#ifndef _M68K_DMA_H #define _M68K_DMA_H 1 #ifdef CONFIG_COLDFIRE /* * ColdFire DMA Model: * ColdFire DMA supports two forms of DMA: Single and Dual address. Single * address mode emits a source address, and expects that the device will either * pick up the data (DMA READ) or source data (DMA WRITE). This implies that * the device will place data on the correct byte(s) of the data bus, as the * memory transactions are always 32 bits. This implies that only 32 bit * devices will find single mode transfers useful. Dual address DMA mode * performs two cycles: source read and destination write. ColdFire will * align the data so that the device will always get the correct bytes, thus * is useful for 8 and 16 bit devices. This is the mode that is supported * below. * * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de) * * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de) * * APR/18/2002 : added proper support for MCF5272 DMA controller. * Arthur Shipkowski (art@videon-central.com) */ #include #include #include /* * Set number of channels of DMA on ColdFire for different implementations. */ #if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407) || \ defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) #define MAX_M68K_DMA_CHANNELS 4 #elif defined(CONFIG_M5272) #define MAX_M68K_DMA_CHANNELS 1 #elif defined(CONFIG_M532x) #define MAX_M68K_DMA_CHANNELS 0 #else #define MAX_M68K_DMA_CHANNELS 2 #endif extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS]; extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS]; #if !defined(CONFIG_M5272) #define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */ #define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */ #define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */ #define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */ /* I/O to memory, 8 bits, mode */ #define DMA_MODE_READ 0 /* memory to I/O, 8 bits, mode */ #define DMA_MODE_WRITE 1 /* I/O to memory, 16 bits, mode */ #define DMA_MODE_READ_WORD 2 /* memory to I/O, 16 bits, mode */ #define DMA_MODE_WRITE_WORD 3 /* I/O to memory, 32 bits, mode */ #define DMA_MODE_READ_LONG 4 /* memory to I/O, 32 bits, mode */ #define DMA_MODE_WRITE_LONG 5 /* I/O to memory, 8 bits, single-address-mode */ #define DMA_MODE_READ_SINGLE 8 /* memory to I/O, 8 bits, single-address-mode */ #define DMA_MODE_WRITE_SINGLE 9 /* I/O to memory, 16 bits, single-address-mode */ #define DMA_MODE_READ_WORD_SINGLE 10 /* memory to I/O, 16 bits, single-address-mode */ #define DMA_MODE_WRITE_WORD_SINGLE 11 /* I/O to memory, 32 bits, single-address-mode */ #define DMA_MODE_READ_LONG_SINGLE 12 /* memory to I/O, 32 bits, single-address-mode */ #define DMA_MODE_WRITE_LONG_SINGLE 13 #else /* CONFIG_M5272 is defined */ /* Source static-address mode */ #define DMA_MODE_SRC_SA_BIT 0x01 /* Two bits to select between all four modes */ #define DMA_MODE_SSIZE_MASK 0x06 /* Offset to shift bits in */ #define DMA_MODE_SSIZE_OFF 0x01 /* Destination static-address mode */ #define DMA_MODE_DES_SA_BIT 0x10 /* Two bits to select between all four modes */ #define DMA_MODE_DSIZE_MASK 0x60 /* Offset to shift bits in */ #define DMA_MODE_DSIZE_OFF 0x05 /* Size modifiers */ #define DMA_MODE_SIZE_LONG 0x00 #define DMA_MODE_SIZE_BYTE 0x01 #define DMA_MODE_SIZE_WORD 0x02 #define DMA_MODE_SIZE_LINE 0x03 /* * Aliases to help speed quick ports; these may be suboptimal, however. They * do not include the SINGLE mode modifiers since the MCF5272 does not have a * mode where the device is in control of its addressing. */ /* I/O to memory, 8 bits, mode */ #define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) /* memory to I/O, 8 bits, mode */ #define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) /* I/O to memory, 16 bits, mode */ #define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) /* memory to I/O, 16 bits, mode */ #define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) /* I/O to memory, 32 bits, mode */ #define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) /* memory to I/O, 32 bits, mode */ #define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) #endif /* !defined(CONFIG_M5272) */ #if !defined(CONFIG_M5272) /* enable/disable a specific DMA channel */ static __inline__ void enable_dma(unsigned int dmanr) { volatile unsigned short *dmawp; #ifdef DMA_DEBUG printk("enable_dma(dmanr=%d)\n", dmanr); #endif dmawp = (unsigned short *) dma_base_addr[dmanr]; dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT; } static __inline__ void disable_dma(unsigned int dmanr) { volatile unsigned short *dmawp; volatile unsigned char *dmapb; #ifdef DMA_DEBUG printk("disable_dma(dmanr=%d)\n", dmanr); #endif dmawp = (unsigned short *) dma_base_addr[dmanr]; dmapb = (unsigned char *) dma_base_addr[dmanr]; /* Turn off external requests, and stop any DMA in progress */ dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT; dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE; } /* * Clear the 'DMA Pointer Flip