/* * Disk Array driver for HP Smart Array controllers. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA * 02111-1307, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/bio.h> #include <linux/blkpg.h> #include <linux/timer.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/hdreg.h> #include <linux/spinlock.h> #include <linux/compat.h> #include <linux/mutex.h> #include <asm/uaccess.h> #include <asm/io.h> #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include <linux/completion.h> #include <scsi/scsi.h> #include <scsi/sg.h> #include <scsi/scsi_ioctl.h> #include <linux/cdrom.h> #include <linux/scatterlist.h> #include <linux/kthread.h> #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "HP CISS Driver (v 3.6.26)" #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26) /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); MODULE_VERSION("3.6.26"); MODULE_LICENSE("GPL"); static DEFINE_MUTEX(cciss_mutex); static struct proc_dir_entry *proc_cciss; #include "cciss_cmd.h" #include "cciss.h" #include <linux/cciss_ioctl.h> /* define the PCI info for the cards we can control */ static const struct pci_device_id cciss_pci_device_id[] = { {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, {0,} }; MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { {0x40700E11, "Smart Array 5300", &SA5_access}, {0x40800E11, "Smart Array 5i", &SA5B_access}, {0x40820E11, "Smart Array 532", &SA5B_access}, {0x40830E11, "Smart Array 5312", &SA5B_access}, {0x409A0E11, "Smart Array 641", &SA5_access}, {0x409B0E11, "Smart Array 642", &SA5_access}, {0x409C0E11, "Smart Array 6400", &SA5_access}, {0x409D0E11, "Smart Array 6400 EM", &SA5_access}, {0x40910E11, "Smart Array 6i", &SA5_access}, {0x3225103C, "Smart Array P600", &SA5_access}, {0x3223103C, "Smart Array P800", &SA5_access}, {0x3234103C, "Smart Array P400", &SA5_access}, {0x3235103C, "Smart Array P400i", &SA5_access}, {0x3211103C, "Smart Array E200i", &SA5_access}, {0x3212103C, "Smart Array E200", &SA5_access}, {0x3213103C, "Smart Array E200i", &SA5_access}, {0x3214103C, "Smart Array E200i", &SA5_access}, {0x3215103C, "Smart Array E200i", &SA5_access}, {0x3237103C, "Smart Array E500", &SA5_access}, {0x3223103C, "Smart Array P800", &SA5_access}, {0x3234103C, "Smart Array P400", &SA5_access}, {0x323D103C, "Smart Array P700m", &SA5_access}, }; /* How long to wait (in milliseconds) for board to go into simple mode */ #define MAX_CONFIG_WAIT 30000 #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 #define MAX_CTLR 32 /* Originally cciss driver only supports 8 major numbers */ #define MAX_CTLR_ORIG 8 static ctlr_info_t *hba[MAX_CTLR]; static struct task_struct *cciss_scan_thread; static DEFINE_MUTEX(scan_mutex); static LIST_HEAD(scan_q); static void do_cciss_request(struct request_queue *q); static irqreturn_t do_cciss_intx(int irq, void *dev_id); static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id); static int cciss_open(struct block_device *bdev, fmode_t mode); static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode); static int cciss_release(struct gendisk *disk, fmode_t mode); static int do_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); static int cciss_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); static int cciss_revalidate(struct gendisk *disk); static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl); static int deregister_disk(ctlr_info_t *h, int drv_index, int clear_all, int via_ioctl); static void cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size, unsigned int *block_size); static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, sector_t *total_size, unsigned int *block_size); static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, sector_t total_size, unsigned int block_size, InquiryData_struct *inq_buff, drive_info_struct *drv); static void __devinit cciss_interrupt_mode(ctlr_info_t *); static void start_io(ctlr_info_t *h); static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, __u8 page_code, unsigned char scsi3addr[], int cmd_type); static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, int attempt_retry); static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c); static int add_to_scan_list(struct ctlr_info *h); static int scan_thread(void *data); static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); static void cciss_hba_release(struct device *dev); static void cciss_device_release(struct device *dev); static void cciss_free_gendisk(ctlr_info_t *h, int drv_index); static void cciss_free_drive_info(ctlr_info_t *h, int drv_index); static inline u32 next_command(ctlr_info_t *h); static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset); static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar); /* performant mode helper functions */ static void calc_bucket_map(int *bucket, int num_buckets, int nsgs, int *bucket_map); static void cciss_put_controller_into_performant_mode(ctlr_info_t *h); #ifdef CONFIG_PROC_FS static void cciss_procinit(ctlr_info_t *h); #else static void cciss_procinit(ctlr_info_t *h) { } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_COMPAT static int cciss_compat_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); #endif static const struct block_device_operations cciss_fops = { .owner = THIS_MODULE, .open = cciss_unlocked_open, .release = cciss_release, .ioctl = do_ioctl, .getgeo = cciss_getgeo, #ifdef CONFIG_COMPAT .compat_ioctl = cciss_compat_ioctl, #endif .revalidate_disk = cciss_revalidate, }; /* set_performant_mode: Modify the tag for cciss performant * set bit 0 for pull model, bits 3-1 for block fetch * register number */ static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c) { if (likely(h->transMethod == CFGTBL_Trans_Performant)) c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); } /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(struct list_head *list, CommandList_struct *c) { list_add_tail(&c->list, list); } static inline void removeQ(CommandList_struct *c) { /* * After kexec/dump some commands might still * be in flight, which the firmware will try * to complete. Resetting the firmware doesn't work * with old fw revisions, so we have to mark * them off as 'stale' to prevent the driver from * falling over. */ if (WARN_ON(list_empty(&c->list))) { c->cmd_type = CMD_MSG_STALE; return; } list_del_init(&c->list); } static void enqueue_cmd_and_start_io(ctlr_info_t *h, CommandList_struct *c) { unsigned long flags; set_performant_mode(h, c); spin_lock_irqsave(&h->lock, flags); addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; start_io(h); spin_unlock_irqrestore(&h->lock, flags); } static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list, int nr_cmds) { int i; if (!cmd_sg_list) return; for (i = 0; i < nr_cmds; i++) { kfree(cmd_sg_list[i]); cmd_sg_list[i] = NULL; } kfree(cmd_sg_list); } static SGDescriptor_struct **cciss_allocate_sg_chain_blocks( ctlr_info_t *h, int chainsize, int nr_cmds) { int j; SGDescriptor_struct **cmd_sg_list; if (chainsize <= 0) return NULL; cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL); if (!cmd_sg_list) return NULL; /* Build up chain blocks for each command */ for (j = 0; j < nr_cmds; j++) { /* Need a block of chainsized s/g elements. */ cmd_sg_list[j] = kmalloc((chainsize * sizeof(*cmd_sg_list[j])), GFP_KERNEL); if (!cmd_sg_list[j]) { dev_err(&h->pdev->dev, "Cannot get memory " "for s/g chains.\n"); goto clean; } } return cmd_sg_list; clean: cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds); return NULL; } static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c) { SGDescriptor_struct *chain_sg; u64bit temp64; if (c->Header.SGTotal <= h->max_cmd_sgentries) return; chain_sg = &c->SG[h->max_cmd_sgentries - 1]; temp64.val32.lower = chain_sg->Addr.lower; temp64.val32.upper = chain_sg->Addr.upper; pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); } static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c, SGDescriptor_struct *chain_block, int len) { SGDescriptor_struct *chain_sg; u64bit temp64; chain_sg = &c->SG[h->max_cmd_sgentries - 1]; chain_sg->Ext = CCISS_SG_CHAIN; chain_sg->Len = len; temp64.val = pci_map_single(h->pdev, chain_block, len, PCI_DMA_TODEVICE); chain_sg->Addr.lower = temp64.val32.lower; chain_sg->Addr.upper = temp64.val32.upper; } #include "cciss_scsi.c" /* For SCSI tape support */ static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", "UNKNOWN" }; #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1) #ifdef CONFIG_PROC_FS /* * Report information about this controller. */ #define ENG_GIG 1000000000 #define ENG_GIG_FACTOR (ENG_GIG/512) #define ENGAGE_SCSI "engage scsi" static void cciss_seq_show_header(struct seq_file *seq) { ctlr_info_t *h = seq->private; seq_printf(seq, "%s: HP %s Controller\n" "Board ID: 0x%08lx\n" "Firmware Version: %c%c%c%c\n" "IRQ: %d\n" "Logical drives: %d\n" "Current Q depth: %d\n" "Current # commands on controller: %d\n" "Max Q depth since init: %d\n" "Max # commands on controller since init: %d\n" "Max SG entries since init: %d\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT], h->num_luns, h->Qdepth, h->commands_outstanding, h->maxQsinceinit, h->max_outstanding, h->maxSG); #ifdef CONFIG_CISS_SCSI_TAPE cciss_seq_tape_report(seq, h); #endif /* CONFIG_CISS_SCSI_TAPE */ } static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) { ctlr_info_t *h = seq->private; unsigned long flags; /* prevent displaying bogus info during configuration * or deconfiguration of a logical volume */ spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&h->lock, flags); return ERR_PTR(-EBUSY); } h->busy_configuring = 1; spin_unlock_irqrestore(&h->lock, flags); if (*pos == 0) cciss_seq_show_header(seq); return pos; } static int cciss_seq_show(struct seq_file *seq, void *v) { sector_t vol_sz, vol_sz_frac; ctlr_info_t *h = seq->private; unsigned ctlr = h->ctlr; loff_t *pos = v; drive_info_struct *drv = h->drv[*pos]; if (*pos > h->highest_lun) return 0; if (drv == NULL) /* it's possible for h->drv[] to have holes. */ return 0; if (drv->heads == 0) return 0; vol_sz = drv->nr_blocks; vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); vol_sz_frac *= 100; sector_div(vol_sz_frac, ENG_GIG_FACTOR); if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN) drv->raid_level = RAID_UNKNOWN; seq_printf(seq, "cciss/c%dd%d:" "\t%4u.%02uGB\tRAID %s\n", ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, raid_label[drv->raid_level]); return 0; } static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ctlr_info_t *h = seq->private; if (*pos > h->highest_lun) return NULL; *pos += 1; return pos; } static void cciss_seq_stop(struct seq_file *seq, void *v) { ctlr_info_t *h = seq->private; /* Only reset h->busy_configuring if we succeeded in setting * it during cciss_seq_start. */ if (v == ERR_PTR(-EBUSY)) return; h->busy_configuring = 0; } static const struct seq_operations cciss_seq_ops = { .start = cciss_seq_start, .show = cciss_seq_show, .next = cciss_seq_next, .stop = cciss_seq_stop, }; static int cciss_seq_open(struct inode *inode, struct file *file) { int ret = seq_open(file, &cciss_seq_ops); struct seq_file *seq = file->private_data; if (!ret) seq->private = PDE(inode)->data; return ret; } static ssize_t cciss_proc_write(struct file *file, const char __user *buf, size_t length, loff_t *ppos) { int err; char *buffer; #ifndef CONFIG_CISS_SCSI_TAPE return -EINVAL; #endif if (!buf || length > PAGE_SIZE - 1) return -EINVAL; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) return -ENOMEM; err = -EFAULT; if (copy_from_user(buffer, buf, length)) goto out; buffer[length] = '\0'; #ifdef CONFIG_CISS_SCSI_TAPE if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { struct seq_file *seq = file->private_data; ctlr_info_t *h = seq->private; err = cciss_engage_scsi(h); if (err == 0) err = length; } else #endif /* CONFIG_CISS_SCSI_TAPE */ err = -EINVAL; /* might be nice to have "disengage" too, but it's not safely possible. (only 1 module use count, lock issues.) */ out: free_page((unsigned long)buffer); return err; } static const struct file_operations cciss_proc_fops = { .owner = THIS_MODULE, .open = cciss_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, .write = cciss_proc_write, }; static void __devinit cciss_procinit(ctlr_info_t *h) { struct proc_dir_entry *pde; if (proc_cciss == NULL) proc_cciss = proc_mkdir("driver/cciss", NULL); if (!proc_cciss) return; pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH, proc_cciss, &cciss_proc_fops, h); } #endif /* CONFIG_PROC_FS */ #define MAX_PRODUCT_NAME_LEN 19 #define to_hba(n) container_of(n, struct ctlr_info, dev) #define to_drv(n) container_of(n, drive_info_struct, dev) static ssize_t host_store_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ctlr_info *h = to_hba(dev); add_to_scan_list(h); wake_up_process(cciss_scan_thread); wait_for_completion_interruptible(&h->scan_wait); return count; } static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); static ssize_t dev_show_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); __u8 sn[16]; unsigned long flags; int ret = 0; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(sn, drv->serial_no, sizeof(sn)); spin_unlock_irqrestore(&h->lock, flags); if (ret) return ret; else return snprintf(buf, 16 * 2 + 2, "%02X%02X%02X%02X%02X%02X%02X%02X" "%02X%02X%02X%02X%02X%02X%02X%02X\n", sn[0], sn[1], sn[2], sn[3], sn[4], sn[5], sn[6], sn[7], sn[8], sn[9], sn[10], sn[11], sn[12], sn[13], sn[14], sn[15]); } static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL); static ssize_t dev_show_vendor(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char vendor[VENDOR_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(vendor, drv->vendor, VENDOR_LEN + 1); spin_unlock_irqrestore(&h->lock, flags); if (ret) return ret; else return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor); } static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL); static ssize_t dev_show_model(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char model[MODEL_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(model, drv->model, MODEL_LEN + 1); spin_unlock_irqrestore(&h->lock, flags); if (ret) return ret; else return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model); } static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL); static ssize_t dev_show_rev(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char rev[REV_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(rev, drv->rev, REV_LEN + 1); spin_unlock_irqrestore(&h->lock, flags); if (ret) return ret; else return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev); } static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL); static ssize_t cciss_show_lunid(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); unsigned long