_connections * sizeof(struct drbd_peer_device_state_change); state_change = kmalloc(size, gfp); if (!state_change) return NULL; state_change->n_devices = n_devices; state_change->n_connections = n_connections; state_change->devices = (void *)(state_change + 1); state_change->connections = (void *)&state_change->devices[n_devices]; state_change->peer_devices = (void *)&state_change->connections[n_connections]; state_change->resource->resource = NULL; for (n = 0; n < n_devices; n++) state_change->devices[n].device = NULL; for (n = 0; n < n_connections; n++) state_change->connections[n].connection = NULL; return state_change; } struct drbd_state_change *remember_old_state(struct drbd_resource *resource, gfp_t gfp) { struct drbd_state_change *state_change; struct drbd_device *device; unsigned int n_devices; struct drbd_connection *connection; unsigned int n_connections; int vnr; struct drbd_device_state_change *device_state_change; struct drbd_peer_device_state_change *peer_device_state_change; struct drbd_connection_state_change *connection_state_change; /* Caller holds req_lock spinlock. * No state, no device IDR, no connections lists can change. */ count_objects(resource, &n_devices, &n_connections); state_change = alloc_state_change(n_devices, n_connections, gfp); if (!state_change) return NULL; kref_get(&resource->kref); state_change->resource->resource = resource; state_change->resource->role[OLD] = conn_highest_role(first_connection(resource)); state_change->resource->susp[OLD] = resource->susp; state_change->resource->susp_nod[OLD] = resource->susp_nod; state_change->resource->susp_fen[OLD] = resource->susp_fen; connection_state_change = state_change->connections; for_each_connection(connection, resource) { kref_get(&connection->kref); connection_state_change->connection = connection; connection_state_change->cstate[OLD] = connection->cstate; connection_state_change->peer_role[OLD] = conn_highest_peer(connection); connection_state_change++; } device_state_change = state_change->devices; peer_device_state_change = state_change->peer_devices; idr_for_each_entry(&resource->devices, device, vnr) { kref_get(&device->kref); device_state_change->device = device; device_state_change->disk_state[OLD] = device->state.disk; /* The peer_devices for each device have to be enumerated in the order of the connections. We may not use for_each_peer_device() here. */ for_each_connection(connection, resource) { struct drbd_peer_device *peer_device; peer_device = conn_peer_device(connection, device->vnr); peer_device_state_change->peer_device = peer_device; peer_device_state_change->disk_state[OLD] = device->state.pdsk; peer_device_state_change->repl_state[OLD] = max_t(enum drbd_conns, C_WF_REPORT_PARAMS, device->state.conn); peer_device_state_change->resync_susp_user[OLD] = device->state.user_isp; peer_device_state_change->resync_susp_peer[OLD] = device->state.peer_isp; peer_device_state_change->resync_susp_dependency[OLD] = device->state.aftr_isp; peer_device_state_change++; } device_state_change++; } return state_change; } static void remember_new_state(struct drbd_state_change *state_change) { struct drbd_resource_state_change *resource_state_change; struct drbd_resource *resource; unsigned int n; if (!state_change) return; resource_state_change = &state_change->resource[0]; resource = resource_state_change->resource; resource_state_change->role[NEW] = conn_highest_role(first_connection(resource)); resource_state_change->susp[NEW] = resource->susp; resource_state_change->susp_nod[NEW] = resource->susp_nod; resource_state_change->susp_fen[NEW] = resource->susp_fen; for (n = 0; n < state_change->n_devices; n++) { struct drbd_device_state_change *device_state_change = &state_change->devices[n]; struct drbd_device *device = device_state_change->device; device_state_change->disk_state[NEW] = device->state.disk; } for (n = 0; n < state_change->n_connections; n++) { struct drbd_connection_state_change *connection_state_change = &state_change->connections[n]; struct drbd_connection *connection = connection_state_change->connection; connection_state_change->cstate[NEW] = connection->cstate; connection_state_change->peer_role[NEW] = conn_highest_peer(connection); } for (n = 0; n < state_change->n_devices * state_change->n_connections; n++) { struct drbd_peer_device_state_change *peer_device_state_change = &state_change->peer_devices[n]; struct drbd_device *device = peer_device_state_change->peer_device->device; union drbd_dev_state state = device->state; peer_device_state_change->disk_state[NEW] = state.pdsk; peer_device_state_change->repl_state[NEW] = max_t(enum drbd_conns, C_WF_REPORT_PARAMS, state.conn); peer_device_state_change->resync_susp_user[NEW] = state.user_isp; peer_device_state_change->resync_susp_peer[NEW] = state.peer_isp; peer_device_state_change->resync_susp_dependency[NEW] = state.aftr_isp; } } void copy_old_to_new_state_change(struct drbd_state_change *state_change) { struct drbd_resource_state_change *resource_state_change = &state_change->resource[0]; unsigned int n_device, n_connection, n_peer_device, n_peer_devices; #define OLD_TO_NEW(x) \ (x[NEW] = x[OLD]) OLD_TO_NEW(resource_state_change->role); OLD_TO_NEW(resource_state_change->susp); OLD_TO_NEW(resource_state_change->susp_nod); OLD_TO_NEW(resource_state_change->susp_fen); for (n_connection = 0; n_connection < state_change->n_connections; n_connection++) { struct drbd_connection_state_change *connection_state_change = &state_change->connections[n_connection]; OLD_TO_NEW(connection_state_change->peer_role); OLD_TO_NEW(connection_state_change->cstate); } for (n_device = 0; n_device < state_change->n_devices; n_device++) { struct drbd_device_state_change *device_state_change = &state_change->devices[n_device]; OLD_TO_NEW(device_state_change->disk_state); } n_peer_devices = state_change->n_devices * state_change->n_connections; for (n_peer_device = 0; n_peer_device < n_peer_devices; n_peer_device++) { struct drbd_peer_device_state_change *p = &state_change->peer_devices[n_peer_device]; OLD_TO_NEW(p->disk_state); OLD_TO_NEW(p->repl_state); OLD_TO_NEW(p->resync_susp_user); OLD_TO_NEW(p->resync_susp_peer); OLD_TO_NEW(p->resync_susp_dependency); } #undef OLD_TO_NEW } void forget_state_change(struct drbd_state_change *state_change) { unsigned int n; if (!state_change) return; if (state_change->resource->resource) kref_put(&state_change->resource->resource->kref, drbd_destroy_resource); for (n = 0; n < state_change->n_devices; n++) { struct drbd_device *device = state_change->devices[n].device; if (device) kref_put(&device->kref, drbd_destroy_device); } for (n = 0; n < state_change->n_connections; n++) { struct drbd_connection *connection = state_change->connections[n].connection; if (connection) kref_put(&connection->kref, drbd_destroy_connection); } kfree(state_change); } static int w_after_state_ch(struct drbd_work *w, int unused); static void after_state_ch(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum chg_state_flags flags, struct drbd_state_change *); static enum drbd_state_rv is_valid_state(struct drbd_device *, union drbd_state); static enum drbd_state_rv is_valid_soft_transition(union drbd_state, union drbd_state, struct drbd_connection *); static enum drbd_state_rv is_valid_transition(union drbd_state os, union drbd_state ns); static union drbd_state sanitize_state(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum sanitize_state_warnings *warn); static inline bool is_susp(union drbd_state s) { return s.susp || s.susp_nod || s.susp_fen; } bool conn_all_vols_unconf(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; bool rv = true; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (device->state.disk != D_DISKLESS || device->state.conn != C_STANDALONE || device->state.role != R_SECONDARY) { rv = false; break; } } rcu_read_unlock(); return rv; } /* Unfortunately the states where not correctly ordered, when they where defined. therefore can not use max_t() here. */ static enum drbd_role max_role(enum drbd_role role1, enum drbd_role role2) { if (role1 == R_PRIMARY || role2 == R_PRIMARY) return R_PRIMARY; if (role1 == R_SECONDARY || role2 == R_SECONDARY) return R_SECONDARY; return R_UNKNOWN; } static enum drbd_role min_role(enum drbd_role role1, enum drbd_role role2) { if (role1 == R_UNKNOWN || role2 == R_UNKNOWN) return R_UNKNOWN; if (role1 == R_SECONDARY || role2 == R_SECONDARY) return R_SECONDARY; return R_PRIMARY; } enum drbd_role conn_highest_role(struct drbd_connection *connection) { enum drbd_role role = R_SECONDARY; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; role = max_role(role, device->state.role); } rcu_read_unlock(); return role; } enum drbd_role conn_highest_peer(struct drbd_connection *connection) { enum drbd_role peer = R_UNKNOWN; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; peer = max_role(peer, device->state.peer); } rcu_read_unlock(); return peer; } enum drbd_disk_state conn_highest_disk(struct drbd_connection *connection) { enum drbd_disk_state disk_state = D_DISKLESS; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; disk_state = max_t(enum drbd_disk_state, disk_state, device->state.disk); } rcu_read_unlock(); return disk_state; } enum drbd_disk_state conn_lowest_disk(struct drbd_connection *connection) { enum drbd_disk_state disk_state = D_MASK; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk); } rcu_read_unlock(); return disk_state; } enum drbd_disk_state conn_highest_pdsk(struct drbd_connection *connection) { enum drbd_disk_state disk_state = D_DISKLESS; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; disk_state = max_t(enum drbd_disk_state, disk_state, device->state.pdsk); } rcu_read_unlock(); return disk_state; } enum drbd_conns conn_lowest_conn(struct drbd_connection *connection) { enum drbd_conns conn = C_MASK; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; conn = min_t(enum drbd_conns, conn, device->state.conn); } rcu_read_unlock(); return conn; } static bool no_peer_wf_report_params(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; int vnr; bool rv = true; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) if (peer_device->device->state.conn == C_WF_REPORT_PARAMS) { rv = false; break; } rcu_read_unlock(); return rv; } static void wake_up_all_devices(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) wake_up(&peer_device->device->state_wait); rcu_read_unlock(); } /** * cl_wide_st_chg() - true if the state change is a cluster wide one * @device: DRBD device. * @os: old (current) state. * @ns: new (wanted) state. */ static int cl_wide_st_chg(struct drbd_device *device, union drbd_state os, union drbd_state ns) { return (os.conn >= C_CONNECTED && ns.conn >= C_CONNECTED && ((os.role != R_PRIMARY && ns.role == R_PRIMARY) || (os.conn != C_STARTING_SYNC_T && ns.conn == C_STARTING_SYNC_T) || (os.conn != C_STARTING_SYNC_S && ns.conn == C_STARTING_SYNC_S) || (os.disk != D_FAILED && ns.disk == D_FAILED))) || (os.conn >= C_CONNECTED && ns.conn == C_DISCONNECTING) || (os.conn == C_CONNECTED && ns.conn == C_VERIFY_S) || (os.conn == C_CONNECTED && ns.conn == C_WF_REPORT_PARAMS); } static union drbd_state apply_mask_val(union drbd_state os, union drbd_state mask, union drbd_state val) { union drbd_state ns; ns.i = (os.i & ~mask.i) | val.i; return ns; } enum drbd_state_rv drbd_change_state(struct drbd_device *device, enum chg_state_flags f, union drbd_state mask, union drbd_state val) { unsigned long flags; union drbd_state ns; enum drbd_state_rv rv; spin_lock_irqsave(&device->resource->req_lock, flags); ns = apply_mask_val(drbd_read_state(device), mask, val); rv = _drbd_set_state(device, ns, f, NULL); spin_unlock_irqrestore(&device->resource->req_lock, flags); return rv; } /** * drbd_force_state() - Impose a change which happens outside our control on our state * @device: DRBD device. * @mask: mask of state bits to change. * @val: value of new state bits. */ void drbd_force_state(struct drbd_device *device, union drbd_state mask, union drbd_state val) { drbd_change_state(device, CS_HARD, mask, val); } static enum drbd_state_rv _req_st_cond(struct drbd_device *device, union drbd_state mask, union drbd_state val) { union drbd_state os, ns; unsigned long flags; enum drbd_state_rv rv; if (test_and_clear_bit(CL_ST_CHG_SUCCESS, &device->flags)) return SS_CW_SUCCESS; if (test_and_clear_bit(CL_ST_CHG_FAIL, &device->flags)) return SS_CW_FAILED_BY_PEER; spin_lock_irqsave(&device->resource->req_lock, flags); os = drbd_read_state(device); ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); rv = is_valid_transition(os, ns); if (rv >= SS_SUCCESS) rv = SS_UNKNOWN_ERROR; /* cont waiting, otherwise fail. */ if (!cl_wide_st_chg(device, os, ns)) rv = SS_CW_NO_NEED; if (rv == SS_UNKNOWN_ERROR) { rv = is_valid_state(device, ns); if (rv >= SS_SUCCESS) { rv = is_valid_soft_transition(os, ns, first_peer_device(device)->connection); if (rv >= SS_SUCCESS) rv = SS_UNKNOWN_ERROR; /* cont waiting, otherwise fail. */ } } spin_unlock_irqrestore(&device->resource->req_lock, flags); return rv; } /** * drbd_req_state() - Perform an eventually cluster wide state change * @device: DRBD device. * @mask: mask of state bits to change. * @val: value of new state bits. * @f: flags * * Should not be called directly, use drbd_request_state() or * _drbd_request_state(). */ static enum drbd_state_rv drbd_req_state(struct drbd_device *device, union drbd_state mask, union drbd_state val, enum chg_state_flags f) { struct completion done; unsigned long flags; union drbd_state os, ns; enum drbd_state_rv rv; void *buffer = NULL; init_completion(&done); if (f & CS_SERIALIZE) mutex_lock(device->state_mutex); if (f & CS_INHIBIT_MD_IO) buffer = drbd_md_get_buffer(device, __func__); spin_lock_irqsave(&device->resource->req_lock, flags); os = drbd_read_state(device); ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); rv = is_valid_transition(os, ns); if (rv < SS_SUCCESS) { spin_unlock_irqrestore(&device->resource->req_lock, flags); goto abort; } if (cl_wide_st_chg(device, os, ns)) { rv = is_valid_state(device, ns); if (rv == SS_SUCCESS) rv = is_valid_soft_transition(os, ns, first_peer_device(device)->connection); spin_unlock_irqrestore(&device->resource->req_lock, flags); if (rv < SS_SUCCESS) { if (f & CS_VERBOSE) print_st_err(device, os, ns, rv); goto abort; } if (drbd_send_state_req(first_peer_device(device), mask, val)) { rv = SS_CW_FAILED_BY_PEER; if (f & CS_VERBOSE) print_st_err(device, os, ns, rv); goto abort; } wait_event(device->state_wait, (rv = _req_st_cond(device, mask, val))); if (rv < SS_SUCCESS) { if (f & CS_VERBOSE) print_st_err(device, os, ns, rv); goto abort; } spin_lock_irqsave(&device->resource->req_lock, flags); ns = apply_mask_val(drbd_read_state(device), mask, val); rv = _drbd_set_state(device, ns, f, &done); } else { rv = _drbd_set_state(device, ns, f, &done); } spin_unlock_irqrestore(&device->resource->req_lock, flags); if (f & CS_WAIT_COMPLETE && rv == SS_SUCCESS) { D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); wait_for_completion(&done); } abort: if (buffer) drbd_md_put_buffer(device); if (f & CS_SERIALIZE) mutex_unlock(device->state_mutex); return rv; } /** * _drbd_request_state() - Request a state change (with flags) * @device: DRBD device. * @mask: mask of state bits to change. * @val: value of new state bits. * @f: flags * * Cousin of drbd_request_state(), useful with the CS_WAIT_COMPLETE * flag, or when logging of failed state change requests is not desired. */ enum drbd_state_rv _drbd_request_state(struct drbd_device *device, union drbd_state mask, union drbd_state val, enum chg_state_flags f) { enum drbd_state_rv rv; wait_event(device->state_wait, (rv = drbd_req_state(device, mask, val, f)) != SS_IN_TRANSIENT_STATE); return rv; } /* * We grab drbd_md_get_buffer(), because we don't want to "fail" the disk while * there is IO in-flight: the transition into D_FAILED for detach purposes * may get misinterpreted as actual IO error in a confused endio function. * * We wrap it all into wait_event(), to retry in case the drbd_req_state() * returns SS_IN_TRANSIENT_STATE. * * To avoid potential deadlock with e.g. the receiver thread trying to grab * drbd_md_get_buffer() while trying to get out of the "transient state", we * need to grab and release the meta data buffer inside of that wait_event loop. */ static enum drbd_state_rv request_detach(struct drbd_device *device) { return drbd_req_state(device, NS(disk, D_FAILED), CS_VERBOSE | CS_ORDERED | CS_INHIBIT_MD_IO); } enum drbd_state_rv drbd_request_detach_interruptible(struct drbd_device *device) { enum drbd_state_rv rv; int ret; drbd_suspend_io(device); /* so no-one is stuck in drbd_al_begin_io */ wait_event_interruptible(device->state_wait, (rv = request_detach(device)) != SS_IN_TRANSIENT_STATE); drbd_resume_io(device); ret = wait_event_interruptible(device->misc_wait, device->state.disk != D_FAILED); if (rv == SS_IS_DISKLESS) rv = SS_NOTHING_TO_DO; if (ret) rv = ERR_INTR; return rv; } enum drbd_state_rv _drbd_request_state_holding_state_mutex(struct drbd_device *device, union drbd_state mask, union drbd_state val, enum chg_state_flags f) { enum drbd_state_rv rv; BUG_ON(f & CS_SERIALIZE); wait_event_cmd(device->state_wait, (rv = drbd_req_state(device, mask, val, f)) != SS_IN_TRANSIENT_STATE, mutex_unlock(device->state_mutex), mutex_lock(device->state_mutex)); return rv; } static void print_st(struct drbd_device *device, const char *name, union drbd_state ns) { drbd_err(device, " %s = { cs:%s ro:%s/%s ds:%s/%s %c%c%c%c%c%c }\n", name, drbd_conn_str(ns.conn), drbd_role_str(ns.role), drbd_role_str(ns.peer), drbd_disk_str(ns.disk), drbd_disk_str(ns.pdsk), is_susp(ns) ? 