Flop'. * Write 0 for LSB/MSB, 1 for MSB/LSB access. * Use this once to initialize the FF to a known state. * After that, keep track of it. :-) * --- In order to do that, the DMA routines below should --- * --- only be used while interrupts are disabled! --- * * This is a NOP for ColdFire. Provide a stub for compatibility. */ static __inline__ void clear_dma_ff(unsigned int dmanr) { } /* set mode (above) for a specific DMA channel */ static __inline__ void set_dma_mode(unsigned int dmanr, char mode) { volatile unsigned char *dmabp; volatile unsigned short *dmawp; #ifdef DMA_DEBUG printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode); #endif dmabp = (unsigned char *) dma_base_addr[dmanr]; dmawp = (unsigned short *) dma_base_addr[dmanr]; // Clear config errors dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE; // Set command register dmawp[MCFDMA_DCR] = MCFDMA_DCR_INT | // Enable completion irq MCFDMA_DCR_CS | // Force one xfer per request MCFDMA_DCR_AA | // Enable auto alignment // single-address-mode ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) | // sets s_rw (-> r/w) high if Memory to I/0 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) | // Memory to I/O or I/O to Memory ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) | // 32 bit, 16 bit or 8 bit transfers ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD : ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG : MCFDMA_DCR_SSIZE_BYTE)) | ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD : ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG : MCFDMA_DCR_DSIZE_BYTE)); #ifdef DEBUG_DMA printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__, dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR], (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]); #endif } /* Set transfer address for specific DMA channel */ static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) { volatile unsigned short *dmawp; volatile unsigned int *dmalp; #ifdef DMA_DEBUG printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a); #endif dmawp = (unsigned short *) dma_base_addr[dmanr]; dmalp = (unsigned int *) dma_base_addr[dmanr]; // Determine which address registers are used for memory/device accesses if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) { // Source incrementing, must be memory dmalp[MCFDMA_SAR] = a; // Set dest address, must be device dmalp[MCFDMA_DAR] = dma_device_address[dmanr]; } else { // Destination incrementing, must be memory dmalp[MCFDMA_DAR] = a; // Set source address, must be device dmalp[MCFDMA_SAR] = dma_device_address[dmanr]; } #ifdef DEBUG_DMA printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n", __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR], (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR], (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]); #endif } /* * Specific for Coldfire - sets device address. * Should be called after the mode set call, and before set DMA address. */ static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a) { #ifdef DMA_DEBUG printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a); #endif dma_device_address[dmanr] = a; } /* * NOTE 2: "count" represents _bytes_. */ static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) { volatile unsigned short *dmawp; #ifdef DMA_DEBUG printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count); #endif dmawp = (unsigned short *) dma_base_addr[dmanr]; dmawp[MCFDMA_BCR] = (unsigned short)count; } /* * Get DMA residue count. After a DMA transfer, this * should return zero. Reading this while a DMA transfer is * still in progress will return unpredictable results. * Otherwise, it returns the number of _bytes_ left to transfer. */ static __inline__ int get_dma_residue(unsigned int dmanr) { volatile unsigned short *dmawp; unsigned short count; #ifdef DMA_DEBUG printk("get_dma_residue(dmanr=%d)\n", dmanr); #endif dmawp = (unsigned short *) dma_base_addr[dmanr]; count = dmawp[MCFDMA_BCR]; return((int) count); } #else /* CONFIG_M5272 is defined */ /* * The MCF5272 DMA controller is very different than the controller defined above * in terms of register mapping. For instance, with the exception of the 16-bit * interrupt register (IRQ#85, for reference), all of the registers are 32-bit. * * The big difference, however, is the lack of device-requested DMA. All modes * are dual address transfer, and there is no 'device' setup or direction bit. * You can DMA between a device and memory, between memory and memory, or even between * two devices directly, with any combination of incrementing and non-incrementing * addresses you choose. This puts a crimp in distinguishing between the 'device * address' set up by set_dma_device_addr. * * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr, * which will act exactly as above in -- it will look to see if the source is set to * autoincrement, and if so it will make the source use the set_dma_addr value and the * destination