/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KVM_X86_MMU_INTERNAL_H #define __KVM_X86_MMU_INTERNAL_H #include #include #include #undef MMU_DEBUG #ifdef MMU_DEBUG extern bool dbg; #define pgprintk(x...) do { if (dbg) printk(x); } while (0) #define rmap_printk(fmt, args...) do { if (dbg) printk("%s: " fmt, __func__, ## args); } while (0) #define MMU_WARN_ON(x) WARN_ON(x) #else #define pgprintk(x...) do { } while (0) #define rmap_printk(x...) do { } while (0) #define MMU_WARN_ON(x) do { } while (0) #endif /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */ #define __PT_LEVEL_SHIFT(level, bits_per_level) \ (PAGE_SHIFT + ((level) - 1) * (bits_per_level)) #define __PT_INDEX(address, level, bits_per_level) \ (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1)) #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \ ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \ ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) #define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level)) /* * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT * bit, and thus are guaranteed to be non-zero when valid. And, when a guest * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE, * as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use * '0' instead of INVALID_PAGE to indicate an invalid PAE root. */ #define INVALID_PAE_ROOT 0 #define IS_VALID_PAE_ROOT(x) (!!(x)) typedef u64 __rcu *tdp_ptep_t; struct kvm_mmu_page { /* * Note, "link" through "spt" fit in a single 64 byte cache line on * 64-bit kernels, keep it that way unless there's a reason not to. */ struct list_head link; struct hlist_node hash_link; bool tdp_mmu_page; bool unsync; u8 mmu_valid_gen; /* * The shadow page can't be replaced by an equivalent huge page * because it is being used to map an executable page in the guest * and the NX huge page mitigation is enabled. */ bool nx_huge_page_disallowed; /* * The following two entries are used to key the shadow page in the * hash table. */ union kvm_mmu_page_role role; gfn_t gfn; u64 *spt; /* * Stores the result of the guest translation being shadowed by each * SPTE. KVM shadows two types of guest translations: nGPA -> GPA * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both * cases the result of the translation is a GPA and a set of access * constraints. * * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed * access permissions are stored in the lower bits. Note, for * convenience and uniformity across guests, the access permissions are * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format. */ u64 *shadowed_translation; /* Currently serving as active root */ union { int root_count; refcount_t tdp_mmu_root_count; }; unsigned int unsync_children; union { struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ tdp_ptep_t ptep; }; union { DECLARE_BITMAP(unsync_child_bitmap, 512); struct { struct work_struct tdp_mmu_async_work; void *tdp_mmu_async_data; }; }; /* * Tracks shadow pages that, if zapped, would allow KVM to create an NX * huge page. A shadow page will have nx_huge_page_disallowed set but * not be on the list if a huge page is disallowed for other reasons, * e.g. because KVM is shadowing a PTE at the same gfn, the memslot * isn't properly aligned, etc... */ struct list_head possible_nx_huge_page_link; #ifdef CONFIG_X86_32 /* * Used out of the mmu-lock to avoid reading spte values while an * update is in progress; see the comments in __get_spte_lockless(). */ int clear_spte_count; #endif /* Number of writes since the last time traversal visited this page. */ atomic_t write_flooding_count; #ifdef CONFIG_X86_64 /* Used for freeing the page asynchronously if it is a TDP MMU page. */ struct rcu_head rcu_head; #endif }; extern struct kmem_cache *mmu_page_header_cache; static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role) { return role.smm ? 