flags; unsigned char lunid[8]; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&h->lock, flags); return -EBUSY; } if (!drv->heads) { spin_unlock_irqrestore(&h->lock, flags); return -ENOTTY; } memcpy(lunid, drv->LunID, sizeof(lunid)); spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", lunid[0], lunid[1], lunid[2], lunid[3], lunid[4], lunid[5], lunid[6], lunid[7]); } static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL); static ssize_t cciss_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); int raid; unsigned long flags; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&h->lock, flags); return -EBUSY; } raid = drv->raid_level; spin_unlock_irqrestore(&h->lock, flags); if (raid < 0 || raid > RAID_UNKNOWN) raid = RAID_UNKNOWN; return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n", raid_label[raid]); } static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL); static ssize_t cciss_show_usage_count(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); unsigned long flags; int count; spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&h->lock, flags); return -EBUSY; } count = drv->usage_count; spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "%d\n", count); } static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL); static struct attribute *cciss_host_attrs[] = { &dev_attr_rescan.attr, NULL }; static struct attribute_group cciss_host_attr_group = { .attrs = cciss_host_attrs, }; static const struct attribute_group *cciss_host_attr_groups[] = { &cciss_host_attr_group, NULL }; static struct device_type cciss_host_type = { .name = "cciss_host", .groups = cciss_host_attr_groups, .release = cciss_hba_release, }; static struct attribute *cciss_dev_attrs[] = { &dev_attr_unique_id.attr, &dev_attr_model.attr, &dev_attr_vendor.attr, &dev_attr_rev.attr, &dev_attr_lunid.attr, &dev_attr_raid_level.attr, &dev_attr_usage_count.attr, NULL }; static struct attribute_group cciss_dev_attr_group = { .attrs = cciss_dev_attrs, }; static const struct attribute_group *cciss_dev_attr_groups[] = { &cciss_dev_attr_group, NULL }; static struct device_type cciss_dev_type = { .name = "cciss_device", .groups = cciss_dev_attr_groups, .release = cciss_device_release, }; static struct bus_type cciss_bus_type = { .name = "cciss", }; /* * cciss_hba_release is called when the reference count * of h->dev goes to zero. */ static void cciss_hba_release(struct device *dev) { /* * nothing to do, but need this to avoid a warning * about not having a release handler from lib/kref.c. */ } /* * Initialize sysfs entry for each controller. This sets up and registers * the 'cciss#' directory for each individual controller under * /sys/bus/pci/devices/<dev>/. */ static int cciss_create_hba_sysfs_entry(struct ctlr_info *h) { device_initialize(&h->dev); h->dev.type = &cciss_host_type; h->dev.bus = &cciss_bus_type; dev_set_name(&h->dev, "%s", h->devname); h->dev.parent = &h->pdev->dev; return device_add(&h->dev); } /* * Remove sysfs entries for an hba. */ static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h) { device_del(&h->dev); put_device(&h->dev); /* final put. */ } /* cciss_device_release is called when the reference count * of h->drv[x]dev goes to zero. */ static void cciss_device_release(struct device *dev) { drive_info_struct *drv = to_drv(dev); kfree(drv); } /* * Initialize sysfs for each logical drive. This sets up and registers * the 'c#d#' directory for each individual logical drive under * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from * /sys/block/cciss!c#d# to this entry. */ static long cciss_create_ld_sysfs_entry(struct ctlr_info *h, int drv_index) { struct device *dev; if (h->drv[drv_index]->device_initialized) return 0; dev = &h->drv[drv_index]->dev; device_initialize(dev); dev->type = &cciss_dev_type; dev->bus = &cciss_bus_type; dev_set_name(dev, "c%dd%d", h->ctlr, drv_index); dev->parent = &h->dev; h->drv[drv_index]->device_initialized = 1; return device_add(dev); } /* * Remove sysfs entries for a logical drive. */ static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index, int ctlr_exiting) { struct device *dev = &h->drv[drv_index]->dev; /* special case for c*d0, we only destroy it on controller exit */ if (drv_index == 0 && !ctlr_exiting) return; device_del(dev); put_device(dev); /* the "final" put. */ h->drv[drv_index] = NULL; } /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. */ static CommandList_struct *cmd_alloc(ctlr_info_t *h) { CommandList_struct *c; int i; u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; do { i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); if (i == h->nr_cmds) return NULL; } while (test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); c = h->cmd_pool + i; memset(c, 0, sizeof(CommandList_struct)); cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct); c->err_info = h->errinfo_pool + i; memset(c->err_info, 0, sizeof(ErrorInfo_struct)); err_dma_handle = h->errinfo_pool_dhandle + i * sizeof(ErrorInfo_struct); h->nr_allocs++; c->cmdindex = i; INIT_LIST_HEAD(&c->list); c->busaddr = (__u32) cmd_dma_handle; temp64.val = (__u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(ErrorInfo_struct); c->ctlr = h->ctlr; return c; } /* allocate a command using pci_alloc_consistent, used for ioctls, * etc., not for the main i/o path. */ static CommandList_struct *cmd_special_alloc(ctlr_info_t *h) { CommandList_struct *c; u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; c = (CommandList_struct *) pci_alloc_consistent(h->pdev, sizeof(CommandList_struct), &cmd_dma_handle); if (c == NULL) return NULL; memset(c, 0, sizeof(CommandList_struct)); c->cmdindex = -1; c->err_info = (ErrorInfo_struct *) pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct), &err_dma_handle); if (c->err_info == NULL) { pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, cmd_dma_handle); return NULL; } memset(c->err_info, 0, sizeof(ErrorInfo_struct)); INIT_LIST_HEAD(&c->list); c->busaddr = (__u32) cmd_dma_handle; temp64.val = (__u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(ErrorInfo_struct); c->ctlr = h->ctlr; return c; } static void cmd_free(ctlr_info_t *h, CommandList_struct *c) { int i; i = c - h->cmd_pool; clear_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)); h->nr_frees++; } static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c) { u64bit temp64; temp64.val32.lower = c->ErrDesc.Addr.lower; temp64.val32.upper = c->ErrDesc.Addr.upper; pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), c->err_info, (dma_addr_t) temp64.val); pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, (dma_addr_t) c->busaddr); } static inline ctlr_info_t *get_host(struct gendisk *disk) { return disk->queue->queuedata; } static inline drive_info_struct *get_drv(struct gendisk *disk) { return disk->private_data; } /* * Open. Make sure the device is really there. */ static int cciss_open(struct block_device *bdev, fmode_t mode) { ctlr_info_t *h = get_host(bdev->bd_disk); drive_info_struct *drv = get_drv(bdev->bd_disk); dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name); if (drv->busy_configuring) return -EBUSY; /* * Root is allowed to open raw volume zero even if it's not configured * so array config can still work. Root is also allowed to open any * volume that has a LUN ID, so it can issue IOCTL to reread the * disk information. I don't think I really like this * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (drv->heads == 0) { if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */ /* if not node 0 make sure it is a partition = 0 */ if (MINOR(bdev->bd_dev) & 0x0f) { return -ENXIO; /* if it is, make sure we have a LUN ID */ } else if (memcmp(drv->LunID, CTLR_LUNID, sizeof(drv->LunID))) { return -ENXIO; } } if (!capable(CAP_SYS_ADMIN)) return -EPERM; } drv->usage_count++; h->usage_count++; return 0; } static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode) { int ret; mutex_lock(&cciss_mutex); ret = cciss_open(bdev, mode); mutex_unlock(&cciss_mutex); return ret; } /* * Close. Sync first. */ static int cciss_release(struct gendisk *disk, fmode_t mode) { ctlr_info_t *h; drive_info_struct *drv; mutex_lock(&cciss_mutex); h = get_host(disk); drv = get_drv(disk); dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name); drv->usage_count--; h->usage_count--; mutex_unlock(&cciss_mutex); return 0; } static int do_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { int ret; mutex_lock(&cciss_mutex); ret = cciss_ioctl(bdev, mode, cmd, arg); mutex_unlock(&cciss_mutex); return ret; } #ifdef CONFIG_COMPAT static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg); static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg); static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { switch (cmd) { case CCISS_GETPCIINFO: case CCISS_GETINTINFO: case CCISS_SETINTINFO: case CCISS_GETNODENAME: case CCISS_SETNODENAME: case CCISS_GETHEARTBEAT: case CCISS_GETBUSTYPES: case CCISS_GETFIRMVER: case CCISS_GETDRIVVER: case CCISS_REVALIDVOLS: case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: case CCISS_RESCANDISK: case CCISS_GETLUNINFO: return do_ioctl(bdev, mode, cmd, arg); case CCISS_PASSTHRU32: return cciss_ioctl32_passthru(bdev, mode, cmd, arg); case CCISS_BIG_PASSTHRU32: return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); default: return -ENOIOCTLCMD; } } static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { IOCTL32_Command_struct __user *arg32 = (IOCTL32_Command_struct __user *) arg; IOCTL_Command_struct arg64; IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { BIG_IOCTL32_Command_struct __user *arg32 = (BIG_IOCTL32_Command_struct __user *) arg; BIG_IOCTL_Command_struct arg64; BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; memset(&arg64, 0, sizeof(arg64)); err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } #endif static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) { drive_info_struct *drv = get_drv(bdev->bd_disk); if (!drv->cylinders) return -ENXIO; geo->heads = drv->heads; geo->sectors = drv->sectors; geo->cylinders = drv->cylinders; return 0; } static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c) { if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) (void)check_for_unit_attention(h, c); } static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp) { cciss_pci_info_struct pciinfo; if (!argp) return -EINVAL; pciinfo.domain = pci_domain_nr(h->pdev->bus); pciinfo.bus = h->pdev->bus->number; pciinfo.dev_fn = h->pdev->devfn; pciinfo.board_id = h->board_id; if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct))) return -EFAULT; return 0; } static int cciss_getintinfo(ctlr_info_t *h, void __user *argp) { cciss_coalint_struct intinfo; if (!argp) return -EINVAL; intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay); intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount); if (copy_to_user (argp, &intinfo, sizeof(cciss_coalint_struct))) return -EFAULT; return 0; } static int cciss_setintinfo(ctlr_info_t *h, void __user *argp) { cciss_coalint_struct intinfo; unsigned long flags; int i; if (!argp) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&intinfo, argp, sizeof(intinfo))) return -EFAULT; if ((intinfo.delay == 0) && (intinfo.count == 0)) return -EINVAL; spin_lock_irqsave(&h->lock, flags); /* Update the field, and then ring the doorbell */ writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay)); writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount)); writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; udelay(1000); /* delay and try again */ } spin_unlock_irqrestore(&h->lock, flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return 0; } static int cciss_getnodename(ctlr_info_t *h, void __user *argp) { NodeName_type NodeName; int i; if (!argp) return -EINVAL; for (i = 0; i < 16; i++) NodeName[i] = readb(&h->cfgtable->ServerName[i]); if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) return -EFAULT; return 0; } static int cciss_setnodename(ctlr_info_t *h, void __user *argp) { NodeName_type NodeName; unsigned long flags; int i; if (!argp) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(NodeName, argp, sizeof(NodeName_type))) return -EFAULT; spin_lock_irqsave(&h->lock, flags); /* Update the field, and then ring the doorbell */ for (i = 0; i < 16; i++) writeb(NodeName[i], &h->cfgtable->ServerName[i]); writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; udelay(1000); /* delay and try again */ } spin_unlock_irqrestore(&h->lock, flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return 0; } static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp) { Heartbeat_type heartbeat; if (!argp) return -EINVAL; heartbeat = readl(&h->cfgtable->HeartBeat); if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type))) return -EFAULT; return 0; } static int cciss_getbustypes(ctlr_info_t *h, void __user *argp) { BusTypes_type BusTypes; if (!argp) return -EINVAL; BusTypes = readl(&h->cfgtable->BusTypes); if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type))) return -EFAULT; return 0; } static int cciss_getfirmver(ctlr_info_t *h, void __user *argp) { FirmwareVer_type firmware; if (!argp) return -EINVAL; memcpy(firmware, h->firm_ver, 4); if (copy_to_user (argp, firmware, sizeof(FirmwareVer_type))) return -EFAULT; return 0; } static int cciss_getdrivver(ctlr_info_t *h, void __user *argp) { DriverVer_type DriverVer = DRIVER_VERSION; if (!argp) return -EINVAL; if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) return -EFAULT; return 0; } static int cciss_getluninfo(ctlr_info_t *h, struct gendisk *disk, void __user *argp) { LogvolInfo_struct luninfo; drive_info_struct *drv = get_drv(disk); if (!argp) return -EINVAL; memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID)); luninfo.num_opens = drv->usage_count; luninfo.num_parts = 0; if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct))) return -EFAULT; return 0; } static int cciss_passthru(ctlr_info_t *h, void __user *argp) { IOCTL_Command_struct iocommand; CommandList_struct *c; char *buff = NULL; u64bit temp64; DECLARE_COMPLETION_ONSTACK(wait); if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user (&iocommand, argp, sizeof(IOCTL_Command_struct))) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } if (iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if (buff == NULL) return -EFAULT; } if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { kfree(buff); return -EFAULT; } } else { memset(buff, 0, iocommand.buf_size); } c = cmd_special_alloc(h); if (!c) { kfree(buff); return -ENOMEM; } /* Fill in the command type */ c->cmd_type = CMD_IOCTL_PEND; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (iocommand.buf_size > 0) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal = 1; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.LUN = iocommand.LUN_info; /* use the kernel address the cmd block for tag */ c->Header.Tag.lower = c->busaddr; /* Fill in Request block */ c->Request = iocommand.Request; /* Fill in the scatter gather information */ if (iocommand.buf_size > 0) { temp64.val = pci_map_single(h->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = temp64.val32.lower; c->SG[0].Addr.upper = temp64.val32.upper; c->SG[0].Len = iocommand.buf_size; c->SG[0].Ext = 0; /* we are not chaining */ } c->waiting = &wait; enqueue_cmd_and_start_io(h, c); wait_for_completion(&wait); /* unlock the buffers from DMA */ temp64.val32.lower = c->SG[0].Addr.lower; temp64.val32.upper = c->SG[0].Addr.upper; pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(h, c); /* Copy the error information out */ iocommand.error_info = *(c->err_info); if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) { kfree(buff); cmd_special_free(h, c); return -EFAULT; } if (iocommand.Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { kfree(buff); cmd_special_free(h, c); return -EFAULT; } } kfree(buff); cmd_special_free(h, c); return 0; } static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp) { BIG_IOCTL_Command_struct *ioc; CommandList_struct *c; unsigned char **buff = NULL; int *buff_size = NULL; u64bit temp64; BYTE sg_used = 0; int status = 0; int i; DECLARE_COMPLETION_ONSTACK(wait); __u32 left; __u32 sz; BYTE __user *data_ptr; if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; ioc = (BIG_IOCTL_Command_struct *) kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) { status = -ENOMEM; goto cleanup1; } if (copy_from_user(ioc, argp, sizeof(*ioc))) { status = -EFAULT; goto cleanup1; } if ((ioc->buf_size < 1) && (ioc->Request.Type.Direction != XFER_NONE)) { status = -EINVAL; goto cleanup1; } /* Check kmalloc limits using all SGs */ if (ioc->malloc_size > MAX_KMALLOC_SIZE) { status = -EINVAL; goto cleanup1; } if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { status = -EINVAL; goto cleanup1; } buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); if (!buff) { status = -ENOMEM; goto cleanup1; } buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); if (!buff_size) { status = -ENOMEM; goto cleanup1; } left = ioc->buf_size; data_ptr = ioc->buf; while (left) { sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; buff_size[sg_used] = sz; buff[sg_used] = kmalloc(sz, GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_WRITE) { if (copy_from_user(buff[sg_used], data_ptr, sz)) { status = -EFAULT; goto cleanup1; } } else { memset(buff[sg_used], 0, sz); } left -= sz; data_ptr += sz; sg_used++; } c = cmd_special_alloc(h); if (!c) { status = -ENOMEM; goto cleanup1; } c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; c->Header.SGList = sg_used; c->Header.SGTotal = sg_used; c->Header.LUN = ioc->LUN_info; c->Header.Tag.lower = c->busaddr; c->Request = ioc->Request; for (i = 0; i < sg_used; i++) { temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Len = buff_size[i]; c->SG[i].Ext = 0; /* we are not chaining */ } c->waiting = &wait; enqueue_cmd_and_start_io(h, c); wait_for_completion(&wait); /* unlock the buffers from DMA */ for (i = 0; i < sg_used; i++) { temp64.val32.lower = c->SG[i].Addr.lower; temp64.val32.upper = c->SG[i].Addr.upper; pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, buff_size[i], PCI_DMA_BIDIRECTIONAL); } check_ioctl_unit_attention(h, c); /* Copy the error information out */ ioc->error_info = *(c->err_info); if (copy_to_user(argp, ioc, sizeof(*ioc))) { cmd_special_free(h, c); status = -EFAULT; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ BYTE __user *ptr = ioc->buf; for (i = 0; i < sg_used; i++) { if (copy_to_user(ptr, buff[i], buff_size[i])) { cmd_special_free(h, c); status = -EFAULT; goto cleanup1; } ptr += buff_size[i]; } } cmd_special_free(h, c); status = 0; cleanup1: if (buff) { for (i = 0; i < sg_used; i++) kfree(buff[i]); kfree(buff); } kfree(buff_size); kfree(ioc); return status; } static int cciss_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct gendisk *disk = bdev->bd_disk; ctlr_info_t *h = get_host(disk); void __user *argp = (void __user *)arg; dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); switch (cmd) { case CCISS_GETPCIINFO: return cciss_getpciinfo(h, argp); case CCISS_GETINTINFO: return cciss_getintinfo(h, argp); case CCISS_SETINTINFO: return cciss_setintinfo(h, argp); case CCISS_GETNODENAME: return cciss_getnodename(h, argp); case CCISS_SETNODENAME: return cciss_setnodename(h, argp); case CCISS_GETHEARTBEAT: return cciss_getheartbeat(h, argp); case CCISS_GETBUSTYPES: return cciss_getbustypes(h, argp); case CCISS_GETFIRMVER: return cciss_getfirmver(h, argp); case CCISS_GETDRIVVER: return cciss_getdrivver(h, argp); case CCISS_DEREGDISK: case CCISS_REGNEWD: case CCISS_REVALIDVOLS: return rebuild_lun_table(h, 0, 1); case CCISS_GETLUNINFO: return cciss_getluninfo(h, disk, argp); case CCISS_PASSTHRU: return cciss_passthru(h, argp); case CCISS_BIG_PASSTHRU: return cciss_bigpassthru(h, argp); /* scsi_cmd_ioctl handles these, below, though some are not */ /* very meaningful for cciss. SG_IO is the main one people want. */ case SG_GET_VERSION_NUM: case SG_SET_TIMEOUT: case SG_GET_TIMEOUT: case SG_GET_RESERVED_SIZE: case SG_SET_RESERVED_SIZE: case SG_EMULATED_HOST: case SG_IO: case SCSI_IOCTL_SEND_COMMAND: return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp); /* scsi_cmd_ioctl would normally handle these, below, but */ /* they aren't a good fit for cciss, as CD-ROMs are */ /* not supported, and we don't have any bus/target/lun */ /* which we present to the kernel. */ case CDROM_SEND_PACKET: case CDROMCLOSETRAY: case CDROMEJECT: case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: default: return -ENOTTY; } } static void cciss_check_queues(ctlr_info_t *h) { int start_queue = h->next_to_run; int i; /* check to see if we have maxed out the number of commands that can * be placed on the queue. If so then exit. We do this check here * in case the interrupt we serviced was from an ioctl and did not * free any new commands. */ if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) return; /* We have room on the queue for more commands. Now we need to queue * them up. We will also keep track of the next queue to run so * that every queue gets a chance to be started first. */ for (i = 0; i < h->highest_lun + 1; i++) { int curr_queue = (start_queue + i) % (h->highest_lun + 1); /* make sure the disk has been added and the drive is real * because this can be called from the middle of init_one. */ if (!h->drv[curr_queue]) continue; if (!(h->drv[curr_queue]->queue) || !(h->drv[curr_queue]->heads)) continue; blk_start_queue(h->gendisk[curr_queue]->queue); /* check to see if we have maxed out the number of commands * that can be placed on the queue. */ if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { if (curr_queue == start_queue) { h->next_to_run = (start_queue + 1) % (h->highest_lun + 1); break; } else { h->next_to_run = curr_queue; break; } } } } static void cciss_softirq_done(struct request *rq) { CommandList_struct *c = rq->completion_data; ctlr_info_t *h = hba[c->ctlr]; SGDescriptor_struct *curr_sg = c->SG; u64bit temp64; unsigned long flags; int i, ddir; int sg_index = 0; if (c->Request.Type.Direction == XFER_READ) ddir = PCI_DMA_FROMDEVICE; else ddir = PCI_DMA_TODEVICE; /* command did not need to be retried */ /* unmap the DMA mapping for all the scatter gather elements */ for (i = 0; i < c->Header.SGList; i++) { if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) { cciss_unmap_sg_chain_block(h, c); /* Point to the next block */ curr_sg = h->cmd_sg_list[c->cmdindex]; sg_index = 0; } temp64.val32.lower = curr_sg[sg_index].Addr.lower; temp64.val32.upper = curr_sg[sg_index].Addr.upper; pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len, ddir); ++sg_index; } dev_dbg(&h->pdev->dev, "Done with %p\n", rq); /* set the residual count for pc requests */ if (rq->cmd_type == REQ_TYPE_BLOCK_PC) rq->resid_len = c->err_info->ResidualCnt; blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO); spin_lock_irqsave(&h->lock, flags); cmd_free(h, c); cciss_check_queues(h); spin_unlock_irqrestore(&h->lock, flags); } static inline void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[], uint32_t log_unit) { memcpy(scsi3addr, h->drv[log_unit]->LunID, sizeof(h->drv[log_unit]->LunID)); } /* This function gets the SCSI vendor, model, and revision of a logical drive * via the inquiry page 0. Model, vendor, and rev are set to empty strings if * they cannot be read. */ static void cciss_get_device_descr(ctlr_info_t *h, int logvol, char *vendor, char *model, char *rev) { int rc; InquiryData_struct *inq_buf; unsigned char scsi3addr[8]; *vendor = '\0'; *model = '\0'; *rev = '\0'; inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (!inq_buf) return; log_unit_to_scsi3addr(h, scsi3addr, logvol); rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0, scsi3addr, TYPE_CMD); if (rc == IO_OK) { memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN); vendor[VENDOR_LEN] = '\0'; memcpy(model, &inq_buf->data_byte[16], MODEL_LEN); model[MODEL_LEN] = '\0'; memcpy(rev, &inq_buf->data_byte[32], REV_LEN); rev[REV_LEN] = '\0'; } kfree(inq_buf); return; } /* This function gets the serial number of a logical drive via * inquiry page 0x83. Serial no. is 16 bytes. If the serial * number cannot be had, for whatever reason, 16 bytes of 0xff * are returned instead. */ static void cciss_get_serial_no(ctlr_info_t *h, int logvol, unsigned char *serial_no, int buflen) { #define PAGE_83_INQ_BYTES 64 int rc; unsigned char *buf; unsigned char scsi3addr[8]; if (buflen > 16) buflen = 16; memset(serial_no, 0xff, buflen); buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); if (!buf) return; memset(serial_no, 0, buflen); log_unit_to_scsi3addr(h, scsi3addr, logvol); rc = sendcmd_withirq(h, CISS_INQUIRY, buf, PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); if (rc == IO_OK) memcpy(serial_no, &buf[8], buflen); kfree(buf); return; } /* * cciss_add_disk sets up the block device queue for a logical drive */ static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, int drv_index) { disk->queue = blk_init_queue(do_cciss_request, &h->lock); if (!disk->queue) goto init_queue_failure; sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); disk->major = h->major; disk->first_minor = drv_index << NWD_SHIFT; disk->fops = &cciss_fops; if (cciss_create_ld_sysfs_entry(h, drv_index)) goto cleanup_queue; disk->private_data = h->drv[drv_index]; disk->driverfs_dev = &h->drv[drv_index]->dev; /* Set up queue information */ blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); /* This is a hardware imposed limit. */ blk_queue_max_segments(disk->queue, h->maxsgentries); blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors); blk_queue_softirq_done(disk->queue, cciss_softirq_done); disk->queue->queuedata = h; blk_queue_logical_block_size(disk->queue, h->drv[drv_index]->block_size); /* Make sure all queue data is written out before */ /* setting h->drv[drv_index]->queue, as setting this */ /* allows the interrupt handler to start the queue */ wmb(); h->drv[drv_index]->queue = disk->queue; add_disk(disk); return 0; cleanup_queue: blk_cleanup_queue(disk->queue); disk->queue = NULL; init_queue_failure: return -1; } /* This function will check the usage_count of the drive to be updated/added. * If the usage_count is zero and it is a heretofore unknown drive, or, * the drive's capacity, geometry, or serial number has changed, * then the drive information will be updated and the disk will be * re-registered with the kernel. If these conditions don't hold, * then it will be left alone for the next reboot. The exception to this * is disk 0 which will always be left registered with the kernel since it * is also the controller node. Any changes to disk 0 will show up on * the next reboot. */ static void cciss_update_drive_info(ctlr_info_t *h, int drv_index, int first_time, int via_ioctl) { struct gendisk *disk; InquiryData_struct *inq_buff = NULL; unsigned int block_size; sector_t total_size; unsigned long flags = 0; int ret = 0; drive_info_struct *drvinfo; /* Get information about the disk and modify the driver structure */ inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL); if (inq_buff == NULL || drvinfo == NULL) goto mem_msg; /* testing to see if 16-byte CDBs are already being used */ if (h->cciss_read == CCISS_READ_16) { cciss_read_capacity_16(h, drv_index, &total_size, &block_size); } else { cciss_read_capacity(h, drv_index, &total_size, &block_size); /* if read_capacity returns all F's this volume is >2TB */ /* in size so we switch to 16-byte CDB's for all */ /* read/write ops */ if (total_size == 0xFFFFFFFFULL) { cciss_read_capacity_16(h, drv_index, &total_size, &block_size); h->cciss_read = CCISS_READ_16; h->cciss_write = CCISS_WRITE_16; } else { h->cciss_read = CCISS_READ_10; h->cciss_write = CCISS_WRITE_10; } } cciss_geometry_inquiry(h, drv_index, total_size, block_size, inq_buff, drvinfo); drvinfo->block_size = block_size; drvinfo->nr_blocks = total_size + 1; cciss_get_device_descr(h, drv_index, drvinfo->vendor, drvinfo->model, drvinfo->rev); cciss_get_serial_no(h, drv_index, drvinfo->serial_no, sizeof(drvinfo->serial_no)); /* Save the lunid in case we deregister the disk, below. */ memcpy(drvinfo->LunID, h->drv[drv_index]->LunID, sizeof(drvinfo->LunID)); /* Is it the same disk we already know, and nothing's changed? */ if (h->drv[drv_index]->raid_level != -1 && ((memcmp(drvinfo->serial_no, h->drv[drv_index]->serial_no, 16) == 0) && drvinfo->block_size == h->drv[drv_index]->block_size && drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks && drvinfo->heads == h->drv[drv_index]->heads && drvinfo->sectors == h->drv[drv_index]->sectors && drvinfo->cylinders == h->drv[drv_index]->cylinders)) /* The disk is unchanged, nothing to update */ goto freeret; /* If we get here it's not the same disk, or something's changed, * so we need to * deregister it, and re-register it, if it's not * in use. * If the disk already exists then deregister it before proceeding * (unless it's the first disk (for the controller node). */ if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) { dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index); spin_lock_irqsave(&h->lock, flags); h->drv[drv_index]->busy_configuring = 1; spin_unlock_irqrestore(&h->lock, flags); /* deregister_disk sets h->drv[drv_index]->queue = NULL * which keeps the interrupt handler from starting * the queue. */ ret = deregister_disk(h, drv_index, 0, via_ioctl); } /* If the disk is in use return */ if (ret) goto freeret; /* Save the new information from cciss_geometry_inquiry * and serial number inquiry. If the disk was