the set_dma_device_addr value. Otherwise the source will be set to the * set_dma_device_addr value and the destination will get the set_dma_addr value. * * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions * and make it explicit. Depending on what you're doing, one of these two should work * for you, but don't mix them in the same transfer setup. */ /* enable/disable a specific DMA channel */ static __inline__ void enable_dma(unsigned int dmanr) { volatile unsigned int *dmalp; #ifdef DMA_DEBUG printk("enable_dma(dmanr=%d)\n", dmanr); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN; } static __inline__ void disable_dma(unsigned int dmanr) { volatile unsigned int *dmalp; #ifdef DMA_DEBUG printk("disable_dma(dmanr=%d)\n", dmanr); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; /* Turn off external requests, and stop any DMA in progress */ dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN; dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET; } /* * Clear the 'DMA Pointer Flip Flop'. * Write 0 for LSB/MSB, 1 for MSB/LSB access. * Use this once to initialize the FF to a known state. * After that, keep track of it. :-) * --- In order to do that, the DMA routines below should --- * --- only be used while interrupts are disabled! --- * * This is a NOP for ColdFire. Provide a stub for compatibility. */ static __inline__ void clear_dma_ff(unsigned int dmanr) { } /* set mode (above) for a specific DMA channel */ static __inline__ void set_dma_mode(unsigned int dmanr, char mode) { volatile unsigned int *dmalp; volatile unsigned short *dmawp; #ifdef DMA_DEBUG printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; dmawp = (unsigned short *) dma_base_addr[dmanr]; // Clear config errors dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET; // Set command register dmalp[MCFDMA_DMR] = MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data. MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data. // source static-address-mode ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) | // dest static-address-mode ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) | // burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) | (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF); dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */ #ifdef DEBUG_DMA printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__, dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR], (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]); #endif } /* Set transfer address for specific DMA channel */ static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) { volatile unsigned int *dmalp; #ifdef DMA_DEBUG printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; // Determine which address registers are used for memory/device accesses if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) { // Source incrementing, must be memory dmalp[MCFDMA_DSAR] = a; // Set dest address, must be device dmalp[MCFDMA_DDAR] = dma_device_address[dmanr]; } else { // Destination incrementing, must be memory dmalp[MCFDMA_DDAR] = a; // Set source address, must be device dmalp[MCFDMA_DSAR] = dma_device_address[dmanr]; } #ifdef DEBUG_DMA printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n", __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR], (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR], (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]); #endif } /* * Specific for Coldfire - sets device address. * Should be called after the mode set call, and before set DMA address. */ static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a) { #ifdef DMA_DEBUG printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a); #endif dma_device_address[dmanr] = a; } /* * NOTE 2: "count" represents _bytes_. * * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value. */ static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) { volatile unsigned int *dmalp; #ifdef DMA_DEBUG printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; dmalp[MCFDMA_DBCR] = count; } /* * Get DMA residue count. After a DMA transfer, this * should return zero. Reading this while a DMA transfer is * still in progress will return unpredictable results. * Otherwise, it returns the number of _bytes_ left to transfer. */ static __inline__ int get_dma_residue(unsigned int dmanr) { volatile unsigned int *dmalp; unsigned int count; #ifdef DMA_DEBUG printk("get_dma_residue(dmanr=%d)\n", dmanr); #endif dmalp = (unsigned int *) dma_base_addr[dmanr]; count = dmalp[MCFDMA_DBCR]; return(count); } #endif /* !defined(CONFIG_M5272) */ #endif /* CONFIG_COLDFIRE */ /* it's useless on the m68k, but unfortunately needed by the new bootmem allocator (but this should do it for this) */ #define MAX_DMA_ADDRESS PAGE_OFFSET #define MAX_DMA_CHANNELS 8 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ extern void free_dma(unsigned int dmanr); /* release it again */ #define isa_dma_bridge_buggy (0) #endif /* _M68K_DMA_H */