// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/kvm/coproc.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Authors: Rusty Russell * Christoffer Dall */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sys_regs.h" #include "vgic/vgic.h" #include "trace.h" /* * For AArch32, we only take care of what is being trapped. Anything * that has to do with init and userspace access has to go via the * 64bit interface. */ static u64 sys_reg_to_index(const struct sys_reg_desc *reg); static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val); static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { kvm_inject_undefined(vcpu); return false; } static bool bad_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r, const char *msg) { WARN_ONCE(1, "Unexpected %s\n", msg); print_sys_reg_instr(params); return undef_access(vcpu, params, r); } static bool read_from_write_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { return bad_trap(vcpu, params, r, "sys_reg read to write-only register"); } static bool write_to_read_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { return bad_trap(vcpu, params, r, "sys_reg write to read-only register"); } #define PURE_EL2_SYSREG(el2) \ case el2: { \ *el1r = el2; \ return true; \ } #define MAPPED_EL2_SYSREG(el2, el1, fn) \ case el2: { \ *xlate = fn; \ *el1r = el1; \ return true; \ } static bool get_el2_to_el1_mapping(unsigned int reg, unsigned int *el1r, u64 (**xlate)(u64)) { switch (reg) { PURE_EL2_SYSREG( VPIDR_EL2 ); PURE_EL2_SYSREG( VMPIDR_EL2 ); PURE_EL2_SYSREG( ACTLR_EL2 ); PURE_EL2_SYSREG( HCR_EL2 ); PURE_EL2_SYSREG( MDCR_EL2 ); PURE_EL2_SYSREG( HSTR_EL2 ); PURE_EL2_SYSREG( HACR_EL2 ); PURE_EL2_SYSREG( VTTBR_EL2 ); PURE_EL2_SYSREG( VTCR_EL2 ); PURE_EL2_SYSREG( RVBAR_EL2 ); PURE_EL2_SYSREG( TPIDR_EL2 ); PURE_EL2_SYSREG( HPFAR_EL2 ); PURE_EL2_SYSREG( HCRX_EL2 ); PURE_EL2_SYSREG( HFGRTR_EL2 ); PURE_EL2_SYSREG( HFGWTR_EL2 ); PURE_EL2_SYSREG( HFGITR_EL2 ); PURE_EL2_SYSREG( HDFGRTR_EL2 ); PURE_EL2_SYSREG( HDFGWTR_EL2 ); PURE_EL2_SYSREG( HAFGRTR_EL2 ); PURE_EL2_SYSREG( CNTVOFF_EL2 ); PURE_EL2_SYSREG( CNTHCTL_EL2 ); MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, translate_sctlr_el2_to_sctlr_el1 ); MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, translate_cptr_el2_to_cpacr_el1 ); MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, translate_ttbr0_el2_to_ttbr0_el1 ); MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, translate_tcr_el2_to_tcr_el1 ); MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); MAPPED_EL2_SYSREG(TCR2_EL2, TCR2_EL1, NULL ); MAPPED_EL2_SYSREG(PIR_EL2, PIR_EL1, NULL ); MAPPED_EL2_SYSREG(PIRE0_EL2, PIRE0_EL1, NULL ); MAPPED_EL2_SYSREG(POR_EL2, POR_EL1, NULL ); MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL ); MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL ); default: return false; } } u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) { u64 val = 0x8badf00d8badf00d; u64 (*xlate)(u64) = NULL; unsigned int el1r; if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) goto memory_read; if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { if (!is_hyp_ctxt(vcpu)) goto memory_read; /* * CNTHCTL_EL2 requires some special treatment to * account for the bits that can be set via CNTKCTL_EL1. */ switch (reg) { case CNTHCTL_EL2: if (vcpu_el2_e2h_is_set(vcpu)) { val = read_sysreg_el1(SYS_CNTKCTL); val &= CNTKCTL_VALID_BITS; val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS; return val; } break; } /* * If this register does not have an EL1 counterpart, * then read the stored EL2 version. */ if (reg == el1r) goto memory_read; /* * If we have a non-VHE guest and that the sysreg * requires translation to be used at EL1, use the * in-memory copy instead. */ if (!vcpu_el2_e2h_is_set(vcpu) && xlate) goto memory_read; /* Get the current version of the EL1 counterpart. */ WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); if (reg >= __SANITISED_REG_START__) val = kvm_vcpu_apply_reg_masks(vcpu, reg, val); return val; } /* EL1 register can't be on the CPU if the guest is in vEL2. */ if (unlikely(is_hyp_ctxt(vcpu))) goto memory_read; if (__vcpu_read_sys_reg_from_cpu(reg, &val)) return val; memory_read: return __vcpu_sys_reg(vcpu, reg); } void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) { u64 (*xlate)(u64) = NULL; unsigned int el1r; if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) goto memory_write; if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { if (!is_hyp_ctxt(vcpu)) goto memory_write; /* * Always store a copy of the write to memory to avoid having * to reverse-translate virtual EL2 system registers for a * non-VHE guest hypervisor. */ __vcpu_sys_reg(vcpu, reg) = val; switch (reg) { case CNTHCTL_EL2: /* * If E2H=0, CNHTCTL_EL2 is a pure shadow register. * Otherwise, some of the bits are backed by * CNTKCTL_EL1, while the rest is kept in memory. * Yes, this is fun stuff. */ if (vcpu_el2_e2h_is_set(vcpu)) write_sysreg_el1(val, SYS_CNTKCTL); return; } /* No EL1 counterpart? We're done here.? */ if (reg == el1r) return; if (!vcpu_el2_e2h_is_set(vcpu) && xlate) val = xlate(val); /* Redirect this to the EL1 version of the register. */ WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); return; } /* EL1 register can't be on the CPU if the guest is in vEL2. */ if (unlikely(is_hyp_ctxt(vcpu))) goto memory_write; if (__vcpu_write_sys_reg_to_cpu(val, reg)) return; memory_write: __vcpu_sys_reg(vcpu, reg) = val; } /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ #define CSSELR_MAX 14 /* * Returns the minimum line size for the selected cache, expressed as * Log2(bytes). */ static u8 get_min_cache_line_size(bool icache) { u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); u8 field; if (icache) field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); else field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); /* * Cache line size is represented as Log2(words) in CTR_EL0. * Log2(bytes) can be derived with the following: * * Log2(words) + 2 = Log2(bytes / 4) + 2 * = Log2(bytes) - 2 + 2 * = Log2(bytes) */ return field + 2; } /* Which cache CCSIDR represents depends on CSSELR value. */ static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) { u8 line_size; if (vcpu->arch.ccsidr) return vcpu->arch.ccsidr[csselr]; line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); /* * Fabricate a CCSIDR value as the overriding value does not exist. * The real CCSIDR value will not be used as it can vary by the * physical CPU which the vcpu currently resides in. * * The line size is determined with get_min_cache_line_size(), which * should be valid for all CPUs even if they have different cache * configuration. * * The associativity bits are cleared, meaning the geometry of all data * and unified caches (which are guaranteed to be PIPT and thus * non-aliasing) are 1 set and 1 way. * Guests should not be doing cache operations by set/way at all, and * for this reason, we trap them and attempt to infer the intent, so * that we can flush the entire guest's address space at the appropriate * time. The exposed geometry minimizes the number of the traps. * [If guests should attempt to infer aliasing properties from the * geometry (which is not permitted by the architecture), they would * only do so for virtually indexed caches.] * * We don't check if the cache level exists as it is allowed to return * an UNKNOWN value if not. */ return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); } static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) { u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; u32 *ccsidr = vcpu->arch.ccsidr; u32 i; if ((val & CCSIDR_EL1_RES0) || line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) return -EINVAL; if (!ccsidr) { if (val == get_ccsidr(vcpu, csselr)) return 0; ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); if (!ccsidr) return -ENOMEM; for (i = 0; i < CSSELR_MAX; i++) ccsidr[i] = get_ccsidr(vcpu, i); vcpu->arch.ccsidr = ccsidr; } ccsidr[csselr] = val; return 0; } static bool access_rw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, r->reg); else p->regval = vcpu_read_sys_reg(vcpu, r->reg); return true; } /* * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). */ static bool access_dcsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * Only track S/W ops if we don't have FWB. It still indicates * that the guest is a bit broken (S/W operations should only * be done by firmware, knowing that there