's' : 'r', ns.aftr_isp ? 'a' : '-', ns.peer_isp ? 'p' : '-', ns.user_isp ? 'u' : '-', ns.susp_fen ? 'F' : '-', ns.susp_nod ? 'N' : '-' ); } void print_st_err(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum drbd_state_rv err) { if (err == SS_IN_TRANSIENT_STATE) return; drbd_err(device, "State change failed: %s\n", drbd_set_st_err_str(err)); print_st(device, " state", os); print_st(device, "wanted", ns); } static long print_state_change(char *pb, union drbd_state os, union drbd_state ns, enum chg_state_flags flags) { char *pbp; pbp = pb; *pbp = 0; if (ns.role != os.role && flags & CS_DC_ROLE) pbp += sprintf(pbp, "role( %s -> %s ) ", drbd_role_str(os.role), drbd_role_str(ns.role)); if (ns.peer != os.peer && flags & CS_DC_PEER) pbp += sprintf(pbp, "peer( %s -> %s ) ", drbd_role_str(os.peer), drbd_role_str(ns.peer)); if (ns.conn != os.conn && flags & CS_DC_CONN) pbp += sprintf(pbp, "conn( %s -> %s ) ", drbd_conn_str(os.conn), drbd_conn_str(ns.conn)); if (ns.disk != os.disk && flags & CS_DC_DISK) pbp += sprintf(pbp, "disk( %s -> %s ) ", drbd_disk_str(os.disk), drbd_disk_str(ns.disk)); if (ns.pdsk != os.pdsk && flags & CS_DC_PDSK) pbp += sprintf(pbp, "pdsk( %s -> %s ) ", drbd_disk_str(os.pdsk), drbd_disk_str(ns.pdsk)); return pbp - pb; } static void drbd_pr_state_change(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum chg_state_flags flags) { char pb[300]; char *pbp = pb; pbp += print_state_change(pbp, os, ns, flags ^ CS_DC_MASK); if (ns.aftr_isp != os.aftr_isp) pbp += sprintf(pbp, "aftr_isp( %d -> %d ) ", os.aftr_isp, ns.aftr_isp); if (ns.peer_isp != os.peer_isp) pbp += sprintf(pbp, "peer_isp( %d -> %d ) ", os.peer_isp, ns.peer_isp); if (ns.user_isp != os.user_isp) pbp += sprintf(pbp, "user_isp( %d -> %d ) ", os.user_isp, ns.user_isp); if (pbp != pb) drbd_info(device, "%s\n", pb); } static void conn_pr_state_change(struct drbd_connection *connection, union drbd_state os, union drbd_state ns, enum chg_state_flags flags) { char pb[300]; char *pbp = pb; pbp += print_state_change(pbp, os, ns, flags); if (is_susp(ns) != is_susp(os) && flags & CS_DC_SUSP) pbp += sprintf(pbp, "susp( %d -> %d ) ", is_susp(os), is_susp(ns)); if (pbp != pb) drbd_info(connection, "%s\n", pb); } /** * is_valid_state() - Returns an SS_ error code if ns is not valid * @device: DRBD device. * @ns: State to consider. */ static enum drbd_state_rv is_valid_state(struct drbd_device *device, union drbd_state ns) { /* See drbd_state_sw_errors in drbd_strings.c */ enum drbd_fencing_p fp; enum drbd_state_rv rv = SS_SUCCESS; struct net_conf *nc; rcu_read_lock(); fp = FP_DONT_CARE; if (get_ldev(device)) { fp = rcu_dereference(device->ldev->disk_conf)->fencing; put_ldev(device); } nc = rcu_dereference(first_peer_device(device)->connection->net_conf); if (nc) { if (!nc->two_primaries && ns.role == R_PRIMARY) { if (ns.peer == R_PRIMARY) rv = SS_TWO_PRIMARIES; else if (conn_highest_peer(first_peer_device(device)->connection) == R_PRIMARY) rv = SS_O_VOL_PEER_PRI; } } if (rv <= 0) goto out; /* already found a reason to abort */ else if (ns.role == R_SECONDARY && device->open_cnt) rv = SS_DEVICE_IN_USE; else if (ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.disk < D_UP_TO_DATE) rv = SS_NO_UP_TO_DATE_DISK; else if (fp >= FP_RESOURCE && ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.pdsk >= D_UNKNOWN) rv = SS_PRIMARY_NOP; else if (ns.role == R_PRIMARY && ns.disk <= D_INCONSISTENT && ns.pdsk <= D_INCONSISTENT) rv = SS_NO_UP_TO_DATE_DISK; else if (ns.conn > C_CONNECTED && ns.disk < D_INCONSISTENT) rv = SS_NO_LOCAL_DISK; else if (ns.conn > C_CONNECTED && ns.pdsk < D_INCONSISTENT) rv = SS_NO_REMOTE_DISK; else if (ns.conn > C_CONNECTED && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) rv = SS_NO_UP_TO_DATE_DISK; else if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S || ns.conn == C_SYNC_SOURCE || ns.conn == C_PAUSED_SYNC_S) && ns.disk == D_OUTDATED) rv = SS_CONNECTED_OUTDATES; else if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && (nc->verify_alg[0] == 0)) rv = SS_NO_VERIFY_ALG; else if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && first_peer_device(device)->connection->agreed_pro_version < 88) rv = SS_NOT_SUPPORTED; else if (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) rv = SS_NO_UP_TO_DATE_DISK; else if ((ns.conn == C_STARTING_SYNC_S || ns.conn == C_STARTING_SYNC_T) && ns.pdsk == D_UNKNOWN) rv = SS_NEED_CONNECTION; else if (ns.conn >= C_CONNECTED && ns.pdsk == D_UNKNOWN) rv = SS_CONNECTED_OUTDATES; out: rcu_read_unlock(); return rv; } /** * is_valid_soft_transition() - Returns an SS_ error code if the state transition is not possible * This function limits state transitions that may be declined by DRBD. I.e. * user requests (aka soft transitions). * @device: DRBD device. * @ns: new state. * @os: old state. */ static enum drbd_state_rv is_valid_soft_transition(union drbd_state os, union drbd_state ns, struct drbd_connection *connection) { enum drbd_state_rv rv = SS_SUCCESS; if ((ns.conn == C_STARTING_SYNC_T || ns.conn == C_STARTING_SYNC_S) && os.conn > C_CONNECTED) rv = SS_RESYNC_RUNNING; if (ns.conn == C_DISCONNECTING && os.conn == C_STANDALONE) rv = SS_ALREADY_STANDALONE; if (ns.disk > D_ATTACHING && os.disk == D_DISKLESS) rv = SS_IS_DISKLESS; if (ns.conn == C_WF_CONNECTION && os.conn < C_UNCONNECTED) rv = SS_NO_NET_CONFIG; if (ns.disk == D_OUTDATED && os.disk < D_OUTDATED && os.disk != D_ATTACHING) rv = SS_LOWER_THAN_OUTDATED; if (ns.conn == C_DISCONNECTING && os.conn == C_UNCONNECTED) rv = SS_IN_TRANSIENT_STATE; /* While establishing a connection only allow cstate to change. Delay/refuse role changes, detach attach etc... (they do not touch cstate) */ if (test_bit(STATE_SENT, &connection->flags) && !((ns.conn == C_WF_REPORT_PARAMS && os.conn == C_WF_CONNECTION) || (ns.conn >= C_CONNECTED && os.conn == C_WF_REPORT_PARAMS))) rv = SS_IN_TRANSIENT_STATE; /* Do not promote during resync handshake triggered by "force primary". * This is a hack. It should really be rejected by the peer during the * cluster wide state change request. */ if (os.role != R_PRIMARY && ns.role == R_PRIMARY && ns.pdsk == D_UP_TO_DATE && ns.disk != D_UP_TO_DATE && ns.disk != D_DISKLESS && (ns.conn <= C_WF_SYNC_UUID || ns.conn != os.conn)) rv = SS_IN_TRANSIENT_STATE; if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && os.conn < C_CONNECTED) rv = SS_NEED_CONNECTION; if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && ns.conn != os.conn && os.conn > C_CONNECTED) rv = SS_RESYNC_RUNNING; if ((ns.conn == C_STARTING_SYNC_S || ns.conn == C_STARTING_SYNC_T) && os.conn < C_CONNECTED) rv = SS_NEED_CONNECTION; if ((ns.conn == C_SYNC_TARGET || ns.conn == C_SYNC_SOURCE) && os.conn < C_WF_REPORT_PARAMS) rv = SS_NEED_CONNECTION; /* No NetworkFailure -> SyncTarget etc... */ if (ns.conn == C_DISCONNECTING && ns.pdsk == D_OUTDATED && os.conn < C_CONNECTED && os.pdsk > D_OUTDATED) rv = SS_OUTDATE_WO_CONN; return rv; } static enum drbd_state_rv is_valid_conn_transition(enum drbd_conns oc, enum drbd_conns nc) { /* no change -> nothing to do, at least for the connection part */ if (oc == nc) return SS_NOTHING_TO_DO; /* disconnect of an unconfigured connection does not make sense */ if (oc == C_STANDALONE && nc == C_DISCONNECTING) return SS_ALREADY_STANDALONE; /* from C_STANDALONE, we start with C_UNCONNECTED */ if (oc == C_STANDALONE && nc != C_UNCONNECTED) return SS_NEED_CONNECTION; /* When establishing a connection we need to go through WF_REPORT_PARAMS! Necessary to do