deregistered * above, then h->drv[drv_index] will be NULL. */ if (h->drv[drv_index] == NULL) { drvinfo->device_initialized = 0; h->drv[drv_index] = drvinfo; drvinfo = NULL; /* so it won't be freed below. */ } else { /* special case for cxd0 */ h->drv[drv_index]->block_size = drvinfo->block_size; h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks; h->drv[drv_index]->heads = drvinfo->heads; h->drv[drv_index]->sectors = drvinfo->sectors; h->drv[drv_index]->cylinders = drvinfo->cylinders; h->drv[drv_index]->raid_level = drvinfo->raid_level; memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16); memcpy(h->drv[drv_index]->vendor, drvinfo->vendor, VENDOR_LEN + 1); memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1); memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1); } ++h->num_luns; disk = h->gendisk[drv_index]; set_capacity(disk, h->drv[drv_index]->nr_blocks); /* If it's not disk 0 (drv_index != 0) * or if it was disk 0, but there was previously * no actual corresponding configured logical drive * (raid_leve == -1) then we want to update the * logical drive's information. */ if (drv_index || first_time) { if (cciss_add_disk(h, disk, drv_index) != 0) { cciss_free_gendisk(h, drv_index); cciss_free_drive_info(h, drv_index); dev_warn(&h->pdev->dev, "could not update disk %d\n", drv_index); --h->num_luns; } } freeret: kfree(inq_buff); kfree(drvinfo); return; mem_msg: dev_err(&h->pdev->dev, "out of memory\n"); goto freeret; } /* This function will find the first index of the controllers drive array * that has a null drv pointer and allocate the drive info struct and * will return that index This is where new drives will be added. * If the index to be returned is greater than the highest_lun index for * the controller then highest_lun is set * to this new index. * If there are no available indexes or if tha allocation fails, then -1 * is returned. * "controller_node" is used to know if this is a real * logical drive, or just the controller node, which determines if this * counts towards highest_lun. */ static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node) { int i; drive_info_struct *drv; /* Search for an empty slot for our drive info */ for (i = 0; i < CISS_MAX_LUN; i++) { /* if not cxd0 case, and it's occupied, skip it. */ if (h->drv[i] && i != 0) continue; /* * If it's cxd0 case, and drv is alloc'ed already, and a * disk is configured there, skip it. */ if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1) continue; /* * We've found an empty slot. Update highest_lun * provided this isn't just the fake cxd0 controller node. */ if (i > h->highest_lun && !controller_node) h->highest_lun = i; /* If adding a real disk at cxd0, and it's already alloc'ed */ if (i == 0 && h->drv[i] != NULL) return i; /* * Found an empty slot, not already alloc'ed. Allocate it. * Mark it with raid_level == -1, so we know it's new later on. */ drv = kzalloc(sizeof(*drv), GFP_KERNEL); if (!drv) return -1; drv->raid_level = -1; /* so we know it's new */ h->drv[i] = drv; return i; } return -1; } static void cciss_free_drive_info(ctlr_info_t *h, int drv_index) { kfree(h->drv[drv_index]); h->drv[drv_index] = NULL; } static void cciss_free_gendisk(ctlr_info_t *h, int drv_index) { put_disk(h->gendisk[drv_index]); h->gendisk[drv_index] = NULL; } /* cciss_add_gendisk finds a free hba[]->drv structure * and allocates a gendisk if needed, and sets the lunid * in the drvinfo structure. It returns the index into * the ->drv[] array, or -1 if none are free. * is_controller_node indicates whether highest_lun should * count this disk, or if it's only being added to provide * a means to talk to the controller in case no logical * drives have yet been configured. */ static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[], int controller_node) { int drv_index; drv_index = cciss_alloc_drive_info(h, controller_node); if (drv_index == -1) return -1; /*Check if the gendisk needs to be allocated */ if (!h->gendisk[drv_index]) { h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT); if (!h->gendisk[drv_index]) { dev_err(&h->pdev->dev, "could not allocate a new disk %d\n", drv_index); goto err_free_drive_info; } } memcpy(h->drv[drv_index]->LunID, lunid, sizeof(h->drv[drv_index]->LunID)); if (cciss_create_ld_sysfs_entry(h, drv_index)) goto err_free_disk; /* Don't need to mark this busy because nobody */ /* else knows about this disk yet to contend */ /* for access to it. */ h->drv[drv_index]->busy_configuring = 0; wmb(); return drv_index; err_free_disk: cciss_free_gendisk(h, drv_index); err_free_drive_info: cciss_free_drive_info(h, drv_index); return -1; } /* This is for the special case of a controller which * has no logical drives. In this case, we still need * to register a disk so the controller can be accessed * by the Array Config Utility. */ static void cciss_add_controller_node(ctlr_info_t *h) { struct gendisk *disk; int drv_index; if (h->gendisk[0] != NULL) /* already did this? Then bail. */ return; drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1); if (drv_index == -1) goto error; h->drv[drv_index]->block_size = 512; h->drv[drv_index]->nr_blocks = 0; h->drv[drv_index]->heads = 0; h->drv[drv_index]->sectors = 0; h->drv[drv_index]->cylinders = 0; h->drv[drv_index]->raid_level = -1; memset(h->drv[drv_index]->serial_no, 0, 16); disk = h->gendisk[drv_index]; if (cciss_add_disk(h, disk, drv_index) == 0) return; cciss_free_gendisk(h, drv_index); cciss_free_drive_info(h, drv_index); error: dev_warn(&h->pdev->dev, "could not add disk 0.\n"); return; } /* This function will add and remove logical drives from the Logical * drive array of the controller and maintain persistency of ordering * so that mount points are preserved until the next reboot. This allows * for the removal of logical drives in the middle of the drive array * without a re-ordering of those drives. * INPUT * h = The controller to perform the operations on */ static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl) { int num_luns; ReportLunData_struct *ld_buff = NULL; int return_code; int listlength = 0; int i; int drv_found; int drv_index = 0; unsigned char lunid[8] = CTLR_LUNID; unsigned long flags; if (!capable(CAP_SYS_RAWIO)) return -EPERM; /* Set busy_configuring flag for this operation */ spin_lock_irqsave(&h->lock, flags); if (h->busy_configuring) { spin_unlock_irqrestore(&h->lock, flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(&h->lock, flags); ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) goto mem_msg; return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff, sizeof(ReportLunData_struct), 0, CTLR_LUNID, TYPE_CMD); if (return_code == IO_OK) listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); else { /* reading number of logical volumes failed */ dev_warn(&h->pdev->dev, "report logical volume command failed\n"); listlength = 0; goto freeret; } num_luns = listlength / 8; /* 8 bytes per entry */ if (num_luns > CISS_MAX_LUN) { num_luns = CISS_MAX_LUN; dev_warn(&h->pdev->dev, "more luns configured" " on controller than can be handled by" " this driver.\n"); } if (num_luns == 0) cciss_add_controller_node(h); /* Compare controller drive array to driver's drive array * to see if any drives are missing on the controller due * to action of Array Config Utility (user deletes drive) * and deregister logical drives which have disappeared. */ for (i = 0; i <= h->highest_lun; i++) { int j; drv_found = 0; /* skip holes in the array from already deleted drives */ if (h->drv[i] == NULL) continue; for (j = 0; j < num_luns; j++) { memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid)); if (memcmp(h->drv[i]->LunID, lunid, sizeof(lunid)) == 0) { drv_found = 1; break; } } if (!drv_found) { /* Deregister it from the OS, it's gone. */ spin_lock_irqsave(&h->lock, flags); h->drv[i]->busy_configuring = 1; spin_unlock_irqrestore(&h->lock, flags); return_code = deregister_disk(h, i, 1, via_ioctl); if (h->drv[i] != NULL) h->drv[i]->busy_configuring = 0; } } /* Compare controller drive array to driver's drive array. * Check for updates in the drive information and any new drives * on the controller due to ACU adding logical drives, or changing * a logical drive's size, etc. Reregister any new/changed drives */ for (i = 0; i < num_luns; i++) { int j; drv_found = 0; memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid)); /* Find if the LUN is already in the drive array * of the driver. If so then update its info * if not in use. If it does not exist then find * the first free index and add it. */ for (j = 0; j <= h->highest_lun; j++) { if (h->drv[j] != NULL && memcmp(h->drv[j]->LunID, lunid, sizeof(h->drv[j]->LunID)) == 0) { drv_index = j; drv_found = 1; break; } } /* check if the drive was found already in the array */ if (!drv_found) { drv_index = cciss_add_gendisk(h, lunid, 0); if (drv_index == -1) goto freeret; } cciss_update_drive_info(h, drv_index, first_time, via_ioctl); } /* end for */ freeret: kfree(ld_buff); h->busy_configuring = 0; /* We return -1 here to tell the ACU that we have registered/updated * all of the drives that we can and to keep it from calling us * additional times. */ return -1; mem_msg: dev_err(&h->pdev->dev, "out of memory\n"); h->busy_configuring = 0; goto freeret; } static void cciss_clear_drive_info(drive_info_struct *drive_info) { /* zero out the disk size info */ drive_info->nr_blocks = 0; drive_info->block_size = 0; drive_info->heads = 0; drive_info->sectors = 0; drive_info->cylinders = 0; drive_info->raid_level = -1; memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no)); memset(drive_info->model, 0, sizeof(drive_info->model)); memset(drive_info->rev, 0, sizeof(drive_info->rev)); memset(drive_info->vendor, 0, sizeof(drive_info->vendor)); /* * don't clear the LUNID though, we need to remember which * one this one is. */ } /* This function will deregister the disk and it's queue from the * kernel. It must be called with the controller lock held and the * drv structures busy_configuring flag set. It's parameters are: * * disk = This is the disk to be deregistered * drv = This is the drive_info_struct associated with the disk to be * deregistered. It contains information about the disk used * by the driver. * clear_all = This flag determines whether or not the disk information * is going to be completely cleared out and the highest_lun * reset. Sometimes we want to clear out information about * the disk in preparation for re-adding it. In this case * the highest_lun should be left unchanged and the LunID * should not be cleared. * via_ioctl * This indicates whether we've reached this path via ioctl. * This affects the maximum usage count allowed for c0d0 to be messed with. * If this path is reached via ioctl(), then the max_usage_count will * be 1, as the process calling ioctl() has got to have the device open. * If we get here via sysfs, then the max usage count will be zero. */ static int deregister_disk(ctlr_info_t *h, int drv_index, int clear_all, int via_ioctl) { int i; struct gendisk *disk; drive_info_struct *drv; int recalculate_highest_lun; if (!capable(CAP_SYS_RAWIO)) return -EPERM; drv = h->drv[drv_index]; disk = h->gendisk[drv_index]; /* make sure logical volume is NOT is use */ if (clear_all || (h->gendisk[0] == disk)) { if (drv->usage_count > via_ioctl) return -EBUSY; } else if (drv->usage_count > 0) return -EBUSY; recalculate_highest_lun = (drv == h->drv[h->highest_lun]); /* invalidate the devices and deregister the disk. If it is disk * zero do not deregister it but just zero out it's values. This * allows us to delete disk zero but keep the controller registered. */ if (h->gendisk[0] != disk) { struct request_queue *q = disk->queue; if (disk->flags & GENHD_FL_UP) { cciss_destroy_ld_sysfs_entry(h, drv_index, 0); del_gendisk(disk); } if (q) blk_cleanup_queue(q); /* If clear_all is set then we are deleting the logical * drive, not just refreshing its info. For drives * other than disk 0 we will call put_disk. We do not * do this for disk 0 as we need it to be able to * configure the controller. */ if (clear_all){ /* This isn't pretty, but we need to find the * disk in our array and NULL our the pointer. * This is so that we will call alloc_disk if * this index is used again later. */ for (i=0; i < CISS_MAX_LUN; i++){ if (h->gendisk[i] == disk) { h->gendisk[i] = NULL; break; } } put_disk(disk); } } else { set_capacity(disk, 0); cciss_clear_drive_info(drv); } --h->num_luns; /* if it was the last disk, find the new hightest lun */ if (clear_all && recalculate_highest_lun) { int newhighest = -1; for (i = 0; i <= h->highest_lun; i++) { /* if the disk has size > 0, it is available */ if (h->drv[i] && h->drv[i]->heads) newhighest = i; } h->highest_lun = newhighest; } return 0; } static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, int cmd_type) { u64bit buff_dma_handle; int status = IO_OK; c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if (buff != NULL) { c->Header.SGList = 1; c->Header.SGTotal = 1; } else { c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.Tag.lower = c->busaddr; memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); c->Request.Type.Type = cmd_type; if (cmd_type == TYPE_CMD) { switch (cmd) { case CISS_INQUIRY: /* are we trying to read a vital product page */ if (page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = CISS_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. Nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case CCISS_READ_CAPACITY: c->Request.CDBLen = 10; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; case CCISS_READ_CAPACITY_16: c->Request.CDBLen = 16; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[1] = 0x10; c->Request.CDB[10] = (size >> 24) & 0xFF; c->Request.CDB[11] = (size >> 16) & 0xFF; c->Request.CDB[12] = (size >> 8) & 0xFF; c->Request.CDB[13] = size & 0xFF; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; case CCISS_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_CACHE_FLUSH; break; case TEST_UNIT_READY: c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; break; default: dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd); return IO_ERROR; } } else if (cmd_type == TYPE_MSG) { switch (cmd) { case 0: /* ABORT message */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; /* abort */ c->Request.CDB[1] = 0; /* abort a command */ /* buff contains the tag of the command to abort */ memcpy(&c->Request.CDB[4], buff, 8); break; case 1: /* RESET message */ c->Request.CDBLen = 16; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); c->Request.CDB[0] = cmd; /* reset */ c->Request.CDB[1] = 0x03; /* reset a target */ break; case 3: /* No-Op message */ c->Request.CDBLen = 1; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; default: dev_warn(&h->pdev->dev, "unknown message