is only a single * CPU left in the system, and certainly not from non-secure * software). */ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) kvm_set_way_flush(vcpu); return true; } static bool access_dcgsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!kvm_has_mte(vcpu->kvm)) return undef_access(vcpu, p, r); /* Treat MTE S/W ops as we treat the classic ones: with contempt */ return access_dcsw(vcpu, p, r); } static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) { switch (r->aarch32_map) { case AA32_LO: *mask = GENMASK_ULL(31, 0); *shift = 0; break; case AA32_HI: *mask = GENMASK_ULL(63, 32); *shift = 32; break; default: *mask = GENMASK_ULL(63, 0); *shift = 0; break; } } /* * Generic accessor for VM registers. Only called as long as HCR_TVM * is set. If the guest enables the MMU, we stop trapping the VM * sys_regs and leave it in complete control of the caches. */ static bool access_vm_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool was_enabled = vcpu_has_cache_enabled(vcpu); u64 val, mask, shift; BUG_ON(!p->is_write); get_access_mask(r, &mask, &shift); if (~mask) { val = vcpu_read_sys_reg(vcpu, r->reg); val &= ~mask; } else { val = 0; } val |= (p->regval & (mask >> shift)) << shift; vcpu_write_sys_reg(vcpu, val, r->reg); kvm_toggle_cache(vcpu, was_enabled); return true; } static bool access_actlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask, shift; if (p->is_write) return ignore_write(vcpu, p); get_access_mask(r, &mask, &shift); p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; return true; } /* * Trap handler for the GICv3 SGI generation system register. * Forward the request to the VGIC emulation. * The cp15_64 code makes sure this automatically works * for both AArch64 and AArch32 accesses. */ static bool access_gic_sgi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool g1; if (!kvm_has_gicv3(vcpu->kvm)) return undef_access(vcpu, p, r); if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure * group. */ if (p->Op0 == 0) { /* AArch32 */ switch (p->Op1) { default: /* Keep GCC quiet */ case 0: /* ICC_SGI1R */ g1 = true; break; case 1: /* ICC_ASGI1R */ case 2: /* ICC_SGI0R */ g1 = false; break; } } else { /* AArch64 */ switch (p->Op2) { default: /* Keep GCC quiet */ case 5: /* ICC_SGI1R_EL1 */ g1 = true; break; case 6: /* ICC_ASGI1R_EL1 */ case 7: /* ICC_SGI0R_EL1 */ g1 = false; break; } } vgic_v3_dispatch_sgi(vcpu, p->regval, g1); return true; } static bool access_gic_sre(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!kvm_has_gicv3(vcpu->kvm)) return undef_access(vcpu, p, r); if (p->is_write) return ignore_write(vcpu, p); p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; return true; } static bool trap_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); else return read_zero(vcpu, p); } /* * ARMv8.1 mandates at least a trivial LORegion implementation, where all the * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 * system, these registers should UNDEF. LORID_EL1 being a RO register, we * treat it separately. */ static bool trap_loregion(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sr = reg_to_encoding(r); if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) return undef_access(vcpu, p, r); if (p->is_write && sr == SYS_LORID_EL1) return write_to_read_only(vcpu, p, r); return trap_raz_wi(vcpu, p, r); } static bool trap_oslar_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 oslsr; if (!p->is_write) return read_from_write_only(vcpu, p, r); /* Forward the OSLK bit to OSLSR */ oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; if (p->regval & OSLAR_EL1_OSLK) oslsr |= OSLSR_EL1_OSLK; __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; return true; } static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = __vcpu_sys_reg(vcpu, r->reg); return true; } static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { /* * The only modifiable bit is the OSLK bit. Refuse the write if * userspace attempts to change any other bit in the register. */ if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) return -EINVAL; __vcpu_sys_reg(vcpu, rd->reg) = val; return 0; } static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { p->regval = read_sysreg(dbgauthstatus_el1); return true; } } /* * We want to avoid world-switching all the DBG registers all the * time: * * - If we've touched any debug register, it is likely that we're * going to touch more of them. It then makes sense to disable the * traps and start doing the save/restore dance * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is * then mandatory to save/restore the registers, as the guest * depends on them. * * For this, we use a DIRTY bit, indicating the guest has modified the * debug registers, used as follow: * * On guest entry: * - If the dirty bit is set (because we're coming back from trapping), * disable the traps, save host registers, restore guest registers. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), * set the dirty bit, disable the traps, save host registers, * restore guest registers. * - Otherwise, enable the traps * * On guest exit: * - If the dirty bit is set, save guest registers, restore host * registers and clear the dirty bit. This ensure that the host can * now use the debug registers. */ static bool trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { access_rw(vcpu, p, r); if (p->is_write) vcpu_set_flag(vcpu, DEBUG_DIRTY); trace_trap_reg(__func__, r->reg, p->is_write, p->regval); return true; } /* * reg_to_dbg/dbg_to_reg * * A 32 bit write to a debug register leave top bits alone * A 32 bit read from a debug register only returns the bottom bits * * All writes will set the DEBUG_DIRTY flag to ensure the hyp code * switches between host and guest values in future. */ static void reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg) { u64 mask, shift, val; get_access_mask(rd, &mask, &shift); val = *dbg_reg; val &= ~mask; val |= (p->regval & (mask >> shift)) << shift; *dbg_reg = val; vcpu_set_flag(vcpu, DEBUG_DIRTY); } static void dbg_to_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg) { u64 mask, shift; get_access_mask(rd, &mask, &shift); p->regval = (*dbg_reg & mask) >> shift; } static bool trap_bvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; return 0; } static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; return 0; } static u64 reset_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; return rd->val; } static bool trap_bcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; return 0; } static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; return 0; } static u64 reset_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; return rd->val; } static bool trap_wvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); return true; } static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; return 0; } static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; return 0; } static u64 reset_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; return rd->val; } static bool trap_wcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; return 0; } static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; return 0; } static u64 reset_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; return rd->val; } static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 amair = read_sysreg(amair_el1); vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); return amair; } static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 actlr = read_sysreg(actlr_el1); vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); return actlr; } static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mpidr; /* * Map the vcpu_id into the first three affinity level fields of * the MPIDR. We limit the number of VCPUs in level 0 due to a * limitation to 16 CPUs in that level in the ICC_SGIxR registers * of the GICv3 to be able to address each CPU directly when * sending IPIs. */ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); mpidr |= (1ULL << 31); vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); return mpidr; } static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { if (kvm_vcpu_has_pmu(vcpu)) return 0; return REG_HIDDEN; } static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); u8 n = vcpu->kvm->arch.pmcr_n; if (n) mask |= GENMASK(n - 1, 0); reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= mask; return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { /* This thing will UNDEF, who cares about the reset value? */ if (!kvm_vcpu_has_pmu(vcpu)) return 0; reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK; return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 pmcr = 0; if (!kvm_supports_32bit_el0()) pmcr |= ARMV8_PMU_PMCR_LC; /* * The value of PMCR.N field is included when the * vCPU register is read via kvm_vcpu_read_pmcr(). */ __vcpu_sys_reg(vcpu, r->reg) = pmcr; return __vcpu_sys_reg(vcpu, r->reg); } static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) { u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); if (!enabled) kvm_inject_undefined(vcpu); return !enabled; } static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); } static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); } static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); } static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); } static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val; if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { /* * Only update writeable bits of PMCR (continuing into * kvm_pmu_handle_pmcr() as well) */ val = kvm_vcpu_read_pmcr(vcpu); val &= ~ARMV8_PMU_PMCR_MASK; val |= p->regval & ARMV8_PMU_PMCR_MASK; if (!kvm_supports_32bit_el0()) val |= ARMV8_PMU_PMCR_LC; kvm_pmu_handle_pmcr(vcpu, val); } else { /* PMCR.P & PMCR.C are RAZ */ val = kvm_vcpu_read_pmcr(vcpu) & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); p->regval = val; } return true; } static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (pmu_access_event_counter_el0_disabled(vcpu)) return false; if (p->is_write) __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; else /* return PMSELR.SEL field */ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) & PMSELR_EL0_SEL_MASK; return true; } static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 pmceid, mask, shift; BUG_ON(p->is_write); if (pmu_access_el0_disabled(vcpu)) return false; get_access_mask(r, &mask, &shift); pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); pmceid &= mask; pmceid >>= shift; p->regval = pmceid; return true; } static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) { u64 pmcr, val; pmcr = kvm_vcpu_read_pmcr(vcpu); val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { kvm_inject_undefined(vcpu); return false; } return true; } static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { u64 idx; if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) /* PMCCNTR_EL0 */ idx = ARMV8_PMU_CYCLE_IDX; else /* PMEVCNTRn_EL0 */ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); *val = kvm_pmu_get_counter_value(vcpu, idx); return 0; } static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx = ~0UL; if (r->CRn == 9 && r->CRm == 13) { if (r->Op2 == 2) { /* PMXEVCNTR_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0)); } else if (r->Op2 == 0) { /* PMCCNTR_EL0 */ if (pmu_access_cycle_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } } else if (r->CRn == 0 && r->CRm == 9) { /* PMCCNTR */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } else if (r->CRn == 14 && (r->CRm & 12) == 8) { /* PMEVCNTRn_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); } /* Catch any decoding mistake */ WARN_ON(idx == ~0UL); if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { if (pmu_access_el0_disabled(vcpu)) return false; kvm_pmu_set_counter_value(vcpu, idx, p->regval); } else { p->regval = kvm_pmu_get_counter_value(vcpu, idx); } return true; } static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx, reg; if (pmu_access_el0_disabled(vcpu)) return false; if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { /* PMXEVTYPER_EL0 */ idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0)); reg = PMEVTYPER0_EL0 + idx; } else if (r->CRn == 14 && (r->CRm & 12) == 12) { idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); if (idx == ARMV8_PMU_CYCLE_IDX) reg = PMCCFILTR_EL0; else /* PMEVTYPERn_EL0 */ reg = PMEVTYPER0_EL0 + idx; } else { BUG(); } if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); kvm_vcpu_pmu_restore_guest(vcpu); } else { p->regval = __vcpu_sys_reg(vcpu, reg); } return true; } static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) { bool set; val &= kvm_pmu_accessible_counter_mask(vcpu); switch (r->reg) { case PMOVSSET_EL0: /* CRm[1] being set indicates a SET register, and CLR otherwise */ set = r->CRm & 2; break; default: /* Op2[0] being set indicates a SET register, and CLR otherwise */ set = r->Op2 & 1; break; } if (set) __vcpu_sys_reg(vcpu, r->reg) |= val; else __vcpu_sys_reg(vcpu, r->reg) &= ~val; return 0; } static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { u64 mask = kvm_pmu_accessible_counter_mask(vcpu); *val = __vcpu_sys_reg(vcpu, r->reg) & mask; return 0; } static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val, mask; if (pmu_access_el0_disabled(vcpu)) return false; mask = kvm_pmu_accessible_counter_mask(vcpu); if (p->is_write) { val = p->regval & mask; if (r->Op2 & 0x1) { /* accessing PMCNTENSET_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; kvm_pmu_enable_counter_mask(vcpu, val); kvm_vcpu_pmu_restore_guest(vcpu); } else { /* accessing PMCNTENCLR_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; kvm_pmu_disable_counter_mask(vcpu, val); } } else { p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); } return true; } static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_accessible_counter_mask(vcpu); if (check_pmu_access_disabled(vcpu, 0)) return false; if (p->is_write) { u64 val = p->regval & mask; if (r->Op2 & 0x1) /* accessing PMINTENSET_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; else /* accessing PMINTENCLR_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; } else { p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); } return true; } static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_accessible_counter_mask(vcpu); if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { if (r->CRm & 0x2) /* accessing PMOVSSET_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); else /* accessing PMOVSCLR_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); } else { p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); } return true; } static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask; if (!p->is_write) return read_from_write_only(vcpu, p, r); if (pmu_write_swinc_el0_disabled(vcpu)) return false; mask = kvm_pmu_accessible_counter_mask(vcpu); kvm_pmu_software_increment(vcpu, p->regval & mask); return true; } static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { if (!vcpu_mode_priv(vcpu)) return undef_access(vcpu, p, r); __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval & ARMV8_PMU_USERENR_MASK; } else { p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) & ARMV8_PMU_USERENR_MASK; } return true; } static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { *val = kvm_vcpu_read_pmcr(vcpu); return 0; } static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) { u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->arch.config_lock); /* * The vCPU can't have more counters than the PMU hardware * implements. Ignore this error to maintain compatibility * with the existing KVM behavior. */ if (!kvm_vm_has_ran_once(kvm) && new_n <= kvm_arm_pmu_get_max_counters(kvm)) kvm->arch.pmcr_n = new_n; mutex_unlock(&kvm->arch.config_lock); /* * Ignore writes to RES0 bits, read only bits that are cleared on * vCPU reset, and writable bits that KVM doesn't support yet. * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. * But, we leave the bit as it is here, as the vCPU's PMUver might * be changed later (NOTE: the bit will be cleared on first vCPU run * if necessary). */ val &= ARMV8_PMU_PMCR_MASK; /* The LC bit is RES1 when AArch32 is not supported */ if (!kvm_supports_32bit_el0()) val |= ARMV8_PMU_PMCR_LC; __vcpu_sys_reg(vcpu, r->reg) = val; return 0; } /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } #define PMU_SYS_REG(name) \ SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ .visibility = pmu_visibility /* Macro to expand the PMEVCNTRn_EL0 register */ #define PMU_PMEVCNTR_EL0(n) \ { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } /* Macro to expand the PMEVTYPERn_EL0 register */ #define PMU_PMEVTYPER_EL0(n) \ { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ .reset = reset_pmevtyper, \ .