the right thing upon invalidate-remote on a disconnected resource */ if (oc < C_WF_REPORT_PARAMS && nc >= C_CONNECTED) return SS_NEED_CONNECTION; /* After a network error only C_UNCONNECTED or C_DISCONNECTING may follow. */ if (oc >= C_TIMEOUT && oc <= C_TEAR_DOWN && nc != C_UNCONNECTED && nc != C_DISCONNECTING) return SS_IN_TRANSIENT_STATE; /* After C_DISCONNECTING only C_STANDALONE may follow */ if (oc == C_DISCONNECTING && nc != C_STANDALONE) return SS_IN_TRANSIENT_STATE; return SS_SUCCESS; } /** * is_valid_transition() - Returns an SS_ error code if the state transition is not possible * This limits hard state transitions. Hard state transitions are facts there are * imposed on DRBD by the environment. E.g. disk broke or network broke down. * But those hard state transitions are still not allowed to do everything. * @ns: new state. * @os: old state. */ static enum drbd_state_rv is_valid_transition(union drbd_state os, union drbd_state ns) { enum drbd_state_rv rv; rv = is_valid_conn_transition(os.conn, ns.conn); /* we cannot fail (again) if we already detached */ if (ns.disk == D_FAILED && os.disk == D_DISKLESS) rv = SS_IS_DISKLESS; return rv; } static void print_sanitize_warnings(struct drbd_device *device, enum sanitize_state_warnings warn) { static const char *msg_table[] = { [NO_WARNING] = "", [ABORTED_ONLINE_VERIFY] = "Online-verify aborted.", [ABORTED_RESYNC] = "Resync aborted.", [CONNECTION_LOST_NEGOTIATING] = "Connection lost while negotiating, no data!", [IMPLICITLY_UPGRADED_DISK] = "Implicitly upgraded disk", [IMPLICITLY_UPGRADED_PDSK] = "Implicitly upgraded pdsk", }; if (warn != NO_WARNING) drbd_warn(device, "%s\n", msg_table[warn]); } /** * sanitize_state() - Resolves implicitly necessary additional changes to a state transition * @device: DRBD device. * @os: old state. * @ns: new state. * @warn_sync_abort: * * When we loose connection, we have to set the state of the peers disk (pdsk) * to D_UNKNOWN. This rule and many more along those lines are in this function. */ static union drbd_state sanitize_state(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum sanitize_state_warnings *warn) { enum drbd_fencing_p fp; enum drbd_disk_state disk_min, disk_max, pdsk_min, pdsk_max; if (warn) *warn = NO_WARNING; fp = FP_DONT_CARE; if (get_ldev(device)) { rcu_read_lock(); fp = rcu_dereference(device->ldev->disk_conf)->fencing; rcu_read_unlock(); put_ldev(device); } /* Implications from connection to peer and peer_isp */ if (ns.conn < C_CONNECTED) { ns.peer_isp = 0; ns.peer = R_UNKNOWN; if (ns.pdsk > D_UNKNOWN || ns.pdsk < D_INCONSISTENT) ns.pdsk = D_UNKNOWN; } /* Clear the aftr_isp when becoming unconfigured */ if (ns.conn == C_STANDALONE && ns.disk == D_DISKLESS && ns.role == R_SECONDARY) ns.aftr_isp = 0; /* An implication of the disk states onto the connection state */ /* Abort resync if a disk fails/detaches */ if (ns.conn > C_CONNECTED && (ns.disk <= D_FAILED || ns.pdsk <= D_FAILED)) { if (warn) *warn = ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T ? ABORTED_ONLINE_VERIFY : ABORTED_RESYNC; ns.conn = C_CONNECTED; } /* Connection breaks down before we finished "Negotiating" */ if (ns.conn < C_CONNECTED && ns.disk == D_NEGOTIATING && get_ldev_if_state(device, D_NEGOTIATING)) { if (device->ed_uuid == device->ldev->md.uuid[UI_CURRENT]) { ns.disk = device->new_state_tmp.disk; ns.pdsk = device->new_state_tmp.pdsk; } else { if (warn) *warn = CONNECTION_LOST_NEGOTIATING; ns.disk = D_DISKLESS; ns.pdsk = D_UNKNOWN; } put_ldev(device); } /* D_CONSISTENT and D_OUTDATED vanish when we get connected */ if (ns.conn >= C_CONNECTED && ns.conn < C_AHEAD) { if (ns.disk == D_CONSISTENT || ns.disk == D_OUTDATED) ns.disk = D_UP_TO_DATE; if (ns.pdsk == D_CONSISTENT || ns.pdsk == D_OUTDATED) ns.pdsk = D_UP_TO_DATE; } /* Implications of the connection stat on the disk states */ disk_min = D_DISKLESS; disk_max = D_UP_TO_DATE; pdsk_min = D_INCONSISTENT; pdsk_max = D_UNKNOWN; switch ((enum drbd_conns)ns.conn) { case C_WF_BITMAP_T: case C_PAUSED_SYNC_T: case C_STARTING_SYNC_T: case C_WF_SYNC_UUID: case C_BEHIND: disk_min = D_INCONSISTENT; disk_max = D_OUTDATED; pdsk_min = D_UP_TO_DATE; pdsk_max = D_UP_TO_DATE; break; case C_VERIFY_S: case C_VERIFY_T: disk_min = D_UP_TO_DATE; disk_max = D_UP_TO_DATE; pdsk_min = D_UP_TO_DATE; pdsk_max = D_UP_TO_DATE; break; case C_CONNECTED: disk_min = D_DISKLESS; disk_max = D_UP_TO_DATE; pdsk_min = D_DISKLESS; pdsk_max = D_UP_TO_DATE; break; case C_WF_BITMAP_S: case C_PAUSED_SYNC_S: case C_STARTING_SYNC_S: case C_AHEAD: disk_min = D_UP_TO_DATE; disk_max = D_UP_TO_DATE; pdsk_min = D_INCONSISTENT; pdsk_max = D_CONSISTENT; /* D_OUTDATED would be nice. But explicit outdate necessary*/ break; case C_SYNC_TARGET: disk_min = D_INCONSISTENT; disk_max = D_INCONSISTENT; pdsk_min = D_UP_TO_DATE; pdsk_max = D_UP_TO_DATE; break; case C_SYNC_SOURCE: disk_min = D_UP_TO_DATE; disk_max = D_UP_TO_DATE; pdsk_min = D_INCONSISTENT; pdsk_max = D_INCONSISTENT; break; case C_STANDALONE: case C_DISCONNECTING: case C_UNCONNECTED: case C_TIMEOUT: case C_BROKEN_PIPE: case C_NETWORK_FAILURE: case C_PROTOCOL_ERROR: case C_TEAR_DOWN: case C_WF_CONNECTION: case C_WF_REPORT_PARAMS: case C_MASK: break; } if (ns.disk > disk_max) ns.disk = disk_max; if (ns.disk < disk_min) { if (warn) *warn = IMPLICITLY_UPGRADED_DISK; ns.disk = disk_min; } if (ns.pdsk > pdsk_max) ns.pdsk = pdsk_max; if (ns.pdsk < pdsk_min) { if (warn) *warn = IMPLICITLY_UPGRADED_PDSK; ns.pdsk = pdsk_min; } if (fp == FP_STONITH && (ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.pdsk > D_OUTDATED) && !(os.role == R_PRIMARY && os.conn < C_CONNECTED && os.pdsk > D_OUTDATED)) ns.susp_fen = 1; /* Suspend IO while fence-peer handler runs (peer lost) */ if (device->resource->res_opts.on_no_data == OND_SUSPEND_IO && (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) && !(os.role == R_PRIMARY && os.disk < D_UP_TO_DATE && os.pdsk < D_UP_TO_DATE)) ns.susp_nod = 1; /* Suspend IO while no data available (no accessible data available) */ if (ns.aftr_isp || ns.peer_isp || ns.user_isp) { if (ns.conn == C_SYNC_SOURCE) ns.conn = C_PAUSED_SYNC_S; if (ns.conn == C_SYNC_TARGET) ns.conn = C_PAUSED_SYNC_T; } else { if (ns.conn == C_PAUSED_SYNC_S) ns.conn = C_SYNC_SOURCE; if (ns.conn == C_PAUSED_SYNC_T) ns.conn = C_SYNC_TARGET; } return ns; } void drbd_resume_al(struct drbd_device *device) { if (test_and_clear_bit(AL_SUSPENDED, &device->flags)) drbd_info(device, "Resumed AL updates\n"); } /* helper for _drbd_set_state */ static void set_ov_position(struct drbd_device *device, enum drbd_conns cs) { if (first_peer_device(device)->connection->agreed_pro_version < 90) device->ov_start_sector = 0; device->rs_total = drbd_bm_bits(device); device->ov_position = 0; if (cs == C_VERIFY_T) { /* starting online verify from an arbitrary position * does not fit well into the existing protocol. * on C_VERIFY_T, we initialize ov_left and friends * implicitly in receive_DataRequest once the * first P_OV_REQUEST is received */ device->ov_start_sector = ~(sector_t)0; } else { unsigned long bit = BM_SECT_TO_BIT(device->ov_start_sector); if (bit >= device->rs_total) { device->ov_start_sector = BM_BIT_TO_SECT(device->rs_total - 1); device->rs_total = 1; } else device->rs_total -= bit; device->ov_position = device->ov_start_sector; } device->ov_left = device->rs_total; } /** * _drbd_set_state() - Set a new DRBD state * @device: DRBD device. * @ns: new state. * @flags: Flags * @done: Optional completion, that will get completed after the after_state_ch() finished * * Caller needs to hold req_lock. Do not call directly. */ enum drbd_state_rv _drbd_set_state(struct drbd_device *device, union drbd_state ns, enum chg_state_flags flags, struct completion *done) { struct drbd_peer_device *peer_device = first_peer_device(device); struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; union drbd_state os; enum drbd_state_rv rv = SS_SUCCESS; enum sanitize_state_warnings ssw; struct after_state_chg_work *ascw; struct drbd_state_change *state_change; os = drbd_read_state(device); ns = sanitize_state(device, os, ns, &ssw); if (ns.i == os.i) return SS_NOTHING_TO_DO; rv = is_valid_transition(os, ns); if (rv < SS_SUCCESS) return rv; if (!(flags & CS_HARD)) { /* pre-state-change checks ; only look at ns */ /* See drbd_state_sw_errors in drbd_strings.c */ rv = is_valid_state(device, ns); if (rv < SS_SUCCESS) { /* If the old state was illegal as well, then let this happen...