1 : 0; } static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) { return kvm_mmu_role_as_id(sp->role); } static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp) { /* * When using the EPT page-modification log, the GPAs in the CPU dirty * log would come from L2 rather than L1. Therefore, we need to rely * on write protection to record dirty pages, which bypasses PML, since * writes now result in a vmexit. Note, the check on CPU dirty logging * being enabled is mandatory as the bits used to denote WP-only SPTEs * are reserved for PAE paging (32-bit KVM). */ return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode; } static inline gfn_t gfn_round_for_level(gfn_t gfn, int level) { return gfn & -KVM_PAGES_PER_HPAGE(level); } int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, bool can_unsync, bool prefetch); void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn); void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn); bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, struct kvm_memory_slot *slot, u64 gfn, int min_level); void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, u64 start_gfn, u64 pages); unsigned int pte_list_count(struct kvm_rmap_head *rmap_head); extern int nx_huge_pages; static inline bool is_nx_huge_page_enabled(struct kvm *kvm) { return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages; } struct kvm_page_fault { /* arguments to kvm_mmu_do_page_fault. */ const gpa_t addr; const u32 error_code; const bool prefetch; /* Derived from error_code. */ const bool exec; const bool write; const bool present; const bool rsvd; const bool user; /* Derived from mmu and global state. */ const bool is_tdp; const bool nx_huge_page_workaround_enabled; /* * Whether a >4KB mapping can be created or is forbidden due to NX * hugepages. */ bool huge_page_disallowed; /* * Maximum page size that can be created for this fault; input to * FNAME(fetch), direct_map() and kvm_tdp_mmu_map(). */ u8 max_level; /* * Page size that can be created based on the max_level and the * page size used by the host mapping. */ u8 req_level; /* * Page size that will be created based on the req_level and * huge_page_disallowed. */ u8 goal_level; /* Shifted addr, or result of guest page table walk if addr is a gva. */ gfn_t gfn; /* The memslot containing gfn. May be NULL. */ struct kvm_memory_slot *slot; /* Outputs of kvm_faultin_pfn. */ unsigned long mmu_seq; kvm_pfn_t pfn; hva_t hva; bool map_writable; }; int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); /* * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(), * and of course kvm_mmu_do_page_fault(). * * RET_PF_CONTINUE: So far, so good, keep handling the page fault. * RET_PF_RETRY: let CPU fault again on the address. * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. * RET_PF_FIXED: The faulting entry has been fixed. * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU. * * Any names added to this enum should be exported to userspace for use in * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h * * Note, all values must be greater than or equal to zero so as not to encroach * on -errno return values. Somewhat arbitrarily use '0' for CONTINUE, which * will allow for efficient machine code when checking for CONTINUE, e.g. * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero. */ enum { RET_PF_CONTINUE = 0, RET_PF_RETRY, RET_PF_EMULATE, RET_PF_INVALID, RET_PF_FIXED, RET_PF_SPURIOUS, }; static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err, bool prefetch) { struct kvm_page_fault fault = { .addr = cr2_or_gpa, .error_code = err, .exec = err & PFERR_FETCH_MASK, .write = err & PFERR_WRITE_MASK, .present = err & PFERR_PRESENT_MASK, .rsvd = err & PFERR_RSVD_MASK, .user = err & PFERR_USER_MASK, .prefetch = prefetch, .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault), .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(vcpu->kvm), .max_level = KVM_MAX_HUGEPAGE_LEVEL, .req_level = PG_LEVEL_4K, .goal_level = PG_LEVEL_4K, }; int r; if (vcpu->arch.mmu->root_role.direct) { fault.gfn = fault.addr >> PAGE_SHIFT; fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn); } /* * Async #PF "faults", a.k.a. prefetch faults, are not faults from the * guest perspective and have already been counted at the time of the * original fault. */ if (!prefetch) vcpu->stat.pf_taken++; if (IS_ENABLED(CONFIG_RETPOLINE) && fault.is_tdp) r = kvm_tdp_page_fault(vcpu, &fault); else r = vcpu->arch.mmu->page_fault(vcpu, &fault); /* * Similar to above, prefetch faults aren't truly spurious, and the * async #PF path doesn't do emulation. Do count faults that are fixed * by the async #PF handler though, otherwise they'll never be counted. */ if (r == RET_PF_FIXED) vcpu->stat.pf_fixed++; else if (prefetch) ; else if (r == RET_PF_EMULATE) vcpu->stat.pf_emulate++; else if (r == RET_PF_SPURIOUS) vcpu->stat.pf_spurious++; return r; } int kvm_mmu_max_mapping_level(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, int max_level); void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level); void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp); void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp); #endif /* __KVM_X86_MMU_INTERNAL_H */