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } /* Macro to expand the AMU counter and type registers*/ #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; } /* * If we land here on a PtrAuth access, that is because we didn't * fixup the access on exit by allowing the PtrAuth sysregs. The only * way this happens is when the guest does not have PtrAuth support * enabled. */ #define __PTRAUTH_KEY(k) \ { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ .visibility = ptrauth_visibility} #define PTRAUTH_KEY(k) \ __PTRAUTH_KEY(k ## KEYLO_EL1), \ __PTRAUTH_KEY(k ## KEYHI_EL1) static bool access_arch_timer(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { enum kvm_arch_timers tmr; enum kvm_arch_timer_regs treg; u64 reg = reg_to_encoding(r); switch (reg) { case SYS_CNTP_TVAL_EL0: case SYS_AARCH32_CNTP_TVAL: tmr = TIMER_PTIMER; treg = TIMER_REG_TVAL; break; case SYS_CNTP_CTL_EL0: case SYS_AARCH32_CNTP_CTL: tmr = TIMER_PTIMER; treg = TIMER_REG_CTL; break; case SYS_CNTP_CVAL_EL0: case SYS_AARCH32_CNTP_CVAL: tmr = TIMER_PTIMER; treg = TIMER_REG_CVAL; break; case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: case SYS_AARCH32_CNTPCT: tmr = TIMER_PTIMER; treg = TIMER_REG_CNT; break; default: print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); return undef_access(vcpu, p, r); } if (p->is_write) kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); else p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); return true; } static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, s64 new, s64 cur) { struct arm64_ftr_bits kvm_ftr = *ftrp; /* Some features have different safe value type in KVM than host features */ switch (id) { case SYS_ID_AA64DFR0_EL1: switch (kvm_ftr.shift) { case ID_AA64DFR0_EL1_PMUVer_SHIFT: kvm_ftr.type = FTR_LOWER_SAFE; break; case ID_AA64DFR0_EL1_DebugVer_SHIFT: kvm_ftr.type = FTR_LOWER_SAFE; break; } break; case SYS_ID_DFR0_EL1: if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) kvm_ftr.type = FTR_LOWER_SAFE; break; } return arm64_ftr_safe_value(&kvm_ftr, new, cur); } /* * arm64_check_features() - Check if a feature register value constitutes * a subset of features indicated by the idreg's KVM sanitised limit. * * This function will check if each feature field of @val is the "safe" value * against idreg's KVM sanitised limit return from reset() callback. * If a field value in @val is the same as the one in limit, it is always * considered the safe value regardless For register fields that are not in * writable, only the value in limit is considered the safe value. * * Return: 0 if all the fields are safe. Otherwise, return negative errno. */ static int arm64_check_features(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { const struct arm64_ftr_reg *ftr_reg; const struct arm64_ftr_bits *ftrp = NULL; u32 id = reg_to_encoding(rd); u64 writable_mask = rd->val; u64 limit = rd->reset(vcpu, rd); u64 mask = 0; /* * Hidden and unallocated ID registers may not have a corresponding * struct arm64_ftr_reg. Of course, if the register is RAZ we know the * only safe value is 0. */ if (sysreg_visible_as_raz(vcpu, rd)) return val ? -E2BIG : 0; ftr_reg = get_arm64_ftr_reg(id); if (!ftr_reg) return -EINVAL; ftrp = ftr_reg->ftr_bits; for (; ftrp && ftrp->width; ftrp++) { s64 f_val, f_lim, safe_val; u64 ftr_mask; ftr_mask = arm64_ftr_mask(ftrp); if ((ftr_mask & writable_mask) != ftr_mask) continue; f_val = arm64_ftr_value(ftrp, val); f_lim = arm64_ftr_value(ftrp, limit); mask |= ftr_mask; if (f_val == f_lim) safe_val = f_val; else safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); if (safe_val != f_val) return -E2BIG; } /* For fields that are not writable, values in limit are the safe values. */ if ((val & ~mask) != (limit & ~mask)) return -E2BIG; return 0; } static u8 pmuver_to_perfmon(u8 pmuver) { switch (pmuver) { case ID_AA64DFR0_EL1_PMUVer_IMP: return ID_DFR0_EL1_PerfMon_PMUv3; case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: return ID_DFR0_EL1_PerfMon_IMPDEF; default: /* Anything ARMv8.1+ and NI have the same value. For now. */ return pmuver; } } static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val); static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val); /* Read a sanitised cpufeature ID register by sys_reg_desc */ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u32 id = reg_to_encoding(r); u64 val; if (sysreg_visible_as_raz(vcpu, r)) return 0; val = read_sanitised_ftr_reg(id); switch (id) { case SYS_ID_AA64DFR0_EL1: val = sanitise_id_aa64dfr0_el1(vcpu, val); break; case SYS_ID_AA64PFR0_EL1: val = sanitise_id_aa64pfr0_el1(vcpu, val); break; case SYS_ID_AA64PFR1_EL1: if (!kvm_has_mte(vcpu->kvm)) val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac); break; case SYS_ID_AA64PFR2_EL1: /* We only expose FPMR */ val &= ID_AA64PFR2_EL1_FPMR; break; case SYS_ID_AA64ISAR1_EL1: if (!vcpu_has_ptrauth(vcpu)) val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); break; case SYS_ID_AA64ISAR2_EL1: if (!vcpu_has_ptrauth(vcpu)) val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); if (!cpus_have_final_cap(ARM64_HAS_WFXT)) val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); break; case SYS_ID_AA64MMFR2_EL1: val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; break; case SYS_ID_AA64MMFR3_EL1: val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE | ID_AA64MMFR3_EL1_S1PIE; break; case SYS_ID_MMFR4_EL1: val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); break; } return val; } static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return __kvm_read_sanitised_id_reg(vcpu, r); } static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r)); } static bool is_feature_id_reg(u32 encoding) { return (sys_reg_Op0(encoding) == 3 && (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && sys_reg_CRn(encoding) == 0 && sys_reg_CRm(encoding) <= 7); } /* * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID * registers KVM maintains on a per-VM basis. */ static inline bool is_vm_ftr_id_reg(u32 id) { if (id == SYS_CTR_EL0) return true; return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && sys_reg_CRm(id) < 8); } static inline bool is_vcpu_ftr_id_reg(u32 id) { return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id); } static inline bool is_aa32_id_reg(u32 id) { return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && sys_reg_CRm(id) <= 3); } static unsigned int id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u32 id = reg_to_encoding(r); switch (id) { case SYS_ID_AA64ZFR0_EL1: if (!vcpu_has_sve(vcpu)) return REG_RAZ; break; } return 0; } static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { /* * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any * EL. Promote to RAZ/WI in order to guarantee consistency between * systems. */ if (!kvm_supports_32bit_el0()) return REG_RAZ | REG_USER_WI; return id_visibility(vcpu, r); } static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return REG_RAZ; } /* cpufeature ID register access trap handlers */ static bool access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = read_id_reg(vcpu, r); return true; } /* Visibility overrides for SVE-specific control registers */ static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (vcpu_has_sve(vcpu)) return 0; return REG_HIDDEN; } static unsigned int sme_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP)) return 0; return REG_HIDDEN; } static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_fpmr(vcpu->kvm)) return 0; return REG_HIDDEN; } static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val) { if (!vcpu_has_sve(vcpu)) val &= ~ID_AA64PFR0_EL1_SVE_MASK; /* * The default is to expose CSV2 == 1 if the HW isn't affected. * Although this is a per-CPU feature, we make it global because * asymmetric systems are just a nuisance. * * Userspace can override this as long as it doesn't promise * the impossible. */ if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { val &= ~ID_AA64PFR0_EL1_CSV2_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); } if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { val &= ~ID_AA64PFR0_EL1_CSV3_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); } if (kvm_vgic_global_state.type == VGIC_V3) { val &= ~ID_AA64PFR0_EL1_GIC_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); } val &= ~ID_AA64PFR0_EL1_AMU_MASK; /* * MPAM is disabled by default as KVM also needs a set of PARTID to * program the MPAMVPMx_EL2 PARTID remapping registers with. But some * older kernels let the guest see the ID bit. */ val &= ~ID_AA64PFR0_EL1_MPAM_MASK; return