*/ if (is_valid_state(device, os) == rv) rv = is_valid_soft_transition(os, ns, connection); } else rv = is_valid_soft_transition(os, ns, connection); } if (rv < SS_SUCCESS) { if (flags & CS_VERBOSE) print_st_err(device, os, ns, rv); return rv; } print_sanitize_warnings(device, ssw); drbd_pr_state_change(device, os, ns, flags); /* Display changes to the susp* flags that where caused by the call to sanitize_state(). Only display it here if we where not called from _conn_request_state() */ if (!(flags & CS_DC_SUSP)) conn_pr_state_change(connection, os, ns, (flags & ~CS_DC_MASK) | CS_DC_SUSP); /* if we are going -> D_FAILED or D_DISKLESS, grab one extra reference * on the ldev here, to be sure the transition -> D_DISKLESS resp. * drbd_ldev_destroy() won't happen before our corresponding * after_state_ch works run, where we put_ldev again. */ if ((os.disk != D_FAILED && ns.disk == D_FAILED) || (os.disk != D_DISKLESS && ns.disk == D_DISKLESS)) atomic_inc(&device->local_cnt); if (!is_sync_state(os.conn) && is_sync_state(ns.conn)) clear_bit(RS_DONE, &device->flags); /* FIXME: Have any flags been set earlier in this function already? */ state_change = remember_old_state(device->resource, GFP_ATOMIC); /* changes to local_cnt and device flags should be visible before * changes to state, which again should be visible before anything else * depending on that change happens. */ smp_wmb(); device->state.i = ns.i; device->resource->susp = ns.susp; device->resource->susp_nod = ns.susp_nod; device->resource->susp_fen = ns.susp_fen; smp_wmb(); remember_new_state(state_change); /* put replicated vs not-replicated requests in seperate epochs */ if (drbd_should_do_remote((union drbd_dev_state)os.i) != drbd_should_do_remote((union drbd_dev_state)ns.i)) start_new_tl_epoch(connection); if (os.disk == D_ATTACHING && ns.disk >= D_NEGOTIATING) drbd_print_uuids(device, "attached to UUIDs"); /* Wake up role changes, that were delayed because of connection establishing */ if (os.conn == C_WF_REPORT_PARAMS && ns.conn != C_WF_REPORT_PARAMS && no_peer_wf_report_params(connection)) { clear_bit(STATE_SENT, &connection->flags); wake_up_all_devices(connection); } wake_up(&device->misc_wait); wake_up(&device->state_wait); wake_up(&connection->ping_wait); /* Aborted verify run, or we reached the stop sector. * Log the last position, unless end-of-device. */ if ((os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) && ns.conn <= C_CONNECTED) { device->ov_start_sector = BM_BIT_TO_SECT(drbd_bm_bits(device) - device->ov_left); if (device->ov_left) drbd_info(device, "Online Verify reached sector %llu\n", (unsigned long long)device->ov_start_sector); } if ((os.conn == C_PAUSED_SYNC_T || os.conn == C_PAUSED_SYNC_S) && (ns.conn == C_SYNC_TARGET || ns.conn == C_SYNC_SOURCE)) { drbd_info(device, "Syncer continues.\n"); device->rs_paused += (long)jiffies -(long)device->rs_mark_time[device->rs_last_mark]; if (ns.conn == C_SYNC_TARGET) mod_timer(&device->resync_timer, jiffies); } if ((os.conn == C_SYNC_TARGET || os.conn == C_SYNC_SOURCE) && (ns.conn == C_PAUSED_SYNC_T || ns.conn == C_PAUSED_SYNC_S)) { drbd_info(device, "Resync suspended\n"); device->rs_mark_time[device->rs_last_mark] = jiffies; } if (os.conn == C_CONNECTED && (ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T)) { unsigned long now = jiffies; int i; set_ov_position(device, ns.conn); device->rs_start = now; device->rs_last_sect_ev = 0; device->ov_last_oos_size = 0; device->ov_last_oos_start = 0; for (i = 0; i < DRBD_SYNC_MARKS; i++) { device->rs_mark_left[i] = device->ov_left; device->rs_mark_time[i] = now; } drbd_rs_controller_reset(device); if (ns.conn == C_VERIFY_S) { drbd_info(device, "Starting Online Verify from sector %llu\n", (unsigned long long)device->ov_position); mod_timer(&device->resync_timer, jiffies); } } if (get_ldev(device)) { u32 mdf = device->ldev->md.flags & ~(MDF_CONSISTENT|MDF_PRIMARY_IND| MDF_CONNECTED_IND|MDF_WAS_UP_TO_DATE| MDF_PEER_OUT_DATED|MDF_CRASHED_PRIMARY); mdf &= ~MDF_AL_CLEAN; if (test_bit(CRASHED_PRIMARY, &device->flags)) mdf |= MDF_CRASHED_PRIMARY; if (device->state.role == R_PRIMARY || (device->state.pdsk < D_INCONSISTENT && device->state.peer == R_PRIMARY)) mdf |= MDF_PRIMARY_IND; if (device->state.conn > C_WF_REPORT_PARAMS) mdf |= MDF_CONNECTED_IND; if (device->state.disk > D_INCONSISTENT) mdf |= MDF_CONSISTENT; if (device->state.disk > D_OUTDATED) mdf |= MDF_WAS_UP_TO_DATE; if (device->state.pdsk <= D_OUTDATED && device->state.pdsk >= D_INCONSISTENT) mdf |= MDF_PEER_OUT_DATED; if (mdf != device->ldev->md.flags) { device->ldev->md.flags = mdf; drbd_md_mark_dirty(device); } if (os.disk < D_CONSISTENT && ns.disk >= D_CONSISTENT) drbd_set_ed_uuid(device, device->ldev->md.uuid[UI_CURRENT]); put_ldev(device); } /* Peer was forced D_UP_TO_DATE & R_PRIMARY, consider to resync */ if (os.disk == D_INCONSISTENT && os.pdsk == D_INCONSISTENT && os.peer == R_SECONDARY && ns.peer == R_PRIMARY) set_bit(CONSIDER_RESYNC, &device->flags); /* Receiver should clean up itself */ if (os.conn != C_DISCONNECTING && ns.conn == C_DISCONNECTING) drbd_thread_stop_nowait(&connection->receiver); /* Now the receiver finished cleaning up itself, it should die */ if (os.conn != C_STANDALONE && ns.conn == C_STANDALONE) drbd_thread_stop_nowait(&connection->receiver); /* Upon network failure, we need to restart the receiver. */ if (os.conn > C_WF_CONNECTION && ns.conn <= C_TEAR_DOWN && ns.conn >= C_TIMEOUT) drbd_thread_restart_nowait(&connection->receiver); /* Resume AL writing if we get a connection */ if (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED) { drbd_resume_al(device); connection->connect_cnt++; } /* remember last attach time so request_timer_fn() won't * kill newly established sessions while we are still trying to thaw * previously frozen IO */ if ((os.disk == D_ATTACHING || os.disk == D_NEGOTIATING) && ns.disk > D_NEGOTIATING) device->last_reattach_jif = jiffies; ascw = kmalloc(sizeof(*ascw), GFP_ATOMIC); if (ascw) { ascw->os = os; ascw->ns = ns; ascw->flags = flags; ascw->w.cb = w_after_state_ch; ascw->device = device; ascw->done = done; ascw->state_change = state_change; drbd_queue_work(&connection->sender_work, &ascw->w); } else { drbd_err(device, "Could not kmalloc an ascw\n"); } return rv; } static int w_after_state_ch(struct drbd_work *w, int unused) { struct after_state_chg_work *ascw = container_of(w, struct after_state_chg_work, w); struct drbd_device *device = ascw->device; after_state_ch(device, ascw->os, ascw->ns, ascw->flags, ascw->state_change); forget_state_change(ascw->state_change); if (ascw->flags & CS_WAIT_COMPLETE) complete(ascw->done); kfree(ascw); return 0; } static void abw_start_sync(struct drbd_device *device, int rv) { if (rv) { drbd_err(device, "Writing the bitmap failed not starting resync.\n"); _drbd_request_state(device, NS(conn, C_CONNECTED), CS_VERBOSE); return; } switch (device->state.conn) { case C_STARTING_SYNC_T: _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); break; case C_STARTING_SYNC_S: drbd_start_resync(device, C_SYNC_SOURCE); break; } } int drbd_bitmap_io_from_worker(struct drbd_device *device, int (*io_fn)(struct drbd_device *), char *why, enum bm_flag flags) { int rv; D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); /* open coded non-blocking drbd_suspend_io(device); */ atomic_inc(&device->suspend_cnt); drbd_bm_lock(device, why, flags); rv = io_fn(device); drbd_bm_unlock(device); drbd_resume_io(device); return rv; } void notify_resource_state_change(struct sk_buff *skb, unsigned int seq, struct drbd_resource_state_change *resource_state_change, enum drbd_notification_type type) { struct drbd_resource *resource = resource_state_change->resource; struct resource_info resource_info = { .res_role = resource_state_change->role[NEW], .res_susp = resource_state_change->susp[NEW], .res_susp_nod = resource_state_change->susp_nod[NEW], .res_susp_fen = resource_state_change->susp_fen[NEW], }; notify_resource_state(skb, seq, resource, &resource_info, type); } void notify_connection_state_change(struct sk_buff *skb, unsigned int seq, struct drbd_connection_state_change *connection_state_change, enum drbd_notification_type type) { struct drbd_connection *connection = connection_state_change->connection; struct connection_info connection_info = { .conn_connection_state = connection_state_change->cstate[NEW], .conn_role = connection_state_change->peer_role[NEW], }; notify_connection_state(skb, seq, connection, &connection_info, type); } void notify_device_state_change(struct sk_buff *skb, unsigned int seq, struct drbd_device_state_change *device_state_change, enum drbd_notification_type type) { struct drbd_device *device = device_state_change->device; struct device_info device_info = { .dev_disk_state = device_state_change->disk_state[NEW], }; notify_device_state(skb, seq, device, &device_info, type); } void notify_peer_device_state_change(struct sk_buff *skb, unsigned int seq, struct drbd_peer_device_state_change *p, enum drbd_notification_type type) { struct drbd_peer_device *peer_device = p->peer_device; struct peer_device_info peer_device_info = { .peer_repl_state = p->repl_state[NEW], .peer_disk_state = p->disk_state[NEW], .peer_resync_susp_user = p->resync_susp_user[NEW], .peer_resync_susp_peer = p->resync_susp_peer[NEW], .peer_resync_susp_dependency = p->resync_susp_dependency[NEW], }; notify_peer_device_state(skb, seq, peer_device, &peer_device_info, type); } static void broadcast_state_change(struct drbd_state_change *state_change) { struct drbd_resource_state_change *resource_state_change = &state_change->resource[0]; bool resource_state_has_changed; unsigned int n_device, n_connection, n_peer_device, n_peer_devices; void (*last_func)(struct sk_buff *, unsigned int, void *, enum drbd_notification_type) = NULL; void *uninitialized_var(last_arg); #define HAS_CHANGED(state) ((state)[OLD] != (state)[NEW]) #define FINAL_STATE_CHANGE(type) \ ({ if (last_func) \ last_func(NULL, 0, last_arg, type); \ }) #define REMEMBER_STATE_CHANGE(func, arg, type) \ ({ FINAL_STATE_CHANGE(type | NOTIFY_CONTINUES); \ last_func = (typeof(last_func))func; \ last_arg = arg; \ }) mutex_lock(¬ification_mutex); resource_state_has_changed = HAS_CHANGED(resource_state_change->role) || HAS_CHANGED(resource_state_change->susp) || HAS_CHANGED(resource_state_change->susp_nod) || HAS_CHANGED(resource_state_change->susp_fen); if (resource_state_has_changed) REMEMBER_STATE_CHANGE(notify_resource_state_change, resource_state_change, NOTIFY_CHANGE); for (n_connection = 0; n_connection < state_change->n_connections; n_connection++) { struct drbd_connection_state_change *connection_state_change = &state_change->connections[n_connection]; if (HAS_CHANGED(connection_state_change->peer_role) || HAS_CHANGED(connection_state_change->cstate)) REMEMBER_STATE_CHANGE(notify_connection_state_change, connection_state_change, NOTIFY_CHANGE); } for (n_device = 0; n_device < state_change->n_devices; n_device++) { struct drbd_device_state_change *device_state_change = &state_change->devices[n_device]; if (HAS_CHANGED(device_state_change->disk_state)) REMEMBER_STATE_CHANGE(notify_device_state_change, device_state_change, NOTIFY_CHANGE); } n_peer_devices = state_change->n_devices * state_change->n_connections; for (n_peer_device = 0; n_peer_device < n_peer_devices; n_peer_device++) { struct drbd_peer_device_state_change *p = &state_change->peer_devices[n_peer_device]; if (HAS_CHANGED(p->disk_state) || HAS_CHANGED(p->repl_state) || HAS_CHANGED(p->resync_susp_user) || HAS_CHANGED(p->resync_susp_peer) || HAS_CHANGED(p->resync_susp_dependency)) REMEMBER_STATE_CHANGE(notify_peer_device_state_change, p, NOTIFY_CHANGE); } FINAL_STATE_CHANGE(NOTIFY_CHANGE); mutex_unlock(¬ification_mutex); #undef HAS_CHANGED #undef FINAL_STATE_CHANGE #undef REMEMBER_STATE_CHANGE } /* takes old and new peer disk state */ static bool lost_contact_to_peer_data(enum drbd_disk_state os, enum drbd_disk_state ns) { if ((os >= D_INCONSISTENT && os != D_UNKNOWN && os != D_OUTDATED) && (ns < D_INCONSISTENT || ns == D_UNKNOWN || ns == D_OUTDATED)) return true; /* Scenario, starting with normal operation * Connected Primary/Secondary UpToDate/UpToDate * NetworkFailure Primary/Unknown UpToDate/DUnknown (frozen) * ... * Connected Primary/Secondary UpToDate/Diskless (resumed; needs to bump uuid!) */ if (os == D_UNKNOWN && (ns == D_DISKLESS || ns == D_FAILED || ns == D_OUTDATED)) return true; return false; } /** * after_state_ch() - Perform after state change actions that may sleep * @device: DRBD device. * @os: old state. * @ns: new state. * @flags: Flags */ static void after_state_ch(struct drbd_device *device, union drbd_state os, union drbd_state ns, enum chg_state_flags flags, struct drbd_state_change *state_change) { struct drbd_resource *resource = device->resource; struct drbd_peer_device *peer_device = first_peer_device(device); struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; struct sib_info sib; broadcast_state_change(state_change); sib.sib_reason = SIB_STATE_CHANGE; sib.os = os; sib.ns = ns; if ((os.disk != D_UP_TO_DATE || os.pdsk != D_UP_TO_DATE) && (ns.disk == D_UP_TO_DATE && ns.pdsk == D_UP_TO_DATE)) { clear_bit(CRASHED_PRIMARY, &device->flags); if (device->p_uuid) device->p_uuid[UI_FLAGS] &= ~((u64)2); } /* Inform userspace about the change... */ drbd_bcast_event(device, &sib); if (!(os.role == R_PRIMARY && os.disk < D_UP_TO_DATE && os.pdsk < D_UP_TO_DATE) && (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE)) drbd_khelper(device, "pri-on-incon-degr"); /* Here we have the actions that are performed after a state change. This function might sleep */ if (ns.susp_nod) { enum drbd_req_event what = NOTHING; spin_lock_irq(&device->resource->req_lock); if (os.conn < C_CONNECTED && conn_lowest_conn(connection) >= C_CONNECTED) what = RESEND; if ((os.disk == D_ATTACHING || os.disk == D_NEGOTIATING) && conn_lowest_disk(connection) == D_UP_TO_DATE) what = RESTART_FROZEN_DISK_IO; if (resource->susp_nod && what != NOTHING) { _tl_restart(connection, what); _conn_request_state(connection, (union drbd_state) { { .susp_nod = 1 } }, (union drbd_state) { { .susp_nod = 0 } }, CS_VERBOSE); } spin_unlock_irq(&device->resource->req_lock); } if (ns.susp_fen) { spin_lock_irq(&device->resource->req_lock); if (resource->susp_fen && conn_lowest_conn(connection) >= C_CONNECTED) { /* case2: The connection was established again: */ struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) clear_bit(NEW_CUR_UUID, &peer_device->device->flags); rcu_read_unlock(); /* We should actively create a new uuid, _before_ * we resume/resent, if the peer is diskless * (recovery from a multiple error scenario). * Currently, this happens with a slight delay * below when checking lost_contact_to_peer_data() ... */ _tl_restart(connection, RESEND); _conn_request_state(connection, (union drbd_state) { { .susp_fen = 1 } }, (union drbd_state) { { .susp_fen = 0 } }, CS_VERBOSE); } spin_unlock_irq(&device->resource->req_lock); } /* Became sync source. With protocol >= 96, we still need to send out * the sync uuid now. Need to do that before any drbd_send_state, or * the other side may go "paused sync" before receiving the sync uuids, * which is unexpected. */ if ((os.conn != C_SYNC_SOURCE && os.conn != C_PAUSED_SYNC_S) && (ns.conn == C_SYNC_SOURCE || ns.conn == C_PAUSED_SYNC_S) && connection->agreed_pro_version >= 96 && get_ldev(device)) { drbd_gen_and_send_sync_uuid(peer_device); put_ldev(device); } /* Do not change the order of the if above and the two below... */ if (os.pdsk == D_DISKLESS && ns.pdsk > D_DISKLESS && ns.pdsk != D_UNKNOWN) { /* attach on the peer */ /* we probably will start a resync soon. * make sure those things are properly reset. */ device->rs_total = 0; device->rs_failed = 0; atomic_set(&device->rs_pending_cnt, 0); drbd_rs_cancel_all(device); drbd_send_uuids(peer_device); drbd_send_state(peer_device, ns); } /* No point in queuing send_bitmap if we don't have a connection * anymore, so check also the _current_ state, not only the new state * at the time this work was queued. */ if (os.conn != C_WF_BITMAP_S && ns.conn == C_WF_BITMAP_S && device->state.conn == C_WF_BITMAP_S) drbd_queue_bitmap_io(device, &drbd_send_bitmap, NULL, "send_bitmap (WFBitMapS)", BM_LOCKED_TEST_ALLOWED); /* Lost contact to peer's copy of the data */ if (lost_contact_to_peer_data(os.pdsk, ns.pdsk)) { if (get_ldev(device)) { if ((ns.role == R_PRIMARY || ns.peer == R_PRIMARY) && device->ldev->md.uuid[UI_BITMAP] == 0 && ns.disk >= D_UP_TO_DATE) { if (drbd_suspended(device)) { set_bit(NEW_CUR_UUID, &device->flags); } else { drbd_uuid_new_current(device); drbd_send_uuids(peer_device); } } put_ldev(device); } } if (ns.pdsk < D_INCONSISTENT && get_ldev(device)) { if (os.peer != R_PRIMARY && ns.peer == R_PRIMARY && device->ldev->md.uuid[UI_BITMAP] == 0 && ns.disk >= D_UP_TO_DATE) { drbd_uuid_new_current(device); drbd_send_uuids(peer_device); } /* D_DISKLESS Peer becomes secondary */ if (os.peer == R_PRIMARY && ns.peer == R_SECONDARY) /* We may still be Primary ourselves. * No harm done if the bitmap still changes, * redirtied pages will follow later. */ drbd_bitmap_io_from_worker(device, &drbd_bm_write, "demote diskless peer", BM_LOCKED_SET_ALLOWED); put_ldev(device); } /* Write out all changed bits on demote. * Though, no need to da that just yet * if there is a resync going on still */ if (os.role == R_PRIMARY && ns.role == R_SECONDARY && device->state.conn <= C_CONNECTED && get_ldev(device)) { /* No changes to the bitmap expected this time, so assert that, * even though no harm was done if it did change. */ drbd_bitmap_io_from_worker(device, &drbd_bm_write, "demote", BM_LOCKED_TEST_ALLOWED); put_ldev(device); } /* Last part of the attaching process ... */ if (ns.conn >= C_CONNECTED && os.disk == D_ATTACHING && ns.disk == D_NEGOTIATING) { drbd_send_sizes(peer_device, 0, 0); /* to start sync... */ drbd_send_uuids(peer_device); drbd_send_state(peer_device, ns); } /* We want to pause/continue resync, tell peer. */ if (ns.conn >= C_CONNECTED && ((os.aftr_isp != ns.aftr_isp) || (os.user_isp != ns.user_isp))) drbd_send_state(peer_device, ns); /* In case one of the isp bits got set, suspend other devices. */ if ((!os.aftr_isp && !os.peer_isp && !os.user_isp) && (ns.aftr_isp || ns.peer_isp || ns.user_isp)) suspend_other_sg(device); /* Make sure the peer gets informed about eventual state changes (ISP bits) while we were in WFReportParams. */ if (os.conn == C_WF_REPORT_PARAMS && ns.conn >= C_CONNECTED) drbd_send_state(peer_device, ns); if (os.conn != C_AHEAD && ns.conn == C_AHEAD) drbd_send_state(peer_device, ns); /* We are in the progress to start a full sync... */ if ((os.conn != C_STARTING_SYNC_T && ns.conn == C_STARTING_SYNC_T) || (os.conn != C_STARTING_SYNC_S && ns.conn == C_STARTING_SYNC_S)) /* no other bitmap changes expected during this phase */ drbd_queue_bitmap_io(device, &drbd_bmio_set_n_write, &abw_start_sync, "set_n_write from StartingSync", BM_LOCKED_TEST_ALLOWED); /* first half of local IO error, failure to attach, * or administrative detach */ if (os.disk != D_FAILED && ns.disk == D_FAILED) { enum drbd_io_error_p eh = EP_PASS_ON; int was_io_error = 0; /* corresponding get_ldev was in _drbd_set_state, to serialize * our cleanup here with the transition to D_DISKLESS. * But is is still not save to dreference ldev here, since * we might come from an failed Attach before ldev was set. */ if (device->ldev) { rcu_read_lock(); eh = rcu_dereference(device->ldev->disk_conf)->on_io_error; rcu_read_unlock(); was_io_error = test_and_clear_bit(WAS_IO_ERROR, &device->flags); /* Intentionally call this handler first, before drbd_send_state(). * See: 2932204 drbd: call local-io-error handler early * People may chose to hard-reset the box from this handler. * It is useful if this looks like a "regular node crash". */ if (was_io_error && eh == EP_CALL_HELPER) drbd_khelper(device, "local-io-error"); /* Immediately allow completion of all application IO, * that waits for completion from the local disk, * if this was a force-detach due to disk_timeout * or administrator request (drbdsetup detach --force). * Do NOT abort otherwise. * Aborting local requests may cause serious problems, * if requests are completed to upper layers already, * and then later the already submitted local bio completes. * This can cause DMA into former bio pages that meanwhile * have been re-used for other things. * So aborting local requests may cause crashes, * or even worse, silent data corruption. */ if (test_and_clear_bit(FORCE_DETACH, &device->flags)) tl_abort_disk_io(device); /* current state still has to be D_FAILED, * there is only one way out: to D_DISKLESS, * and that may only happen after our put_ldev below. */ if (device->state.disk != D_FAILED) drbd_err(device, "ASSERT FAILED: disk is %s during detach\n", drbd_disk_str(device->state.disk)); if (ns.conn >= C_CONNECTED) drbd_send_state(peer_device, ns); drbd_rs_cancel_all(device); /* In case we want to get something to stable storage still, * this may be the last chance. * Following put_ldev may transition to D_DISKLESS. */ drbd_md_sync(device); } put_ldev(device); } /* second half of local IO error, failure to attach, * or administrative detach, * after local_cnt references have reached zero again */ if (os.disk != D_DISKLESS && ns.disk == D_DISKLESS) { /* We must still be diskless, * re-attach has to be serialized with this! */ if (device->state.disk != D_DISKLESS) drbd_err(device, "ASSERT FAILED: disk is %s while going diskless\n", drbd_disk_str(device->state.disk)); if (ns.conn >= C_CONNECTED) drbd_send_state(peer_device, ns); /* corresponding get_ldev in __drbd_set_state * this may finally trigger drbd_ldev_destroy. */ put_ldev(device); } /* Notify peer that I had a local IO error, and did not detached.. */ if (os.disk == D_UP_TO_DATE && ns.disk == D_INCONSISTENT && ns.conn >= C_CONNECTED) drbd_send_state(peer_device, ns); /* Disks got bigger while they were detached */ if (ns.disk > D_NEGOTIATING && ns.pdsk > D_NEGOTIATING && test_and_clear_bit(RESYNC_AFTER_NEG, &device->flags)) { if (ns.conn == C_CONNECTED) resync_after_online_grow(device); } /* A resync finished or aborted, wake paused devices... */ if ((os.conn > C_CONNECTED && ns.conn <= C_CONNECTED) || (os.peer_isp && !ns.peer_isp) || (os.user_isp && !ns.user_isp)) resume_next_sg(device); /* sync target done with resync. Explicitly notify peer, even though * it should (at least for non-empty resyncs) already know itself. */ if (os.disk < D_UP_TO_DATE && os.conn >= C_SYNC_SOURCE && ns.conn == C_CONNECTED) drbd_send_state(peer_device, ns); /* Verify finished, or reached stop sector. Peer did not know about * the stop sector, and we may even have changed the stop sector during * verify to interrupt/stop early. Send the new state. */ if (os.conn == C_VERIFY_S && ns.conn == C_CONNECTED && verify_can_do_stop_sector(device)) drbd_send_state(peer_device, ns); /* This triggers bitmap writeout of potentially still unwritten pages * if the resync finished cleanly, or aborted because of peer disk * failure, or on transition from resync back to AHEAD/BEHIND. * * Connection loss is handled in drbd_disconnected() by the receiver. * * For resync aborted because of local disk failure, we cannot do * any bitmap writeout anymore. * * No harm done if some bits change during this phase. */ if ((os.conn > C_CONNECTED && os.conn < C_AHEAD) && (ns.conn == C_CONNECTED || ns.conn >= C_AHEAD) && get_ldev(device)) { drbd_queue_bitmap_io(device, &drbd_bm_write_copy_pages, NULL, "write from resync_finished", BM_LOCKED_CHANGE_ALLOWED); put_ldev(device); } if (ns.disk == D_DISKLESS && ns.conn == C_STANDALONE && ns.role == R_SECONDARY) { if (os.aftr_isp != ns.aftr_isp) resume_next_sg(device); } drbd_md_sync(device); } struct after_conn_state_chg_work { struct drbd_work w; enum drbd_conns oc; union drbd_state ns_min; union drbd_state ns_max; /* new, max state, over all devices */ enum chg_state_flags flags; struct drbd_connection *connection; struct drbd_state_change *state_change; }; static int w_after_conn_state_ch(struct drbd_work *w, int unused) { struct after_conn_state_chg_work *acscw = container_of(w, struct after_conn_state_chg_work, w); struct drbd_connection *connection = acscw->connection; enum drbd_conns oc = acscw->oc; union drbd_state ns_max = acscw->ns_max; struct drbd_peer_device *peer_device; int vnr; broadcast_state_change(acscw->state_change); forget_state_change(acscw->state_change); kfree(acscw); /* Upon network configuration, we need to start the receiver */ if (oc == C_STANDALONE && ns_max.conn == C_UNCONNECTED) drbd_thread_start(&connection->receiver); if (oc == C_DISCONNECTING && ns_max.conn == C_STANDALONE) { struct net_conf *old_conf; mutex_lock(¬ification_mutex); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) notify_peer_device_state(NULL, 0, peer_device, NULL, NOTIFY_DESTROY | NOTIFY_CONTINUES); notify_connection_state(NULL, 0, connection, NULL, NOTIFY_DESTROY); mutex_unlock(¬ification_mutex); mutex_lock(&connection->resource->conf_update); old_conf = connection->net_conf; connection->my_addr_len = 0; connection->peer_addr_len = 0; RCU_INIT_POINTER(connection->net_conf, NULL); conn_free_crypto(connection); mutex_unlock(&connection->resource->conf_update); synchronize_rcu(); kfree(old_conf); } if (ns_max.susp_fen) { /* case1: The outdate peer handler is successful: */ if (ns_max.pdsk <= D_OUTDATED) { rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (test_bit(NEW_CUR_UUID, &device->flags)) { drbd_uuid_new_current(device); clear_bit(NEW_CUR_UUID, &device->flags); } } rcu_read_unlock(); spin_lock_irq(&connection->resource->req_lock); _tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); _conn_request_state(connection, (union drbd_state) { { .susp_fen = 1 } }, (union drbd_state) { { .susp_fen = 0 } }, CS_VERBOSE); spin_unlock_irq(&connection->resource->req_lock); } } kref_put(&connection->kref, drbd_destroy_connection); conn_md_sync(connection); return 0; } static void conn_old_common_state(struct drbd_connection *connection, union drbd_state *pcs, enum chg_state_flags *pf) { enum chg_state_flags flags = ~0; struct drbd_peer_device *peer_device; int vnr, first_vol = 1; union drbd_dev_state os, cs = { { .role = R_SECONDARY, .peer = R_UNKNOWN, .conn = connection->cstate, .disk = D_DISKLESS, .pdsk = D_UNKNOWN, } }; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; os = device->state; if (first_vol) { cs = os; first_vol = 0; continue; } if (cs.role != os.role) flags &= ~CS_DC_ROLE; if (cs.peer != os.peer) flags &= ~CS_DC_PEER; if (cs.conn != os.conn) flags &= ~CS_DC_CONN; if (cs.disk != os.disk) flags &= ~CS_DC_DISK; if (cs.pdsk != os.pdsk) flags &= ~CS_DC_PDSK; } rcu_read_unlock(); *pf |= CS_DC_MASK; *pf &= flags; (*pcs).i = cs.i; } static enum drbd_state_rv conn_is_valid_transition(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, enum chg_state_flags flags) { enum drbd_state_rv rv = SS_SUCCESS; union drbd_state ns, os; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; os = drbd_read_state(device); ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); if (flags & CS_IGN_OUTD_FAIL && ns.disk == D_OUTDATED && os.disk < D_OUTDATED) ns.disk = os.disk; if (ns.i == os.i) continue; rv = is_valid_transition(os, ns); if (rv >= SS_SUCCESS && !(flags & CS_HARD)) { rv = is_valid_state(device, ns); if (rv < SS_SUCCESS) { if (is_valid_state(device, os) == rv) rv = is_valid_soft_transition(os, ns, connection); } else rv = is_valid_soft_transition(os, ns, connection); } if (rv < SS_SUCCESS) { if (flags & CS_VERBOSE) print_st_err(device, os, ns, rv); break; } } rcu_read_unlock(); return rv; } static void conn_set_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, union drbd_state *pns_min, union drbd_state *pns_max, enum chg_state_flags flags) { union drbd_state ns, os, ns_max = { }; union drbd_state ns_min = { { .role = R_MASK, .peer = R_MASK, .conn = val.conn, .disk = D_MASK, .pdsk = D_MASK } }; struct drbd_peer_device *peer_device; enum drbd_state_rv rv; int vnr, number_of_volumes = 0; if (mask.conn == C_MASK) { /* remember last connect time so request_timer_fn() won't * kill newly established sessions while we are still trying to thaw * previously frozen IO */ if (connection->cstate != C_WF_REPORT_PARAMS && val.conn == C_WF_REPORT_PARAMS) connection->last_reconnect_jif = jiffies; connection->cstate = val.conn; } rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; number_of_volumes++; os = drbd_read_state(device); ns = apply_mask_val(os, mask, val); ns = sanitize_state(device, os, ns, NULL); if (flags & CS_IGN_OUTD_FAIL && ns.disk == D_OUTDATED && os.disk < D_OUTDATED) ns.disk = os.disk; rv = _drbd_set_state(device, ns, flags, NULL); BUG_ON(rv < SS_SUCCESS); ns.i = device->state.i; ns_max.role = max_role(ns.role, ns_max.role); ns_max.peer = max_role(ns.peer, ns_max.peer); ns_max.conn = max_t(enum drbd_conns, ns.conn, ns_max.conn); ns_max.disk = max_t(enum drbd_disk_state, ns.disk, ns_max.disk); ns_max.pdsk = max_t(enum drbd_disk_state, ns.pdsk, ns_max.pdsk); ns_min.role = min_role(ns.role, ns_min.role); ns_min.peer = min_role(ns.peer, ns_min.peer); ns_min.conn = min_t(enum drbd_conns, ns.conn, ns_min.conn); ns_min.disk = min_t(enum drbd_disk_state, ns.disk, ns_min.disk); ns_min.pdsk = min_t(enum drbd_disk_state, ns.pdsk, ns_min.pdsk); } rcu_read_unlock(); if (number_of_volumes == 0) { ns_min = ns_max = (union drbd_state) { { .role = R_SECONDARY, .peer = R_UNKNOWN, .conn = val.conn, .disk = D_DISKLESS, .pdsk = D_UNKNOWN } }; } ns_min.susp = ns_max.susp = connection->resource->susp; ns_min.susp_nod = ns_max.susp_nod = connection->resource->susp_nod; ns_min.susp_fen = ns_max.susp_fen = connection->resource->susp_fen; *pns_min = ns_min; *pns_max = ns_max; } static enum drbd_state_rv _conn_rq_cond(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) { enum drbd_state_rv err, rv = SS_UNKNOWN_ERROR; /* continue waiting */; if (test_and_clear_bit(CONN_WD_ST_CHG_OKAY, &connection->flags)) rv = SS_CW_SUCCESS; if (test_and_clear_bit(CONN_WD_ST_CHG_FAIL, &connection->flags)) rv = SS_CW_FAILED_BY_PEER; err = conn_is_valid_transition(connection, mask, val, 0); if (err == SS_SUCCESS && connection->cstate == C_WF_REPORT_PARAMS) return rv; return err; } enum drbd_state_rv _conn_request_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, enum chg_state_flags flags) { enum drbd_state_rv rv = SS_SUCCESS; struct after_conn_state_chg_work *acscw; enum drbd_conns oc = connection->cstate; union drbd_state ns_max, ns_min, os; bool have_mutex = false; struct drbd_state_change *state_change; if (mask.conn) { rv = is_valid_conn_transition(oc, val.conn); if (rv < SS_SUCCESS) goto abort; } rv = conn_is_valid_transition(connection, mask, val, flags); if (rv < SS_SUCCESS) goto abort; if (oc == C_WF_REPORT_PARAMS && val.conn == C_DISCONNECTING && !(flags & (CS_LOCAL_ONLY | CS_HARD))) { /* This will be a cluster-wide state change. * Need to give up the spinlock, grab the mutex, * then send the state change request, ... */ spin_unlock_irq(&connection->resource->req_lock); mutex_lock(&connection->cstate_mutex); have_mutex = true; set_bit(CONN_WD_ST_CHG_REQ, &connection->flags); if (conn_send_state_req(connection, mask, val)) { /* sending failed. */ clear_bit(CONN_WD_ST_CHG_REQ, &connection->flags); rv = SS_CW_FAILED_BY_PEER; /* need to re-aquire the spin lock, though */ goto abort_unlocked; } if (val.conn == C_DISCONNECTING) set_bit(DISCONNECT_SENT, &connection->flags); /* ... and re-aquire the spinlock. * If _conn_rq_cond() returned >= SS_SUCCESS, we must call * conn_set_state() within the same spinlock. */ spin_lock_irq(&connection->resource->req_lock); wait_event_lock_irq(connection->ping_wait, (rv = _conn_rq_cond(connection, mask, val)), connection->resource->req_lock); clear_bit(CONN_WD_ST_CHG_REQ, &connection->flags); if (rv < SS_SUCCESS) goto abort; } state_change = remember_old_state(connection->resource, GFP_ATOMIC); conn_old_common_state(connection, &os, &flags); flags |= CS_DC_SUSP; conn_set_state(connection, mask, val, &ns_min, &ns_max, flags); conn_pr_state_change(connection, os, ns_max, flags); remember_new_state(state_change); acscw = kmalloc(sizeof(*acscw), GFP_ATOMIC); if (acscw) { acscw->oc = os.conn; acscw->ns_min = ns_min; acscw->ns_max = ns_max; acscw->flags = flags; acscw->w.cb = w_after_conn_state_ch; kref_get(&connection->kref); acscw->connection = connection; acscw->state_change = state_change; drbd_queue_work(&connection->sender_work, &acscw->w); } else { drbd_err(connection, "Could not kmalloc an acscw\n"); } abort: if (have_mutex) { /* mutex_unlock() "... must not be used in interrupt context.", * so give up the spinlock, then re-aquire it */ spin_unlock_irq(&connection->resource->req_lock); abort_unlocked: mutex_unlock(&connection->cstate_mutex); spin_lock_irq(&connection->resource->req_lock); } if (rv < SS_SUCCESS && flags & CS_VERBOSE) { drbd_err(connection, "State change failed: %s\n", drbd_set_st_err_str(rv)); drbd_err(connection, " mask = 0x%x val = 0x%x\n", mask.i, val.i); drbd_err(connection, " old_conn:%s wanted_conn:%s\n", drbd_conn_str(oc), drbd_conn_str(val.conn)); } return rv; } enum drbd_state_rv conn_request_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, enum chg_state_flags flags) { enum drbd_state_rv rv; spin_lock_irq(&connection->resource->req_lock); rv = _conn_request_state(connection, mask, val, flags); spin_unlock_irq(&connection->resource->req_lock); return rv; }