type %d\n", cmd); return IO_ERROR; } } else { dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); return IO_ERROR; } /* Fill in the scatter gather information */ if (size > 0) { buff_dma_handle.val = (__u64) pci_map_single(h->pdev, buff, size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = buff_dma_handle.val32.lower; c->SG[0].Addr.upper = buff_dma_handle.val32.upper; c->SG[0].Len = size; c->SG[0].Ext = 0; /* we are not chaining */ } return status; } static int check_target_status(ctlr_info_t *h, CommandList_struct *c) { switch (c->err_info->ScsiStatus) { case SAM_STAT_GOOD: return IO_OK; case SAM_STAT_CHECK_CONDITION: switch (0xf & c->err_info->SenseInfo[2]) { case 0: return IO_OK; /* no sense */ case 1: return IO_OK; /* recovered error */ default: if (check_for_unit_attention(h, c)) return IO_NEEDS_RETRY; dev_warn(&h->pdev->dev, "cmd 0x%02x " "check condition, sense key = 0x%02x\n", c->Request.CDB[0], c->err_info->SenseInfo[2]); } break; default: dev_warn(&h->pdev->dev, "cmd 0x%02x" "scsi status = 0x%02x\n", c->Request.CDB[0], c->err_info->ScsiStatus); break; } return IO_ERROR; } static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c) { int return_status = IO_OK; if (c->err_info->CommandStatus == CMD_SUCCESS) return IO_OK; switch (c->err_info->CommandStatus) { case CMD_TARGET_STATUS: return_status = check_target_status(h, c); break; case CMD_DATA_UNDERRUN: case CMD_DATA_OVERRUN: /* expected for inquiry and report lun commands */ break; case CMD_INVALID: dev_warn(&h->pdev->dev, "cmd 0x%02x is " "reported invalid\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_PROTOCOL_ERR: dev_warn(&h->pdev->dev, "cmd 0x%02x has " "protocol error\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_HARDWARE_ERR: dev_warn(&h->pdev->dev, "cmd 0x%02x had " " hardware error\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_CONNECTION_LOST: dev_warn(&h->pdev->dev, "cmd 0x%02x had " "connection lost\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_ABORTED: dev_warn(&h->pdev->dev, "cmd 0x%02x was " "aborted\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_ABORT_FAILED: dev_warn(&h->pdev->dev, "cmd 0x%02x reports " "abort failed\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_UNSOLICITED_ABORT: dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n", c->Request.CDB[0]); return_status = IO_NEEDS_RETRY; break; default: dev_warn(&h->pdev->dev, "cmd 0x%02x returned " "unknown status %x\n", c->Request.CDB[0], c->err_info->CommandStatus); return_status = IO_ERROR; } return return_status; } static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, int attempt_retry) { DECLARE_COMPLETION_ONSTACK(wait); u64bit buff_dma_handle; int return_status = IO_OK; resend_cmd2: c->waiting = &wait; enqueue_cmd_and_start_io(h, c); wait_for_completion(&wait); if (c->err_info->CommandStatus == 0 || !attempt_retry) goto command_done; return_status = process_sendcmd_error(h, c); if (return_status == IO_NEEDS_RETRY && c->retry_count < MAX_CMD_RETRIES) { dev_warn(&h->pdev->dev, "retrying 0x%02x\n", c->Request.CDB[0]); c->retry_count++; /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); return_status = IO_OK; INIT_COMPLETION(wait); goto resend_cmd2; } command_done: /* unlock the buffers from DMA */ buff_dma_handle.val32.lower = c->SG[0].Addr.lower; buff_dma_handle.val32.upper = c->SG[0].Addr.upper; pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); return return_status; } static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, __u8 page_code, unsigned char scsi3addr[], int cmd_type) { CommandList_struct *c; int return_status; c = cmd_special_alloc(h); if (!c) return -ENOMEM; return_status = fill_cmd(h, c, cmd, buff, size, page_code, scsi3addr, cmd_type); if (return_status == IO_OK) return_status = sendcmd_withirq_core(h, c, 1); cmd_special_free(h, c); return return_status; } static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, sector_t total_size, unsigned int block_size, InquiryData_struct *inq_buff, drive_info_struct *drv) { int return_code; unsigned long t; unsigned char scsi3addr[8]; memset(inq_buff, 0, sizeof(InquiryData_struct)); log_unit_to_scsi3addr(h, scsi3addr, logvol); return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); if (return_code == IO_OK) { if (inq_buff->data_byte[8] == 0xFF) { dev_warn(&h->pdev->dev, "reading geometry failed, volume " "does not support reading geometry\n"); drv->heads = 255; drv->sectors = 32; /* Sectors per track */ drv->cylinders = total_size + 1; drv->raid_level = RAID_UNKNOWN; } else { drv->heads = inq_buff->data_byte[6]; drv->sectors = inq_buff->data_byte[7]; drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; drv->cylinders += inq_buff->data_byte[5]; drv->raid_level = inq_buff->data_byte[8]; } drv->block_size = block_size; drv->nr_blocks = total_size + 1; t = drv->heads * drv->sectors; if (t > 1) { sector_t real_size = total_size + 1; unsigned long rem = sector_div(real_size, t); if (rem) real_size++; drv->cylinders = real_size; } } else { /* Get geometry failed */ dev_warn(&h->pdev->dev, "reading geometry failed\n"); } } static void cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size, unsigned int *block_size) { ReadCapdata_struct *buf; int return_code; unsigned char scsi3addr[8]; buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); if (!buf) { dev_warn(&h->pdev->dev, "out of memory\n"); return; } log_unit_to_scsi3addr(h, scsi3addr, logvol); return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf, sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); if (return_code == IO_OK) { *total_size = be32_to_cpu(*(__be32 *) buf->total_size); *block_size = be32_to_cpu(*(__be32 *) buf->block_size); } else { /* read capacity command failed */ dev_warn(&h->pdev->dev, "read capacity failed\n"); *total_size = 0; *block_size = BLOCK_SIZE; } kfree(buf); } static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, sector_t *total_size, unsigned int *block_size) { ReadCapdata_struct_16 *buf; int return_code; unsigned char scsi3addr[8]; buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); if (!buf) { dev_warn(&h->pdev->dev, "out of memory\n"); return; } log_unit_to_scsi3addr(h, scsi3addr, logvol); return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16, buf, sizeof(ReadCapdata_struct_16), 0, scsi3addr, TYPE_CMD); if (return_code == IO_OK) { *total_size = be64_to_cpu(*(__be64 *) buf->total_size); *block_size = be32_to_cpu(*(__be32 *) buf->block_size); } else { /* read capacity command failed */ dev_warn(&h->pdev->dev, "read capacity failed\n"); *total_size = 0; *block_size = BLOCK_SIZE; } dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n", (unsigned long long)*total_size+1, *block_size); kfree(buf); } static int cciss_revalidate(struct gendisk *disk) { ctlr_info_t *h = get_host(disk); drive_info_struct *drv = get_drv(disk); int logvol; int FOUND = 0; unsigned int block_size; sector_t total_size; InquiryData_struct *inq_buff = NULL; for (logvol = 0; logvol <= h->highest_lun; logvol++) { if (!h->drv[logvol]) continue; if (memcmp(h->drv[logvol]->LunID, drv->LunID, sizeof(drv->LunID)) == 0) { FOUND = 1; break; } } if (!FOUND) return 1; inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { dev_warn(&h->pdev->dev, "out of memory\n"); return 1; } if (h->cciss_read == CCISS_READ_10) { cciss_read_capacity(h, logvol, &total_size, &block_size); } else { cciss_read_capacity_16(h, logvol, &total_size, &block_size); } cciss_geometry_inquiry(h, logvol, total_size, block_size, inq_buff, drv); blk_queue_logical_block_size(drv->queue, drv->block_size); set_capacity(disk, drv->nr_blocks); kfree(inq_buff); return 0; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap(page_base, page_offs + size); return page_remapped ? (page_remapped + page_offs) : NULL; } /* * Takes jobs of the Q and sends them to the hardware, then puts it on * the Q to wait for completion. */ static void start_io(ctlr_info_t *h) { CommandList_struct *c; while (!list_empty(&h->reqQ)) { c = list_entry(h->reqQ.next, CommandList_struct, list); /* can't do anything if fifo is full */ if ((h->access.fifo_full(h))) { dev_warn(&h->pdev->dev, "fifo full\n"); break; } /* Get the first entry from the Request Q */ removeQ(c); h->Qdepth--; /* Tell the controller execute command */ h->access.submit_command(h, c); /* Put job onto the completed Q */ addQ(&h->cmpQ, c); } } /* Assumes that h->lock is held. */ /* Zeros out the error record and then resends the command back */ /* to the controller */ static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) { /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); /* add it to software queue and then send it to the controller */ addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; start_io(h); } static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, unsigned int msg_byte, unsigned int host_byte, unsigned int driver_byte) { /* inverse of macros in scsi.h */ return (scsi_status_byte & 0xff) | ((msg_byte & 0xff) << 8) | ((host_byte & 0xff) << 16) | ((driver_byte & 0xff) << 24); } static inline int evaluate_target_status(ctlr_info_t *h, CommandList_struct *cmd, int *retry_cmd) { unsigned char sense_key; unsigned char status_byte, msg_byte, host_byte, driver_byte; int error_value; *retry_cmd = 0; /* If we get in here, it means we got "target status", that is, scsi status */ status_byte = cmd->err_info->ScsiStatus; driver_byte = DRIVER_OK; msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */ if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) host_byte = DID_PASSTHROUGH; else host_byte = DID_OK; error_value = make_status_bytes(status_byte, msg_byte, host_byte, driver_byte); if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) dev_warn(&h->pdev->dev, "cmd %p " "has SCSI Status 0x%x\n", cmd, cmd->err_info->ScsiStatus); return error_value; } /* check the sense key */ sense_key = 0xf & cmd->err_info->SenseInfo[2]; /* no status or recovered error */ if (((sense_key == 0x0) || (sense_key == 0x1)) && (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)) error_value = 0; if (check_for_unit_attention(h, cmd)) { *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC); return 0; } /* Not SG_IO or similar? */ if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) { if (error_value != 0) dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION" " sense key = 0x%x\n", cmd, sense_key); return error_value; } /* SG_IO or similar, copy sense data back */ if (cmd->rq->sense) { if (cmd->rq->sense_len > cmd->err_info->SenseLen) cmd->rq->sense_len = cmd->err_info->SenseLen; memcpy(cmd->rq->sense, cmd->err_info->SenseInfo, cmd->rq->sense_len); } else cmd->rq->sense_len = 0; return error_value; } /* checks the status of the job and calls complete buffers to mark all * buffers for the completed job. Note that this function does not need * to hold the hba/queue lock. */ static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, int timeout) { int retry_cmd = 0; struct request *rq = cmd->rq; rq->errors = 0; if (timeout) rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); if (cmd->err_info->CommandStatus == 0) /* no error has occurred */ goto after_error_processing; switch (cmd->err_info->CommandStatus) { case CMD_TARGET_STATUS: rq->errors = evaluate_target_status(h, cmd, &retry_cmd); break; case CMD_DATA_UNDERRUN: if (cmd->rq->cmd_type == REQ_TYPE_FS) { dev_warn(&h->pdev->dev, "cmd %p has" " completed with data underrun " "reported\n", cmd); cmd->rq->resid_len = cmd->err_info->ResidualCnt; } break; case CMD_DATA_OVERRUN: if (cmd->rq->cmd_type == REQ_TYPE_FS) dev_warn(&h->pdev->dev, "cciss: cmd %p has" " completed with data overrun " "reported\n", cmd); break; case CMD_INVALID: dev_warn(&h->pdev->dev, "cciss: cmd %p is " "reported invalid\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_PROTOCOL_ERR: dev_warn(&h->pdev->dev, "cciss: cmd %p has " "protocol error\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_HARDWARE_ERR: dev_warn(&h->pdev->dev, "cciss: cmd %p had " " hardware error\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_CONNECTION_LOST: dev_warn(&h->pdev->dev, "cciss: cmd %p had " "connection lost\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_ABORTED: dev_warn(&h->pdev->dev, "cciss: cmd %p was " "aborted\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ABORT); break; case CMD_ABORT_FAILED: dev_warn(&h->pdev->dev, "cciss: cmd %p reports " "abort failed\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_UNSOLICITED_ABORT: dev_warn(&h->pdev->dev, "cciss%d: unsolicited " "abort %p\n", h->ctlr, cmd); if (cmd->retry_count < MAX_CMD_RETRIES) { retry_cmd = 1; dev_warn(&h->pdev->dev, "retrying %p\n", cmd); cmd->retry_count++; } else dev_warn(&h->pdev->dev, "%p retried too many times\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ABORT); break; case CMD_TIMEOUT: dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); break; default: dev_warn(&h->pdev->dev, "cmd %p returned " "unknown status %x\n", cmd, cmd->err_info->CommandStatus); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ? DID_PASSTHROUGH : DID_ERROR); } after_error_processing: /* We need to return this command */ if (retry_cmd) { resend_cciss_cmd(h, cmd); return; } cmd->rq->completion_data = cmd; blk_complete_request(cmd->rq); } static inline u32 cciss_tag_contains_index(u32 tag) { #define DIRECT_LOOKUP_BIT 0x10 return tag & DIRECT_LOOKUP_BIT; } static inline u32 cciss_tag_to_index(u32 tag) { #define DIRECT_LOOKUP_SHIFT 5 return tag >> DIRECT_LOOKUP_SHIFT; } static inline u32 cciss_tag_discard_error_bits(u32 tag) { #define CCISS_ERROR_BITS 0x03 return tag & ~CCISS_ERROR_BITS; } static inline void cciss_mark_tag_indexed(u32 *tag) { *tag |= DIRECT_LOOKUP_BIT; } static inline void cciss_set_tag_index(u32 *tag, u32 index) { *tag |= (index << DIRECT_LOOKUP_SHIFT); } /* * Get a request and submit it to the controller. */ static void do_cciss_request(struct request_queue *q) { ctlr_info_t *h = q->queuedata; CommandList_struct *c; sector_t start_blk; int seg; struct request *creq; u64bit temp64; struct scatterlist *tmp_sg; SGDescriptor_struct *curr_sg; drive_info_struct *drv; int i, dir; int sg_index = 0; int chained = 0; /* We call start_io here in case there is a command waiting on the * queue that has not been sent. */ if (blk_queue_plugged(q)) goto startio; queue: creq = blk_peek_request(q); if (!creq) goto startio; BUG_ON(creq->nr_phys_segments > h->maxsgentries); c = cmd_alloc(h); if (!c) goto full; blk_start_request(creq); tmp_sg = h->scatter_list[c->cmdindex]; spin_unlock_irq(q->queue_lock); c->cmd_type = CMD_RWREQ; c->rq = creq; /* fill in the request */ drv = creq->rq_disk->private_data; c->Header.ReplyQueue = 0; /* unused in simple mode */ /* got command from pool, so use the command block index instead */ /* for direct lookups. */ /* The first 2 bits are reserved for controller error reporting. */ cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex); cciss_mark_tag_indexed(&c->Header.Tag.lower); memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID)); c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */ c->Request.Type.Type = TYPE_CMD; /* It is a command. */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; start_blk = blk_rq_pos(creq); dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n", (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq)); sg_init_table(tmp_sg, h->maxsgentries); seg = blk_rq_map_sg(q, creq, tmp_sg); /* get the DMA records for the setup */ if (c->Request.Type.Direction == XFER_READ) dir = PCI_DMA_FROMDEVICE; else dir = PCI_DMA_TODEVICE; curr_sg = c->SG; sg_index = 0; chained = 0; for (i = 0; i < seg; i++) { if (((sg_index+1) == (h->max_cmd_sgentries)) && !chained && ((seg - i) > 1)) { /* Point to next chain block. */ curr_sg = h->cmd_sg_list[c->cmdindex]; sg_index = 0; chained = 1; } curr_sg[sg_index].Len = tmp_sg[i].length; temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), tmp_sg[i].offset, tmp_sg[i].length, dir); curr_sg[sg_index].Addr.lower = temp64.val32.lower; curr_sg[sg_index].Addr.upper = temp64.val32.upper; curr_sg[sg_index].Ext = 0; /* we are not chaining */ ++sg_index; } if (chained) cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex], (seg - (h->max_cmd_sgentries - 1)) * sizeof(SGDescriptor_struct)); /* track how many SG entries we are using */ if (seg > h->maxSG) h->maxSG = seg; dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments " "chained[%d]\n", blk_rq_sectors(creq), seg, chained); c->Header.SGTotal = seg + chained; if (seg <= h->max_cmd_sgentries) c->Header.SGList = c->Header.SGTotal; else c->Header.SGList = h->max_cmd_sgentries; set_performant_mode(h, c); if (likely(creq->cmd_type == REQ_TYPE_FS)) { if(h->cciss_read == CCISS_READ_10) { c->Request.CDB[1] = 0; c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */ c->Request.CDB[3] = (start_blk >> 16) & 0xff; c->Request.CDB[4] = (start_blk >> 8) & 0xff; c->Request.CDB[5] = start_blk & 0xff; c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */ c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff; c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff; c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; } else { u32 upper32 = upper_32_bits(start_blk); c->Request.CDBLen = 16; c->Request.CDB[1]= 0; c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */ c->Request.CDB[3]= (upper32 >> 16) & 0xff; c->Request.CDB[4]= (upper32 >> 8) & 0xff; c->Request.CDB[5]= upper32 & 0xff; c->Request.CDB[6]= (start_blk >> 24) & 0xff; c->Request.CDB[7]= (start_blk >> 16) & 0xff; c->Request.CDB[8]= (start_blk >> 8) & 0xff; c->Request.CDB[9]= start_blk & 0xff; c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff; c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff; c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff; c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff; c->Request.CDB[14] = c->Request.CDB[15] = 0; } } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) { c->Request.CDBLen = creq->cmd_len; memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB); } else { dev_warn(&h->pdev->dev, "bad request type %d\n", creq->cmd_type); BUG(); } spin_lock_irq(q->queue_lock); addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto queue; full: blk_stop_queue(q); startio: /* We will already have the driver lock here so not need * to lock it. */ start_io(h); } static inline unsigned long get_next_completion(ctlr_info_t *h) { return h->access.command_completed(h); } static inline int interrupt_pending(ctlr_info_t *h) { return h->access.intr_pending(h); } static inline long interrupt_not_for_us(ctlr_info_t *h) { return ((h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0)); } static inline int bad_tag(ctlr_info_t *h, u32 tag_index, u32 raw_tag) { if (unlikely(tag_index >= h->nr_cmds)) { dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); return 1; } return 0; } static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c, u32 raw_tag) { removeQ(c); if (likely(c->cmd_type == CMD_RWREQ)) complete_command(h, c, 0); else if (c->cmd_type == CMD_IOCTL_PEND) complete(c->waiting); #ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) complete_scsi_command(c, 0, raw_tag); #endif } static inline u32 next_command(ctlr_info_t *h) { u32 a; if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) return h->access.command_completed(h); if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { a = *(h->reply_pool_head); /* Next cmd in ring buffer */ (h->reply_pool_head)++; h->commands_outstanding--; } else { a = FIFO_EMPTY; } /* Check for wraparound */ if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { h->reply_pool_head = h->reply_pool; h->reply_pool_wraparound ^= 1; } return a; } /* process completion of an indexed ("direct lookup") command */ static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag) { u32 tag_index; CommandList_struct *c; tag_index = cciss_tag_to_index(raw_tag); if (bad_tag(h, tag_index, raw_tag)) return next_command(h); c = h->cmd_pool + tag_index; finish_cmd(h, c, raw_tag); return next_command(h); } /* process completion of a non-indexed command */ static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag) { u32 tag; CommandList_struct *c = NULL; __u32 busaddr_masked, tag_masked; tag = cciss_tag_discard_error_bits(raw_tag); list_for_each_entry(c, &h->cmpQ, list) { busaddr_masked = cciss_tag_discard_error_bits(c->busaddr); tag_masked = cciss_tag_discard_error_bits(tag); if (busaddr_masked == tag_masked) { finish_cmd(h, c, raw_tag); return next_command(h); } } bad_tag(h, h->nr_cmds + 1, raw_tag); return next_command(h); } static irqreturn_t do_cciss_intx(int irq, void *dev_id) { ctlr_info_t *h = dev_id; unsigned long flags; u32 raw_tag; if (interrupt_not_for_us(h)) return IRQ_NONE; spin_lock_irqsave(&h->lock, flags); while (interrupt_pending(h)) { raw_tag = get_next_completion(h); while (raw_tag != FIFO_EMPTY) { if (cciss_tag_contains_index(raw_tag)) raw_tag = process_indexed_cmd(h, raw_tag); else raw_tag = process_nonindexed_cmd(h, raw_tag); } } spin_unlock_irqrestore(&h->lock, flags); return IRQ_HANDLED; } /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never * check the interrupt pending register because it is not set. */ static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id) { ctlr_info_t *h = dev_id; unsigned long flags; u32 raw_tag; spin_lock_irqsave(&h->lock, flags); raw_tag = get_next_completion(h); while (raw_tag != FIFO_EMPTY) { if (cciss_tag_contains_index(raw_tag)) raw_tag = process_indexed_cmd(h, raw_tag); else raw_tag = process_nonindexed_cmd(h, raw_tag); } spin_unlock_irqrestore(&h->lock, flags); return IRQ_HANDLED; } /** * add_to_scan_list() - add controller to rescan queue * @h: Pointer to the controller. * * Adds the controller to the rescan queue if not already on the queue. * * returns 1 if added to the queue, 0 if skipped (could be on the * queue already, or the controller could be initializing or shutting * down). **/ static int add_to_scan_list(struct ctlr_info *h) { struct ctlr_info *test_h; int found = 0; int ret = 0; if (h->busy_initializing) return 0; if (!mutex_trylock(&h->busy_shutting_down)) return 0; mutex_lock(&scan_mutex); list_for_each_entry(test_h, &scan_q, scan_list) { if (test_h == h) { found = 1; break; } } if (!found && !h->busy_scanning) { INIT_COMPLETION(h->scan_wait); list_add_tail(&h->scan_list, &scan_q); ret = 1; } mutex_unlock(&scan_mutex); mutex_unlock(&h->busy_shutting_down); return ret; } /** * remove_from_scan_list() - remove controller from rescan queue * @h: Pointer to the controller. * * Removes the controller from the rescan queue if present. Blocks if * the controller is currently conducting a rescan. The controller * can be in one of three states: * 1. Doesn't need a scan * 2. On the scan list, but not scanning yet (we remove it) * 3. Busy scanning (and not on the list). In this case we want to wait for * the scan to complete to make sure the scanning thread for this * controller is completely idle. **/ static void remove_from_scan_list(struct ctlr_info *h) { struct ctlr_info *test_h, *tmp_h; mutex_lock(&scan_mutex); list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) { if (test_h == h) { /* state 2. */ list_del(&h->scan_list); complete_all(&h->scan_wait); mutex_unlock(&scan_mutex); return; } } if (h->busy_scanning) { /* state 3. */ mutex_unlock(&scan_mutex); wait_for_completion(&h->scan_wait); } else { /* state 1, nothing to do. */ mutex_unlock(&scan_mutex); } } /** * scan_thread() - kernel thread used to rescan controllers * @data: Ignored. * * A kernel thread used scan for drive topology changes on * controllers. The thread processes only one controller at a time * using a queue. Controllers are added to the queue using * add_to_scan_list() and removed from the queue either after done * processing or using remove_from_scan_list(). * * returns 0. **/ static int scan_thread(void *data) { struct ctlr_info *h; while (1) { set_current_state(TASK_INTERRUPTIBLE); schedule(); if (kthread_should_stop()) break; while (1) { mutex_lock(&scan_mutex); if (list_empty(&scan_q)) { mutex_unlock(&scan_mutex); break; } h = list_entry(scan_q.next, struct ctlr_info, scan_list); list_del(&h->scan_list); h->busy_scanning = 1; mutex_unlock(&scan_mutex); rebuild_lun_table(h, 0, 0); complete_all(&h->scan_wait); mutex_lock(&scan_mutex); h->busy_scanning = 0; mutex_unlock(&scan_mutex); } } return 0; } static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) { if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) return 0; switch (c->err_info->SenseInfo[12]) { case STATE_CHANGED: dev_warn(&h->pdev->dev, "a state change " "detected, command retried\n"); return 1; break; case LUN_FAILED: dev_warn(&h->pdev->dev, "LUN failure " "detected, action required\n"); return 1; break; case REPORT_LUNS_CHANGED: dev_warn(&h->pdev->dev, "report LUN data changed\n"); /* * Here, we could call add_to_scan_list and wake up the scan thread, * except that it's quite likely that we will get more than one * REPORT_LUNS_CHANGED condition in quick succession, which means * that those which occur after the first one will likely happen * *during* the scan_thread's rescan. And the rescan code is not * robust enough to restart in the middle, undoing what it has already * done, and it's not clear that it's even possible to do this, since * part of what it does is notify the block layer, which starts * doing it's own i/o to read partition tables and so on, and the * driver doesn't have visibility to know what might need undoing. * In any event, if possible, it is horribly complicated to get right * so we just don't do it for now. * * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. */ return 1; break; case POWER_OR_RESET: dev_warn(&h->pdev->dev, "a power on or device reset detected\n"); return 1; break; case UNIT_ATTENTION_CLEARED: dev_warn(&h->pdev->dev, "unit attention cleared by another initiator\n"); return 1; break; default: dev_warn(&h->pdev->dev, "unknown unit attention detected\n"); return 1; } } /* * We cannot read the structure directly, for portability we must use * the io functions. * This is for debug only. */ static void print_cfg_table(ctlr_info_t *h) { int i; char temp_name[17]; CfgTable_struct *tb = h->cfgtable; dev_dbg(&h->pdev->dev, "Controller Configuration information\n"); dev_dbg(&h->pdev->dev, "------------------------------------\n"); for (i = 0; i < 4; i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4] = '\0'; dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name); dev_dbg(&h->pdev->dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n", readl(&(tb->TransportSupport))); dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n", readl(&(tb->CmdsOutMax))); dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); for (i = 0; i < 16; i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name); dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); } static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) offset += 4; else { mem_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: offset += 4; /* 32 bit */ break; case PCI_BASE_ADDRESS_MEM_TYPE_64: offset += 8; break; default: /* reserved in PCI 2.2 */ dev_warn(&pdev->dev, "Base address is invalid\n"); return -1; break; } } if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) return i + 1; } return -1; } /* Fill in bucket_map[], given nsgs (the max number of * scatter gather elements supported) and bucket[], * which is an array of 8 integers. The bucket[] array * contains 8 different DMA transfer sizes (in 16 * byte increments) which the controller uses to fetch * commands. This function fills in bucket_map[], which * maps a given number of scatter gather elements to one of * the 8 DMA transfer sizes. The point of it is to allow the * controller to only do as much DMA as needed to fetch the * command, with the DMA transfer size encoded in the lower * bits of the command address. */ static void calc_bucket_map(int bucket[], int num_buckets, int nsgs, int *bucket_map) { int i, j, b, size; /* even a command with 0 SGs requires 4 blocks */ #define MINIMUM_TRANSFER_BLOCKS 4 #define NUM_BUCKETS 8 /* Note, bucket_map must have nsgs+1 entries. */ for (i = 0; i <= nsgs; i++) { /* Compute size of a command with i SG entries */ size = i + MINIMUM_TRANSFER_BLOCKS; b = num_buckets; /* Assume the biggest bucket */ /* Find the bucket that is just big enough */ for (j = 0; j < 8; j++) { if (bucket[j] >= size) { b = j; break; } } /* for a command with i SG entries, use bucket b. */ bucket_map[i] = b; } } static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h) { int i; /* under certain very rare conditions, this can take awhile. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right * as we enter this code.) */ for (i = 0; i < MAX_CONFIG_WAIT; i++) { if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; usleep_range(10000, 20000); } } static __devinit void cciss_enter_performant_mode(ctlr_info_t *h) { /* This is a bit complicated. There are 8 registers on * the controller which we write to to tell it 8 different * sizes of commands which there may be. It's a way of * reducing the DMA done to fetch each command. Encoded into * each command's tag are 3 bits which communicate to the controller * which of the eight sizes that command fits within. The size of * each command depends on how many scatter gather entries there are. * Each SG entry requires 16 bytes. The eight registers are programmed * with the number of 16-byte blocks a command of that size requires. * The smallest command possible requires 5 such 16 byte blocks. * the largest command possible requires MAXSGENTRIES + 4 16-byte * blocks. Note, this only extends to the SG entries contained * within the command block, and does not extend to chained blocks * of SG elements. bft[] contains the eight values we write to * the registers. They are not evenly distributed, but have more * sizes for small commands, and fewer sizes for larger commands. */ __u32 trans_offset; int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; /* * 5 = 1 s/g entry or 4k * 6 = 2 s/g entry or 8k * 8 = 4 s/g entry or 16k * 10 = 6 s/g entry or 24k */ unsigned long register_value; BUILD_BUG_ON(28 > MAXSGENTRIES + 4); h->reply_pool_wraparound = 1; /* spec: init to 1 */ /* Controller spec: zero out this buffer. */ memset(h->reply_pool, 0, h->max_commands * sizeof(__u64)); h->reply_pool_head = h->reply_pool; trans_offset = readl(&(h->cfgtable->TransMethodOffset)); calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries, h->blockFetchTable); writel(bft[0], &h->transtable->BlockFetch0); writel(bft[1], &h->transtable->BlockFetch1); writel(bft[2], &h->transtable->BlockFetch2); writel(bft[3], &h->transtable->BlockFetch3); writel(bft[4], &h->transtable->BlockFetch4); writel(bft[5], &h->transtable->BlockFetch5); writel(bft[6], &h->transtable->BlockFetch6); writel(bft[7], &h->transtable->BlockFetch7); /* size of controller ring buffer */ writel(h->max_commands, &h->transtable->RepQSize); writel(1, &h->transtable->RepQCount); writel(0, &h->transtable->RepQCtrAddrLow32); writel(0, &h->transtable->RepQCtrAddrHigh32); writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); writel(0, &h->transtable->RepQAddr0High32); writel(CFGTBL_Trans_Performant, &(h->cfgtable->HostWrite.TransportRequest)); writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); cciss_wait_for_mode_change_ack(h); register_value = readl(&(h->cfgtable->TransportActive)); if (!(register_value & CFGTBL_Trans_Performant)) dev_warn(&h->pdev->dev, "cciss: unable to get board into" " performant mode\n"); } static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h) { __u32 trans_support; dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n"); /* Attempt to put controller into performant mode if supported */ /* Does board support performant mode? */ trans_support = readl(&(h->cfgtable->TransportSupport)); if (!(trans_support & PERFORMANT_MODE)) return; dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n"); /* Performant mode demands commands on a 32 byte boundary * pci_alloc_consistent aligns on page boundarys already. * Just need to check if divisible by 32 */ if ((sizeof(CommandList_struct) % 32) != 0) { dev_warn(&h->pdev->dev, "%s %d %s\n", "cciss info: command size[", (int)sizeof(CommandList_struct), "] not divisible by 32, no performant mode..\n"); return; } /* Performant mode ring buffer and supporting data structures */ h->reply_pool = (__u64 *)pci_alloc_consistent( h->pdev, h->max_commands * sizeof(__u64), &(h->reply_pool_dhandle)); /* Need a block fetch table for performant mode */ h->blockFetchTable = kmalloc(((h->maxsgentries+1) * sizeof(__u32)), GFP_KERNEL); if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL)) goto clean_up; cciss_enter_performant_mode(h); /* Change the access methods to the performant access methods */ h->access = SA5_performant_access; h->transMethod = CFGTBL_Trans_Performant; return; clean_up: kfree(h->blockFetchTable); if (h->reply_pool) pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64), h->reply_pool, h->reply_pool_dhandle); return; } /* cciss_put_controller_into_performant_mode */ /* If MSI/MSI-X is supported by the kernel we will try to enable it on * controllers that are capable. If not, we use IO-APIC mode. */ static void __devinit cciss_interrupt_mode(ctlr_info_t *h) { #ifdef CONFIG_PCI_MSI int err; struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1}, {0, 2}, {0, 3} }; /* Some boards advertise MSI but don't really support it */ if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) goto default_int_mode; if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { err = pci_enable_msix(h->pdev, cciss_msix_entries, 4); if (!err) { h->intr[0] = cciss_msix_entries[0].vector; h->intr[1] = cciss_msix_entries[1].vector; h->intr[2] = cciss_msix_entries[2].vector; h->intr[3] = cciss_msix_entries[3].vector; h->msix_vector = 1; return; } if (err > 0) { dev_warn(&h->pdev->dev, "only %d MSI-X vectors available\n", err); goto default_int_mode; } else { dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); goto default_int_mode; } } if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { if (!pci_enable_msi(h->pdev)) h->msi_vector = 1; else dev_warn(&h->pdev->dev, "MSI init failed\n"); } default_int_mode: #endif /* CONFIG_PCI_MSI */ /* if we get here we're going to use the default interrupt mode */ h->intr[PERF_MODE_INT] = h->pdev->irq; return; } static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id) { int i; u32 subsystem_vendor_id, subsystem_device_id; subsystem_vendor_id = pdev->subsystem_vendor; subsystem_device_id = pdev->subsystem_device; *board_id = ((subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id; for (i = 0; i < ARRAY_SIZE(products); i++) if (*board_id == products[i].board_id) return i; dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n", *board_id); return -ENODEV; } static inline bool cciss_board_disabled(ctlr_info_t *h) { u16 command; (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command); return ((command & PCI_COMMAND_MEMORY) == 0); } static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar) { int i; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { /* addressing mode bits already removed */ *memory_bar = pci_resource_start(pdev, i); dev_dbg(&pdev->dev, "memory BAR = %lx\n", *memory_bar); return 0; } dev_warn(&pdev->dev, "no memory BAR found\n"); return -ENODEV; } static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, int wait_for_ready) #define BOARD_READY 1 #define BOARD_NOT_READY 0 { int i, iterations; u32 scratchpad; if (wait_for_ready) iterations = CCISS_BOARD_READY_ITERATIONS; else iterations = CCISS_BOARD_NOT_READY_ITERATIONS; for (i = 0; i < iterations; i++) { scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); if (wait_for_ready) { if (scratchpad == CCISS_FIRMWARE_READY) return 0; } else { if (scratchpad != CCISS_FIRMWARE_READY) return 0; } msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS); } dev_warn(&pdev->dev, "board not ready, timed out.\n"); return -ENODEV; } static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset) { *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); *cfg_base_addr &= (u32) 0x0000ffff; *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); if (*cfg_base_addr_index == -1) { dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, " "*cfg_base_addr = 0x%08x\n", *cfg_base_addr); return -ENODEV; } return 0; } static int __devinit cciss_find_cfgtables(ctlr_info_t *h) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; u32 trans_offset; int rc; rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) return rc; h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable)); if (!h->cfgtable) return -ENOMEM; /* Find performant mode table. */ trans_offset = readl(&h->cfgtable->TransMethodOffset); h->transtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index)+cfg_offset+trans_offset, sizeof(*h->transtable)); if (!h->transtable) return -ENOMEM; return 0; } static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h) { h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); /* Limit commands in memory limited kdump scenario. */ if (reset_devices && h->max_commands > 32) h->max_commands = 32; if (h->max_commands < 16) { dev_warn(&h->pdev->dev, "Controller reports " "max supported commands of %d, an obvious lie. " "Using 16. Ensure that firmware is up to date.\n", h->max_commands); h->max_commands = 16; } } /* Interrogate the hardware for some limits: * max commands, max SG elements without chaining, and with chaining, * SG chain block size, etc. */ static void __devinit cciss_find_board_params(ctlr_info_t *h) { cciss_get_max_perf_mode_cmds(h); h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ h->maxsgentries = readl(&(h->cfgtable->MaxSGElements)); /* * Limit in-command s/g elements to 32 save dma'able memory. * Howvever spec says if 0, use 31 */ h->max_cmd_sgentries = 31; if (h->maxsgentries > 512) { h->max_cmd_sgentries = 32; h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1; h->maxsgentries--; /* save one for chain pointer */ } else { h->maxsgentries = 31; /* default to traditional values */ h->chainsize = 0; } } static inline bool CISS_signature_present(ctlr_info_t *h) { if ((readb(&h->cfgtable->Signature[0]) != 'C') || (readb(&h->cfgtable->Signature[1]) != 'I') || (readb(&h->cfgtable->Signature[2]) != 'S') || (readb(&h->cfgtable->Signature[3]) != 'S')) { dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); return false; } return true; } /* Need to enable prefetch in the SCSI core for 6400 in x86 */ static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h) { #ifdef CONFIG_X86 u32 prefetch; prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); prefetch |= 0x100; writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); #endif } /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result * in a prefetch beyond physical memory. */ static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h) { u32 dma_prefetch; __u32 dma_refetch; if (h->board_id != 0x3225103C) return; dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); dma_prefetch |= 0x8000; writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch); dma_refetch |= 0x1; pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch); } static int __devinit cciss_pci_init(ctlr_info_t *h) { int prod_index, err; prod_index = cciss_lookup_board_id(h->pdev, &h->board_id); if (prod_index < 0) return -ENODEV; h->product_name = products[prod_index].product_name; h->access = *(products[prod_index].access); if (cciss_board_disabled(h)) { dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); return -ENODEV; } err = pci_enable_device(h->pdev); if (err) { dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n"); return err; } err = pci_request_regions(h->pdev, "cciss"); if (err) { dev_warn(&h->pdev->dev, "Cannot obtain PCI resources, aborting\n"); return err; } dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq); dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id); /* If the kernel supports MSI/MSI-X we will try to enable that functionality, * else we use the IO-APIC interrupt assigned to us by system ROM. */ cciss_interrupt_mode(h); err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr); if (err) goto err_out_free_res; h->vaddr = remap_pci_mem(h->paddr, 0x250); if (!h->vaddr) { err = -ENOMEM; goto err_out_free_res; } err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); if (err) goto err_out_free_res; err = cciss_find_cfgtables(h); if (err) goto err_out_free_res; print_cfg_table(h); cciss_find_board_params(h); if (!CISS_signature_present(h)) { err = -ENODEV; goto err_out_free_res; } cciss_enable_scsi_prefetch(h); cciss_p600_dma_prefetch_quirk(h); cciss_put_controller_into_performant_mode(h); return 0; err_out_free_res: /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ if (h->transtable) iounmap(h->transtable); if (h->cfgtable) iounmap(h->cfgtable); if (h->vaddr) iounmap(h->vaddr); pci_release_regions(h->pdev); return err; } /* Function to find the first free pointer into our hba[] array * Returns -1 if no free entries are left. */ static int alloc_cciss_hba(struct pci_dev *pdev) { int i; for (i = 0; i < MAX_CTLR; i++) { if (!hba[i]) { ctlr_info_t *h; h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); if (!h) goto Enomem; hba[i] = h; return i; } } dev_warn(&pdev->dev, "This driver supports a maximum" " of %d controllers.\n", MAX_CTLR); return -1; Enomem: dev_warn(&pdev->dev, "out of memory.\n"); return -1; } static void free_hba(ctlr_info_t *h) { int i; hba[h->ctlr] = NULL; for (i = 0; i < h->highest_lun + 1; i++) if (h->gendisk[i] != NULL) put_disk(h->gendisk[i]); kfree(h); } /* Send a message CDB to the firmware. */ static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) { typedef struct { CommandListHeader_struct CommandHeader; RequestBlock_struct Request; ErrDescriptor_struct ErrorDescriptor; } Command; static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); Command *cmd; dma_addr_t paddr64; uint32_t paddr32, tag; void __iomem *vaddr; int i, err; vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (vaddr == NULL) return -ENOMEM; /* The Inbound Post Queue only accepts 32-bit physical addresses for the CCISS commands, so they must be allocated from the lower 4GiB of memory. */ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { iounmap(vaddr); return -ENOMEM; } cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); if (cmd == NULL) { iounmap(vaddr); return -ENOMEM; } /* This must fit, because of the 32-bit consistent DMA mask. Also, although there's no guarantee, we assume that the address is at least 4-byte aligned (most likely, it's page-aligned). */ paddr32 = paddr64; cmd->CommandHeader.ReplyQueue = 0; cmd->CommandHeader.SGList = 0; cmd->CommandHeader.SGTotal = 0; cmd->CommandHeader.Tag.lower = paddr32; cmd->CommandHeader.Tag.upper = 0; memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); cmd->Request.CDBLen = 16; cmd->Request.Type.Type = TYPE_MSG; cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; cmd->Request.Type.Direction = XFER_NONE; cmd->Request.Timeout = 0; /* Don't time out */ cmd->Request.CDB[0] = opcode; cmd->Request.CDB[1] = type; memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); cmd->ErrorDescriptor.Addr.upper = 0; cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); for (i = 0; i < 10; i++) { tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); if ((tag & ~3) == paddr32) break; schedule_timeout_uninterruptible(HZ); } iounmap(vaddr); /* we leak the DMA buffer here ... no choice since the controller could still complete the command. */ if (i == 10) { dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", opcode, type); return -ETIMEDOUT; } pci_free_consistent(pdev, cmd_sz, cmd, paddr64); if (tag & 2) { dev_err(&pdev->dev, "controller message %02x:%02x failed\n", opcode, type); return -EIO; } dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", opcode, type); return 0; } #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0) #define cciss_noop(p) cciss_message(p, 3, 0) static int cciss_controller_hard_reset(struct pci_dev *pdev, void * __iomem vaddr, bool use_doorbell) { u16 pmcsr; int pos; if (use_doorbell) { /* For everything after the P600, the PCI power state method * of resetting