val; } #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ ({ \ u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ (val) &= ~reg##_##field##_MASK; \ (val) |= FIELD_PREP(reg##_##field##_MASK, \ min(__f_val, \ (u64)SYS_FIELD_VALUE(reg, field, limit))); \ (val); \ }) static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val) { val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); /* * Only initialize the PMU version if the vCPU was configured with one. */ val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; if (kvm_vcpu_has_pmu(vcpu)) val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, kvm_arm_pmu_get_pmuver_limit()); /* Hide SPE from guests */ val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; return val; } static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); /* * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously * exposed an IMP_DEF PMU to userspace and the guest on systems w/ * non-architectural PMUs. Of course, PMUv3 is the only game in town for * PMU virtualization, so the IMP_DEF value was rather user-hostile. * * At minimum, we're on the hook to allow values that were given to * userspace by KVM. Cover our tracks here and replace the IMP_DEF value * with a more sensible NI. The value of an ID register changing under * the nose of the guest is unfortunate, but is certainly no more * surprising than an ill-guided PMU driver poking at impdef system * registers that end in an UNDEF... */ if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; /* * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a * nonzero minimum safe value. */ if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) return -EINVAL; return set_id_reg(vcpu, rd, val); } static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); val &= ~ID_DFR0_EL1_PerfMon_MASK; if (kvm_vcpu_has_pmu(vcpu)) val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); return val; } static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { val &= ~ID_DFR0_EL1_PerfMon_MASK; perfmon = 0; } /* * Allow DFR0_EL1.PerfMon to be set from userspace as long as * it doesn't promise more than what the HW gives us on the * AArch64 side (as everything is emulated with that), and * that this is a PMUv3. */ if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) return -EINVAL; if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) return -EINVAL; return set_id_reg(vcpu, rd, val); } static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 user_val) { u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK; /* * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to * guests, but didn't add trap handling. KVM doesn't support MPAM and * always returns an UNDEF for these registers. The guest must see 0 * for this field. * * But KVM must also accept values from user-space that were provided * by KVM. On CPUs that support MPAM, permit user-space to write * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field. */ if ((hw_val & mpam_mask) == (user_val & mpam_mask)) user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK; return set_id_reg(vcpu, rd, user_val); } static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 user_val) { u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK; /* See set_id_aa64pfr0_el1 for comment about MPAM */ if ((hw_val & mpam_mask) == (user_val & mpam_mask)) user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; return set_id_reg(vcpu, rd, user_val); } static int set_ctr_el0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 user_val) { u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val); /* * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved. * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based * on what hardware reports. * * Using a VIPT software model on PIPT will lead to over invalidation, * but still correct. Hence, we can allow downgrading PIPT to VIPT, * but not the other way around. This is handled via arm64_ftr_safe_value() * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value * set as VIPT. */ switch (user_L1Ip) { case CTR_EL0_L1Ip_RESERVED_VPIPT: case CTR_EL0_L1Ip_RESERVED_AIVIVT: return -EINVAL; case CTR_EL0_L1Ip_VIPT: case CTR_EL0_L1Ip_PIPT: return set_id_reg(vcpu, rd, user_val); default: return -ENOENT; } } /* * cpufeature ID register user accessors * * For now, these registers are immutable for userspace, so no values * are stored, and for set_id_reg() we don't allow the effective value * to be changed. */ static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { /* * Avoid locking if the VM has already started, as the ID registers are * guaranteed to be invariant at that point. */ if (kvm_vm_has_ran_once(vcpu->kvm)) { *val = read_id_reg(vcpu, rd); return 0; } mutex_lock(&vcpu->kvm->arch.config_lock); *val = read_id_reg(vcpu, rd); mutex_unlock(&vcpu->kvm->arch.config_lock); return 0; } static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u32 id = reg_to_encoding(rd); int ret; mutex_lock(&vcpu->kvm->arch.config_lock); /* * Once the VM has started the ID registers are immutable. Reject any * write that does not match the final register value. */ if (kvm_vm_has_ran_once(vcpu->kvm)) { if (val != read_id_reg(vcpu, rd)) ret = -EBUSY; else ret = 0; mutex_unlock(&vcpu->kvm->arch.config_lock); return ret; } ret = arm64_check_features(vcpu, rd, val); if (!ret) kvm_set_vm_id_reg(vcpu->kvm, id, val); mutex_unlock(&vcpu->kvm->arch.config_lock); /* * arm64_check_features() returns -E2BIG to indicate the register's * feature set is a superset of the maximally-allowed register value. * While it would be nice to precisely describe this to userspace, the * existing UAPI for KVM_SET_ONE_REG has it that invalid register * writes return -EINVAL. */ if (ret == -E2BIG) ret = -EINVAL; return ret; } void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val) { u64 *p = __vm_id_reg(&kvm->arch, reg); lockdep_assert_held(&kvm->arch.config_lock); if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm)) return; *p = val; } static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = 0; return 0; } static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { return 0; } static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0); return true; } static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = __vcpu_sys_reg(vcpu, r->reg); return true; } /* * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary * by the physical CPU which the vcpu currently resides in. */ static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); u64 clidr; u8 loc; if ((ctr_el0 & CTR_EL0_IDC)) { /* * Data cache clean to the PoU is not required so LoUU and LoUIS * will not be set and a unified cache, which will be marked as * LoC, will be added. * * If not DIC, let the unified cache L2 so that an instruction * cache can be added as L1 later. */ loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); } else { /* * Data cache clean to the PoU is required so let L1 have a data * cache and mark it as LoUU and LoUIS. As L1 has a data cache, * it can be marked as LoC too. */ loc = 1; clidr = 1 << CLIDR_LOUU_SHIFT; clidr |= 1 << CLIDR_LOUIS_SHIFT; clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); } /* * Instruction cache invalidation to the PoU is required so let L1 have * an instruction cache. If L1 already has a data cache, it will be * CACHE_TYPE_SEPARATE. */ if (!