the controller doesn't work, so we have this * other way using the doorbell register. */ dev_info(&pdev->dev, "using doorbell to reset controller\n"); writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL); msleep(1000); } else { /* Try to do it the PCI power state way */ /* Quoting from the Open CISS Specification: "The Power * Management Control/Status Register (CSR) controls the power * state of the device. The normal operating state is D0, * CSR=00h. The software off state is D3, CSR=03h. To reset * the controller, place the interface device in D3 then to D0, * this causes a secondary PCI reset which will reset the * controller." */ pos = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pos == 0) { dev_err(&pdev->dev, "cciss_controller_hard_reset: " "PCI PM not supported\n"); return -ENODEV; } dev_info(&pdev->dev, "using PCI PM to reset controller\n"); /* enter the D3hot power management state */ pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D3hot; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); msleep(500); /* enter the D0 power management state */ pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D0; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); msleep(500); } return 0; } /* This does a hard reset of the controller using PCI power management * states or using the doorbell register. */ static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; void __iomem *vaddr; unsigned long paddr; u32 misc_fw_support, active_transport; int rc; CfgTable_struct __iomem *cfgtable; bool use_doorbell; u32 board_id; u16 command_register; /* For controllers as old a the p600, this is very nearly * the same thing as * * pci_save_state(pci_dev); * pci_set_power_state(pci_dev, PCI_D3hot); * pci_set_power_state(pci_dev, PCI_D0); * pci_restore_state(pci_dev); * * For controllers newer than the P600, the pci power state * method of resetting doesn't work so we have another way * using the doorbell register. */ /* Exclude 640x boards. These are two pci devices in one slot * which share a battery backed cache module. One controls the * cache, the other accesses the cache through the one that controls * it. If we reset the one controlling the cache, the other will * likely not be happy. Just forbid resetting this conjoined mess. */ cciss_lookup_board_id(pdev, &board_id); if (board_id == 0x409C0E11 || board_id == 0x409D0E11) { dev_warn(&pdev->dev, "Cannot reset Smart Array 640x " "due to shared cache module."); return -ENODEV; } /* Save the PCI command register */ pci_read_config_word(pdev, 4, &command_register); /* Turn the board off. This is so that later pci_restore_state() * won't turn the board on before the rest of config space is ready. */ pci_disable_device(pdev); pci_save_state(pdev); /* find the first memory BAR, so we can find the cfg table */ rc = cciss_pci_find_memory_BAR(pdev, &paddr); if (rc) return rc; vaddr = remap_pci_mem(paddr, 0x250); if (!vaddr) return -ENOMEM; /* find cfgtable in order to check if reset via doorbell is supported */ rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) goto unmap_vaddr; cfgtable = remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); if (!cfgtable) { rc = -ENOMEM; goto unmap_vaddr; } /* If reset via doorbell register is supported, use that. */ misc_fw_support = readl(&cfgtable->misc_fw_support); use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; /* The doorbell reset seems to cause lockups on some Smart * Arrays (e.g. P410, P410i, maybe others). Until this is * fixed or at least isolated, avoid the doorbell reset. */ use_doorbell = 0; rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell); if (rc) goto unmap_cfgtable; pci_restore_state(pdev); rc = pci_enable_device(pdev); if (rc) { dev_warn(&pdev->dev, "failed to enable device.\n"); goto unmap_cfgtable; } pci_write_config_word(pdev, 4, command_register); /* Some devices (notably the HP Smart Array 5i Controller) need a little pause here */ msleep(CCISS_POST_RESET_PAUSE_MSECS); /* Wait for board to become not ready, then ready. */ dev_info(&pdev->dev, "Waiting for board to become ready.\n"); rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); if (rc) /* Don't bail, might be E500, etc. which can't be reset */ dev_warn(&pdev->dev, "failed waiting for board to become not ready\n"); rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY); if (rc) { dev_warn(&pdev->dev, "failed waiting for board to become ready\n"); goto unmap_cfgtable; } dev_info(&pdev->dev, "board ready.\n"); /* Controller should be in simple mode at this point. If it's not, * It means we're on one of those controllers which doesn't support * the doorbell reset method and on which the PCI power management reset * method doesn't work (P800, for example.) * In those cases, don't try to proceed, as it generally doesn't work. */ active_transport = readl(&cfgtable->TransportActive); if (active_transport & PERFORMANT_MODE) { dev_warn(&pdev->dev, "Unable to successfully reset controller," " Ignoring controller.\n"); rc = -ENODEV; } unmap_cfgtable: iounmap(cfgtable); unmap_vaddr: iounmap(vaddr); return rc; } static __devinit int cciss_init_reset_devices(struct pci_dev *pdev) { int rc, i; if (!reset_devices) return 0; /* Reset the controller with a PCI power-cycle or via doorbell */ rc = cciss_kdump_hard_reset_controller(pdev); /* -ENOTSUPP here means we cannot reset the controller * but it's already (and still) up and running in * "performant mode". Or, it might be 640x, which can't reset * due to concerns about shared bbwc between 6402/6404 pair. */ if (rc == -ENOTSUPP) return 0; /* just try to do the kdump anyhow. */ if (rc) return -ENODEV; /* Now try to get the controller to respond to a no-op */ for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) { if (cciss_noop(pdev) == 0) break; else dev_warn(&pdev->dev, "no-op failed%s\n", (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ? "; re-trying" : "")); msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS); } return 0; } /* * This is it. Find all the controllers and register them. I really hate * stealing all these major device numbers. * returns the number of block devices registered. */ static int __devinit cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int i; int j = 0; int k = 0; int rc; int dac, return_code; InquiryData_struct *inq_buff; ctlr_info_t *h; rc = cciss_init_reset_devices(pdev); if (rc) return rc; i = alloc_cciss_hba(pdev); if (i < 0) return -1; h = hba[i]; h->pdev = pdev; h->busy_initializing = 1; INIT_LIST_HEAD(&h->cmpQ); INIT_LIST_HEAD(&h->reqQ); mutex_init(&h->busy_shutting_down); if (cciss_pci_init(h) != 0) goto clean_no_release_regions; sprintf(h->devname, "cciss%d", i); h->ctlr = i; init_completion(&h->scan_wait); if (cciss_create_hba_sysfs_entry(h)) goto clean0; /* configure PCI DMA stuff */ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) dac = 1; else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) dac = 0; else { dev_err(&h->pdev->dev, "no suitable DMA available\n"); goto clean1; } /* * register with the major number, or get a dynamic major number * by passing 0 as argument. This is done for greater than * 8 controller support. */ if (i < MAX_CTLR_ORIG) h->major = COMPAQ_CISS_MAJOR + i; rc = register_blkdev(h->major, h->devname); if (rc == -EBUSY || rc == -EINVAL) { dev_err(&h->pdev->dev, "Unable to get major number %d for %s " "on hba %d\n", h->major, h->devname, i); goto clean1; } else { if (i >= MAX_CTLR_ORIG) h->major = rc; } /* make sure the board interrupts are off */ h->access.set_intr_mask(h, CCISS_INTR_OFF); if (h->msi_vector || h->msix_vector) { if (request_irq(h->intr[PERF_MODE_INT], do_cciss_msix_intr, IRQF_DISABLED, h->devname, h)) { dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n", h->intr[PERF_MODE_INT], h->devname); goto clean2; } } else { if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx, IRQF_DISABLED, h->devname, h)) { dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n", h->intr[PERF_MODE_INT], h->devname); goto clean2; } } dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", h->devname, pdev->device, pci_name(pdev), h->intr[PERF_MODE_INT], dac ? "" : " not"); h->cmd_pool_bits = kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); h->cmd_pool = (CommandList_struct *) pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct), &(h->cmd_pool_dhandle)); h->errinfo_pool = (ErrorInfo_struct *) pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct), &(h->errinfo_pool_dhandle)); if ((h->cmd_pool_bits == NULL) || (h->cmd_pool == NULL) || (h->errinfo_pool == NULL)) { dev_err(&h->pdev->dev, "out of memory"); goto clean4; } /* Need space for temp scatter list */ h->scatter_list = kmalloc(h->max_commands * sizeof(struct scatterlist *), GFP_KERNEL); if (!h->scatter_list) goto clean4; for (k = 0; k < h->nr_cmds; k++) { h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) * h->maxsgentries, GFP_KERNEL); if (h->scatter_list[k] == NULL) { dev_err(&h->pdev->dev, "could not allocate s/g lists\n"); goto clean4; } } h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h, h->chainsize, h->nr_cmds); if (!h->cmd_sg_list && h->chainsize > 0) goto clean4; spin_lock_init(&h->lock); /* Initialize the pdev driver private data. have it point to h. */ pci_set_drvdata(pdev, h); /* command and error info recs zeroed out before they are used */ memset(h->cmd_pool_bits, 0, DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long)); h->num_luns = 0; h->highest_lun = -1; for (j = 0; j < CISS_MAX_LUN; j++) { h->drv[j] = NULL; h->gendisk[j] = NULL; } cciss_scsi_setup(h); /* Turn the interrupts on so we can service requests */ h->access.set_intr_mask(h, CCISS_INTR_ON); /* Get the firmware version */ inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { dev_err(&h->pdev->dev, "out of memory\n"); goto clean4; } return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD); if (return_code == IO_OK) { h->firm_ver[0] = inq_buff->data_byte[32]; h->firm_ver[1] = inq_buff->data_byte[33]; h->firm_ver[2] = inq_buff->data_byte[34]; h->firm_ver[3] = inq_buff->data_byte[35]; } else { /* send command failed */ dev_warn(&h->pdev->dev, "unable to determine firmware" " version of controller\n"); } kfree(inq_buff); cciss_procinit(h); h->cciss_max_sectors = 8192; rebuild_lun_table(h, 1, 0); h->busy_initializing = 0; return 1; clean4: kfree(h->cmd_pool_bits); /* Free up sg elements */ for (k-- ; k >= 0; k--) kfree(h->scatter_list[k]); kfree(h->scatter_list); cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); if (h->cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct), h->cmd_pool, h->cmd_pool_dhandle); if (h->errinfo_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct), h->errinfo_pool, h->errinfo_pool_dhandle); free_irq(h->intr[PERF_MODE_INT], h); clean2: unregister_blkdev(h->major, h->devname); clean1: cciss_destroy_hba_sysfs_entry(h); clean0: pci_release_regions(pdev); clean_no_release_regions: h->busy_initializing = 0; /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ pci_set_drvdata(pdev, NULL); free_hba(h); return -1; } static void cciss_shutdown(struct pci_dev *pdev) { ctlr_info_t *h; char *flush_buf; int return_code; h = pci_get_drvdata(pdev); flush_buf = kzalloc(4, GFP_KERNEL); if (!flush_buf) { dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n"); return; } /* write all data in the battery backed cache to disk */ memset(flush_buf, 0, 4); return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf, 4, 0, CTLR_LUNID, TYPE_CMD); kfree(flush_buf); if (return_code != IO_OK) dev_warn(&h->pdev->dev, "Error flushing cache\n"); h->access.set_intr_mask(h, CCISS_INTR_OFF); free_irq(h->intr[PERF_MODE_INT], h); } static void __devexit cciss_remove_one(struct pci_dev *pdev) { ctlr_info_t *h; int i, j; if (pci_get_drvdata(pdev) == NULL) { dev_err(&pdev->dev, "Unable to remove device\n"); return; } h = pci_get_drvdata(pdev); i = h->ctlr; if (hba[i] == NULL) { dev_err(&pdev->dev, "device appears to already be removed\n"); return; } mutex_lock(&h->busy_shutting_down); remove_from_scan_list(h); remove_proc_entry(h->devname, proc_cciss); unregister_blkdev(h->major, h->devname); /* remove it from the disk list */ for (j = 0; j < CISS_MAX_LUN; j++) { struct gendisk *disk = h->gendisk[j]; if (disk) { struct request_queue *q = disk->queue; if (disk->flags & GENHD_FL_UP) { cciss_destroy_ld_sysfs_entry(h, j, 1); del_gendisk(disk); } if (q) blk_cleanup_queue(q); } } #ifdef CONFIG_CISS_SCSI_TAPE cciss_unregister_scsi(h); /* unhook from SCSI subsystem */ #endif cciss_shutdown(pdev); #ifdef CONFIG_PCI_MSI if (h->msix_vector) pci_disable_msix(h->pdev); else if (h->msi_vector) pci_disable_msi(h->pdev); #endif /* CONFIG_PCI_MSI */ iounmap(h->transtable); iounmap(h->cfgtable); iounmap(h->vaddr); pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct), h->cmd_pool, h->cmd_pool_dhandle); pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct), h->errinfo_pool, h->errinfo_pool_dhandle); kfree(h->cmd_pool_bits); /* Free up sg elements */ for (j = 0; j < h->nr_cmds; j++) kfree(h->scatter_list[j]); kfree(h->scatter_list); cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); cciss_destroy_hba_sysfs_entry(h); mutex_unlock(&h->busy_shutting_down); free_hba(h); } static struct pci_driver cciss_pci_driver = { .name = "cciss", .probe = cciss_init_one, .remove = __devexit_p(cciss_remove_one), .id_table = cciss_pci_device_id, /* id_table */ .shutdown = cciss_shutdown, }; /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ static int __init cciss_init(void) { int err; /* * The hardware requires that commands are aligned on a 64-bit * boundary. Given that we use pci_alloc_consistent() to allocate an * array of them, the size must be a multiple of 8 bytes. */ BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT); printk(KERN_INFO DRIVER_NAME "\n"); err = bus_register(&cciss_bus_type); if (err) return err; /* Start the scan thread */ cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan"); if (IS_ERR(cciss_scan_thread)) { err = PTR_ERR(cciss_scan_thread); goto err_bus_unregister; } /* Register for our PCI devices */ err = pci_register_driver(&cciss_pci_driver); if (err) goto err_thread_stop; return err; err_thread_stop: kthread_stop(cciss_scan_thread); err_bus_unregister: bus_unregister(&cciss_bus_type); return err; } static void __exit cciss_cleanup(void) { int i; pci_unregister_driver(&cciss_pci_driver); /* double check that all controller entrys have been removed */ for (i = 0; i < MAX_CTLR; i++) { if (hba[i] != NULL) { dev_warn(&hba[i]->pdev->dev, "had to remove controller\n"); cciss_remove_one(hba[i]->pdev); } } kthread_stop(cciss_scan_thread); if (proc_cciss) remove_proc_entry("driver/cciss", NULL); bus_unregister(&cciss_bus_type); } module_init(cciss_init); module_exit(cciss_cleanup);