(ctr_el0 & CTR_EL0_DIC)) clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); clidr |= loc << CLIDR_LOC_SHIFT; /* * Add tag cache unified to data cache. Allocation tags and data are * unified in a cache line so that it looks valid even if there is only * one cache line. */ if (kvm_has_mte(vcpu->kvm)) clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc); __vcpu_sys_reg(vcpu, r->reg) = clidr; return __vcpu_sys_reg(vcpu, r->reg); } static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) return -EINVAL; __vcpu_sys_reg(vcpu, rd->reg) = val; return 0; } static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { int reg = r->reg; if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, reg); else p->regval = vcpu_read_sys_reg(vcpu, reg); return true; } static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 csselr; if (p->is_write) return write_to_read_only(vcpu, p, r); csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; if (csselr < CSSELR_MAX) p->regval = get_ccsidr(vcpu, csselr); return true; } static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_mte(vcpu->kvm)) return 0; return REG_HIDDEN; } #define MTE_REG(name) { \ SYS_DESC(SYS_##name), \ .access = undef_access, \ .reset = reset_unknown, \ .reg = name, \ .visibility = mte_visibility, \ } static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (vcpu_has_nv(vcpu)) return 0; return REG_HIDDEN; } static bool bad_vncr_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { /* * We really shouldn't be here, and this is likely the result * of a misconfigured trap, as this register should target the * VNCR page, and nothing else. */ return bad_trap(vcpu, p, r, "trap of VNCR-backed register"); } static bool bad_redir_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { /* * We really shouldn't be here, and this is likely the result * of a misconfigured trap, as this register should target the * corresponding EL1, and nothing else. */ return bad_trap(vcpu, p, r, "trap of EL2 register redirected to EL1"); } #define EL2_REG(name, acc, rst, v) { \ SYS_DESC(SYS_##name), \ .access = acc, \ .reset = rst, \ .reg = name, \ .visibility = el2_visibility, \ .val = v, \ } #define EL2_REG_FILTERED(name, acc, rst, v, filter) { \ SYS_DESC(SYS_##name), \ .access = acc, \ .reset = rst, \ .reg = name, \ .visibility = filter, \ .val = v, \ } #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) /* * Since reset() callback and field val are not used for idregs, they will be * used for specific purposes for idregs. * The reset() would return KVM sanitised register value. The value would be the * same as the host kernel sanitised value if there is no KVM sanitisation. * The val would be used as a mask indicating writable fields for the idreg. * Only bits with 1 are writable from userspace. This mask might not be * necessary in the future whenever all ID registers are enabled as writable * from userspace. */ #define ID_DESC(name) \ SYS_DESC(SYS_##name), \ .access = access_id_reg, \ .get_user = get_id_reg \ /* sys_reg_desc initialiser for known cpufeature ID registers */ #define ID_SANITISED(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for known cpufeature ID registers */ #define AA32_ID_SANITISED(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = aa32_id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for writable ID registers */ #define ID_WRITABLE(name, mask) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = mask, \ } /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */ #define ID_FILTERED(sysreg, name, mask) { \ ID_DESC(sysreg), \ .set_user = set_##name, \ .visibility = id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = (mask), \ } /* * sys_reg_desc initialiser for architecturally unallocated cpufeature ID * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 * (1 <= crm < 8, 0 <= Op2 < 8). */ #define ID_UNALLOCATED(crm, op2) { \ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ .access = access_id_reg, \ .get_user = get_id_reg, \ .set_user = set_id_reg, \ .visibility = raz_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* * sys_reg_desc initialiser for known ID registers that we hide from guests. * For now, these are exposed just like unallocated ID regs: they appear * RAZ for the guest. */ #define ID_HIDDEN(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = raz_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } static bool access_sp_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; else p->regval = __vcpu_sys_reg(vcpu, SP_EL1); return true; } static bool access_elr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); else p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); return true; } static bool access_spsr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; else p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); return true; } static bool access_cntkctl_el12(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) __vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval; else p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1); return true; } static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 val = r->val; if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) val |= HCR_E2H; return __vcpu_sys_reg(vcpu, r->reg) = val; } static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, unsigned int (*fn)(const struct kvm_vcpu *, const struct sys_reg_desc *)) { return el2_visibility(vcpu, rd) ?: fn(vcpu, rd); } static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return __el2_visibility(vcpu, rd, sve_visibility); } static bool access_zcr_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { unsigned int vq; if (guest_hyp_sve_traps_enabled(vcpu)) { kvm_inject_nested_sve_trap(vcpu); return true; } if (!p->is_write) { p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2); return true; } vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1; vq = min(vq, vcpu_sve_max_vq(vcpu)); vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2); return true; } static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_s1poe(vcpu->kvm)) return 0; return REG_HIDDEN; } static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return __el2_visibility(vcpu, rd, s1poe_visibility); } static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_tcr2(vcpu->kvm)) return 0; return REG_HIDDEN; } static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return __el2_visibility(vcpu, rd, tcr2_visibility); } static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_s1pie(vcpu->kvm)) return 0; return REG_HIDDEN; } static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return __el2_visibility(vcpu, rd, s1pie_visibility); } /* * Architected system registers. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 * * Debug handling: We do trap most, if not all debug related system * registers. The implementation is good enough to ensure that a guest * can use these with minimal performance degradation. The drawback is * that we don't implement any of the external debug architecture. * This should be revisited if we ever encounter a more demanding * guest... */ static const struct sys_reg_desc sys_reg_descs[] = { DBG_BCR_BVR_WCR_WVR_EL1(0), DBG_BCR_BVR_WCR_WVR_EL1(1), { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, DBG_BCR_BVR_WCR_WVR_EL1(2), DBG_BCR_BVR_WCR_WVR_EL1(3), DBG_BCR_BVR_WCR_WVR_EL1(4), DBG_BCR_BVR_WCR_WVR_EL1(5), DBG_BCR_BVR_WCR_WVR_EL1(6), DBG_BCR_BVR_WCR_WVR_EL1(7), DBG_BCR_BVR_WCR_WVR_EL1(8), DBG_BCR_BVR_WCR_WVR_EL1(9), DBG_BCR_BVR_WCR_WVR_EL1(10), DBG_BCR_BVR_WCR_WVR_EL1(11), DBG_BCR_BVR_WCR_WVR_EL1(12), DBG_BCR_BVR_WCR_WVR_EL1(13), DBG_BCR_BVR_WCR_WVR_EL1(14), DBG_BCR_BVR_WCR_WVR_EL1(15), { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, // DBGDTR[TR]X_EL0 share the same encoding { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 }, { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, /* * ID regs: all ID_SANITISED() entries here must have corresponding * entries in arm64_ftr_regs[]. */ /* AArch64 mappings of the AArch32 ID registers */ /* CRm=1 */ AA32_ID_SANITISED(ID_PFR0_EL1), AA32_ID_SANITISED(ID_PFR1_EL1), { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg, .get_user = get_id_reg, .set_user = set_id_dfr0_el1, .visibility = aa32_id_visibility, .reset = read_sanitised_id_dfr0_el1, .val = ID_DFR0_EL1_PerfMon_MASK | ID_DFR0_EL1_CopDbg_MASK, }, ID_HIDDEN(ID_AFR0_EL1), AA32_ID_SANITISED(ID_MMFR0_EL1), AA32_ID_SANITISED(ID_MMFR1_EL1), AA32_ID_SANITISED(ID_MMFR2_EL1), AA32_ID_SANITISED(ID_MMFR3_EL1), /* CRm=2 */ AA32_ID_SANITISED(ID_ISAR0_EL1), AA32_ID_SANITISED(ID_ISAR1_EL1), AA32_ID_SANITISED(ID_ISAR2_EL1), AA32_ID_SANITISED(ID_ISAR3_EL1), AA32_ID_SANITISED(ID_ISAR4_EL1), AA32_ID_SANITISED(ID_ISAR5_EL1), AA32_ID_SANITISED(ID_MMFR4_EL1), AA32_ID_SANITISED(ID_ISAR6_EL1), /* CRm=3 */ AA32_ID_SANITISED(MVFR0_EL1), AA32_ID_SANITISED(MVFR1_EL1), AA32_ID_SANITISED(MVFR2_EL1), ID_UNALLOCATED(3,3), AA32_ID_SANITISED(ID_PFR2_EL1), ID_HIDDEN(ID_DFR1_EL1), AA32_ID_SANITISED(ID_MMFR5_EL1), ID_UNALLOCATED(3,7), /* AArch64 ID registers */ /* CRm=4 */ ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1, ~(ID_AA64PFR0_EL1_AMU | ID_AA64PFR0_EL1_MPAM | ID_AA64PFR0_EL1_SVE | ID_AA64PFR0_EL1_RAS | ID_AA64PFR0_EL1_AdvSIMD | ID_AA64PFR0_EL1_FP)), ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1, ~(ID_AA64PFR1_EL1_PFAR | ID_AA64PFR1_EL1_DF2 | ID_AA64PFR1_EL1_MTEX | ID_AA64PFR1_EL1_THE | ID_AA64PFR1_EL1_GCS | ID_AA64PFR1_EL1_MTE_frac | ID_AA64PFR1_EL1_NMI | ID_AA64PFR1_EL1_RNDR_trap | ID_AA64PFR1_EL1_SME | ID_AA64PFR1_EL1_RES0 | ID_AA64PFR1_EL1_MPAM_frac | ID_AA64PFR1_EL1_RAS_frac | ID_AA64PFR1_EL1_MTE)), ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR), ID_UNALLOCATED(4,3), ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), ID_HIDDEN(ID_AA64SMFR0_EL1), ID_UNALLOCATED(4,6), ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0), /* CRm=5 */ /* * Prior to FEAT_Debugv8.9, the architecture defines context-aware * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs). * KVM does not trap + emulate the breakpoint registers, and as such * cannot support a layout that misaligns with the underlying hardware. * While it may be possible to describe a subset that aligns with * hardware, just prevent changes to BRPs and CTX_CMPs altogether for * simplicity. * * See DDI0487K.a, section D2.8.3 Breakpoint types and linking * of breakpoints for more details. */ ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1, ID_AA64DFR0_EL1_DoubleLock_MASK | ID_AA64DFR0_EL1_WRPs_MASK | ID_AA64DFR0_EL1_PMUVer_MASK | ID_AA64DFR0_EL1_DebugVer_MASK), ID_SANITISED(ID_AA64DFR1_EL1), ID_UNALLOCATED(5,2), ID_UNALLOCATED(5,3), ID_HIDDEN(ID_AA64AFR0_EL1), ID_HIDDEN(ID_AA64AFR1_EL1), ID_UNALLOCATED(5,6), ID_UNALLOCATED(5,7), /* CRm=6 */ ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | ID_AA64ISAR1_EL1_GPA | ID_AA64ISAR1_EL1_API | ID_AA64ISAR1_EL1_APA)), ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | ID_AA64ISAR2_EL1_APA3 | ID_AA64ISAR2_EL1_GPA3)), ID_UNALLOCATED(6,3), ID_UNALLOCATED(6,4), ID_UNALLOCATED(6,5), ID_UNALLOCATED(6,6), ID_UNALLOCATED(6,7), /* CRm=7 */ ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | ID_AA64MMFR0_EL1_TGRAN4_2 | ID_AA64MMFR0_EL1_TGRAN64_2 | ID_AA64MMFR0_EL1_TGRAN16_2)), ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | ID_AA64MMFR1_EL1_HCX | ID_AA64MMFR1_EL1_TWED | ID_AA64MMFR1_EL1_XNX | ID_AA64MMFR1_EL1_VH | ID_AA64MMFR1_EL1_VMIDBits)), ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | ID_AA64MMFR2_EL1_EVT | ID_AA64MMFR2_EL1_FWB | ID_AA64MMFR2_EL1_IDS | ID_AA64MMFR2_EL1_NV | ID_AA64MMFR2_EL1_CCIDX)), ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1PIE | ID_AA64MMFR3_EL1_S1POE)), ID_SANITISED(ID_AA64MMFR4_EL1), ID_UNALLOCATED(7,5), ID_UNALLOCATED(7,6), ID_UNALLOCATED(7,7), { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, MTE_REG(RGSR_EL1), MTE_REG(GCR_EL1), { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, { SYS_DESC(SYS_TRFCR_EL1), undef_access }, { SYS_DESC(SYS_SMPRI_EL1), undef_access }, { SYS_DESC(SYS_SMCR_EL1), undef_access }, { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0, .visibility = tcr2_visibility }, PTRAUTH_KEY(APIA), PTRAUTH_KEY(APIB), PTRAUTH_KEY(APDA), PTRAUTH_KEY(APDB), PTRAUTH_KEY(APGA), { SYS_DESC(SYS_SPSR_EL1), access_spsr}, { SYS_DESC(SYS_ELR_EL1), access_elr}, { SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, MTE_REG(TFSR_EL1), MTE_REG(TFSRE0_EL1), { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, { SYS_DESC(SYS_PMSCR_EL1), undef_access }, { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, { SYS_DESC(SYS_PMSICR_EL1), undef_access }, { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, { SYS_DESC(SYS_PMBSR_EL1), undef_access }, /* PMBIDR_EL1 is not trapped */ { PMU_SYS_REG(PMINTENSET_EL1), .access = access_pminten, .reg = PMINTENSET_EL1, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMINTENCLR_EL1), .access = access_pminten, .reg = PMINTENSET_EL1, .get_user = get_pmreg, .set_user = set_pmreg }, { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1, .visibility = s1pie_visibility }, { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1, .visibility = s1pie_visibility }, { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1, .visibility = s1poe_visibility }, { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, { SYS_DESC(SYS_LORN_EL1), trap_loregion }, { SYS_DESC(SYS_LORC_EL1), trap_loregion }, { SYS_DESC(SYS_MPAMIDR_EL1), undef_access }, { SYS_DESC(SYS_LORID_EL1), trap_loregion }, { SYS_DESC(SYS_MPAM1_EL1), undef_access }, { SYS_DESC(SYS_MPAM0_EL1), undef_access }, { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, { SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, { SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 }, { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, { SYS_DESC(SYS_SMIDR_EL1), undef_access }, { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, ID_FILTERED(CTR_EL0, ctr_el0, CTR_EL0_DIC_MASK | CTR_EL0_IDC_MASK | CTR_EL0_DminLine_MASK | CTR_EL0_L1Ip_MASK | CTR_EL0_IminLine_MASK), { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility }, { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility }, { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, { PMU_SYS_REG(PMCNTENSET_EL0), .access = access_pmcnten, .reg = PMCNTENSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMCNTENCLR_EL0), .access = access_pmcnten, .reg = PMCNTENSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMOVSCLR_EL0), .access = access_pmovs, .reg = PMOVSSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, /* * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was * previously (and pointlessly) advertised in the past... */ { PMU_SYS_REG(PMSWINC_EL0), .get_user = get_raz_reg, .set_user = set_wi_reg, .access = access_pmswinc, .reset = NULL }, { PMU_SYS_REG(PMSELR_EL0), .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, { PMU_SYS_REG(PMCEID0_EL0), .access = access_pmceid, .reset = NULL }, { PMU_SYS_REG(PMCEID1_EL0), .access = access_pmceid, .reset = NULL }, { PMU_SYS_REG(PMCCNTR_EL0), .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, { PMU_SYS_REG(PMXEVTYPER_EL0), .access = access_pmu_evtyper, .reset = NULL }, { PMU_SYS_REG(PMXEVCNTR_EL0), .access = access_pmu_evcntr, .reset = NULL }, /* * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, { PMU_SYS_REG(PMOVSSET_EL0), .access = access_pmovs, .reg = PMOVSSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0, .visibility = s1poe_visibility }, { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, { SYS_DESC(SYS_AMCR_EL0), undef_access }, { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, AMU_AMEVCNTR0_EL0(0), AMU_AMEVCNTR0_EL0(1), AMU_AMEVCNTR0_EL0(2), AMU_AMEVCNTR0_EL0(3), AMU_AMEVCNTR0_EL0(4), AMU_AMEVCNTR0_EL0(5), AMU_AMEVCNTR0_EL0(6), AMU_AMEVCNTR0_EL0(7), AMU_AMEVCNTR0_EL0(8), AMU_AMEVCNTR0_EL0(9), AMU_AMEVCNTR0_EL0(10), AMU_AMEVCNTR0_EL0(11), AMU_AMEVCNTR0_EL0(12), AMU_AMEVCNTR0_EL0(13), AMU_AMEVCNTR0_EL0(14), AMU_AMEVCNTR0_EL0(15), AMU_AMEVTYPER0_EL0(0), AMU_AMEVTYPER0_EL0(1), AMU_AMEVTYPER0_EL0(2), AMU_AMEVTYPER0_EL0(3), AMU_AMEVTYPER0_EL0(4), AMU_AMEVTYPER0_EL0(5), AMU_AMEVTYPER0_EL0(6), AMU_AMEVTYPER0_EL0(7), AMU_AMEVTYPER0_EL0(8), AMU_AMEVTYPER0_EL0(9), AMU_AMEVTYPER0_EL0(10), AMU_AMEVTYPER0_EL0(11), AMU_AMEVTYPER0_EL0(12), AMU_AMEVTYPER0_EL0(13), AMU_AMEVTYPER0_EL0(14), AMU_AMEVTYPER0_EL0(15), AMU_AMEVCNTR1_EL0(0), AMU_AMEVCNTR1_EL0(1), AMU_AMEVCNTR1_EL0(2), AMU_AMEVCNTR1_EL0(3), AMU_AMEVCNTR1_EL0(4), AMU_AMEVCNTR1_EL0(5), AMU_AMEVCNTR1_EL0(6), AMU_AMEVCNTR1_EL0(7), AMU_AMEVCNTR1_EL0(8), AMU_AMEVCNTR1_EL0(9), AMU_AMEVCNTR1_EL0(10), AMU_AMEVCNTR1_EL0(11), AMU_AMEVCNTR1_EL0(12), AMU_AMEVCNTR1_EL0(13), AMU_AMEVCNTR1_EL0(14), AMU_AMEVCNTR1_EL0(15), AMU_AMEVTYPER1_EL0(0), AMU_AMEVTYPER1_EL0(1), AMU_AMEVTYPER1_EL0(2), AMU_AMEVTYPER1_EL0(3), AMU_AMEVTYPER1_EL0(4), AMU_AMEVTYPER1_EL0(5), AMU_AMEVTYPER1_EL0(6), AMU_AMEVTYPER1_EL0(7), AMU_AMEVTYPER1_EL0(8), AMU_AMEVTYPER1_EL0(9), AMU_AMEVTYPER1_EL0(10), AMU_AMEVTYPER1_EL0(11), AMU_AMEVTYPER1_EL0(12), AMU_AMEVTYPER1_EL0(13), AMU_AMEVTYPER1_EL0(14), AMU_AMEVTYPER1_EL0(15), { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, /* PMEVCNTRn_EL0 */ PMU_PMEVCNTR_EL0(0), PMU_PMEVCNTR_EL0(1), PMU_PMEVCNTR_EL0(2), PMU_PMEVCNTR_EL0(3), PMU_PMEVCNTR_EL0(4), PMU_PMEVCNTR_EL0(5), PMU_PMEVCNTR_EL0(6), PMU_PMEVCNTR_EL0(7), PMU_PMEVCNTR_EL0(8), PMU_PMEVCNTR_EL0(9), PMU_PMEVCNTR_EL0(10), PMU_PMEVCNTR_EL0(11), PMU_PMEVCNTR_EL0(12), PMU_PMEVCNTR_EL0(13), PMU_PMEVCNTR_EL0(14), PMU_PMEVCNTR_EL0(15), PMU_PMEVCNTR_EL0(16), PMU_PMEVCNTR_EL0(17), PMU_PMEVCNTR_EL0(18), PMU_PMEVCNTR_EL0(19), PMU_PMEVCNTR_EL0(20), PMU_PMEVCNTR_EL0(21), PMU_PMEVCNTR_EL0(22), PMU_PMEVCNTR_EL0(23), PMU_PMEVCNTR_EL0(24), PMU_PMEVCNTR_EL0(25), PMU_PMEVCNTR_EL0(26), PMU_PMEVCNTR_EL0(27), PMU_PMEVCNTR_EL0(28), PMU_PMEVCNTR_EL0(29), PMU_PMEVCNTR_EL0(30), /* PMEVTYPERn_EL0 */ PMU_PMEVTYPER_EL0(0), PMU_PMEVTYPER_EL0(1), PMU_PMEVTYPER_EL0(2), PMU_PMEVTYPER_EL0(3), PMU_PMEVTYPER_EL0(4), PMU_PMEVTYPER_EL0(5), PMU_PMEVTYPER_EL0(6), PMU_PMEVTYPER_EL0(7), PMU_PMEVTYPER_EL0(8), PMU_PMEVTYPER_EL0(9), PMU_PMEVTYPER_EL0(10), PMU_PMEVTYPER_EL0(11), PMU_PMEVTYPER_EL0(12), PMU_PMEVTYPER_EL0(13), PMU_PMEVTYPER_EL0(14), PMU_PMEVTYPER_EL0(15), PMU_PMEVTYPER_EL0(16), PMU_PMEVTYPER_EL0(17), PMU_PMEVTYPER_EL0(18), PMU_PMEVTYPER_EL0(19), PMU_PMEVTYPER_EL0(20), PMU_PMEVTYPER_EL0(21), PMU_PMEVTYPER_EL0(22), PMU_PMEVTYPER_EL0(23), PMU_PMEVTYPER_EL0(24), PMU_PMEVTYPER_EL0(25), PMU_PMEVTYPER_EL0(26), PMU_PMEVTYPER_EL0(27), PMU_PMEVTYPER_EL0(28), PMU_PMEVTYPER_EL0(29), PMU_PMEVTYPER_EL0(30), /* * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), EL2_REG(MDCR_EL2, access_rw, reset_val, 0), EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), EL2_REG_VNCR(HSTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), EL2_REG_VNCR(HACR_EL2, reset_val, 0), EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0, sve_el2_visibility), EL2_REG_VNCR(HCRX_EL2, reset_val, 0), EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1, tcr2_el2_visibility), EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), EL2_REG_VNCR(VTCR_EL2, reset_val, 0), { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 }, EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), EL2_REG_REDIR(SPSR_EL2, reset_val, 0), EL2_REG_REDIR(ELR_EL2, reset_val, 0), { SYS_DESC(SYS_SP_EL1), access_sp_el1}, /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi }, { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi }, { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi }, { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi }, { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 }, EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), EL2_REG_REDIR(ESR_EL2, reset_val, 0), { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 }, EL2_REG_REDIR(FAR_EL2, reset_val, 0), EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), EL2_REG(MAIR_EL2, access_rw, reset_val, 0), EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0, s1pie_el2_visibility), EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0, s1pie_el2_visibility), EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0, s1poe_el2_visibility), EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), { SYS_DESC(SYS_MPAMHCR_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPMV_EL2), undef_access }, { SYS_DESC(SYS_MPAM2_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM0_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM1_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM2_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM3_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM4_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM5_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM6_EL2), undef_access }, { SYS_DESC(SYS_MPAMVPM7_EL2), undef_access }, EL2_REG(VBAR_EL2, access_rw, reset_val, 0), EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), { SYS_DESC(SYS_RMR_EL2), undef_access }, EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0), EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 }, EL2_REG(SP_EL2, NULL, reset_unknown, 0), }; static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); __kvm_at_s1e01(vcpu, op, p->regval); return true; } static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); /* There is no FGT associated with AT S1E2A :-( */ if (op == OP_AT_S1E2A && !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) { kvm_inject_undefined(vcpu); return false; } __kvm_at_s1e2(vcpu, op, p->regval); return true; } static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); __kvm_at_s12(vcpu, op, p->regval); return true; } static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr) { struct kvm *kvm = vpcu->kvm; u8 CRm = sys_reg_CRm(instr); if (sys_reg_CRn(instr) == TLBI_CRn_nXS && !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) return false; if (CRm == TLBI_CRm_nROS && !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) return false; return true; } static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); write_lock(&vcpu->kvm->mmu_lock); /* * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the * corresponding VMIDs. */ kvm_nested_s2_unmap(vcpu->kvm, true); write_unlock(&vcpu->kvm->mmu_lock); return true; } static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr) { struct kvm *kvm = vpcu->kvm; u8 CRm = sys_reg_CRm(instr); u8 Op2 = sys_reg_Op2(instr); if (sys_reg_CRn(instr) == TLBI_CRn_nXS && !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) return false; if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) && !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) return false; if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) && !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) return false; if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) && !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) return false; return true; } /* Only defined here as this is an internal "abstraction" */ union tlbi_info { struct { u64 start; u64 size; } range; struct { u64 addr; } ipa; struct { u64 addr; u32 encoding; } va; }; static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu, const union tlbi_info *info) { /* * The unmap operation is allowed to drop the MMU lock and block, which * means that @mmu could be used for a different context than the one * currently being invalidated. * * This behavior is still safe, as: * * 1) The vCPU(s) that recycled the MMU are responsible for invalidating * the entire MMU before reusing it, which still honors the intent * of a TLBI. * * 2) Until the guest TLBI instruction is 'retired' (i.e. increment PC * and ERET to the guest), other vCPUs are allowed to use stale * translations. * * 3) Accidentally unmapping an unrelated MMU context is nonfatal, and * at worst may cause more aborts for shadow stage-2 fills. * * Dropping the MMU lock also implies that shadow stage-2 fills could * happen behind the back of the TLBI. This is still safe, though, as * the L1 needs to put its stage-2 in a consistent state before doing * the TLBI. */ kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true); } static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); u64 limit, vttbr; if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm)); kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), &(union tlbi_info) { .range = { .start = 0, .size = limit, }, }, s2_mmu_unmap_range); return true; } static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); u64 base, range, tg, num, scale; int shift; if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); /* * Because the shadow S2 structure doesn't necessarily reflect that * of the guest's S2 (different base granule size, for example), we * decide to ignore TTL and only use the described range. */ tg = FIELD_GET(GENMASK(47, 46), p->regval); scale = FIELD_GET(GENMASK(45, 44), p->regval); num = FIELD_GET(GENMASK(43, 39), p->regval); base = p->regval & GENMASK(36, 0); switch(tg) { case 1: shift = 12; break; case 2: shift = 14; break; case 3: default: /* IMPDEF: handle tg==0 as 64k */ shift = 16; break; } base <<= shift; range = __TLBI_RANGE_PAGES(num, scale) << shift; kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), &(union tlbi_info) { .range = { .start = base, .size = range, }, }, s2_mmu_unmap_range); return true; } static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu, const union tlbi_info *info) { unsigned long max_size; u64 base_addr; /* * We drop a number of things from the supplied value: * * - NS bit: we're non-secure only. * * - IPA[51:48]: We don't support 52bit IPA just yet... * * And of course, adjust the IPA to be on an actual address. */ base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12; max_size = compute_tlb_inval_range(mmu, info->ipa.addr); base_addr &= ~(max_size - 1); /* * See comment in s2_mmu_unmap_range() for why this is allowed to * reschedule. */ kvm_stage2_unmap_range(mmu, base_addr, max_size, true); } static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), &(union tlbi_info) { .ipa = { .addr = p->regval, }, }, s2_mmu_unmap_ipa); return true; } static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu, const union tlbi_info *info) { WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding)); } static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); /* * If we're here, this is because we've trapped on a EL1 TLBI * instruction that affects the EL1 translation regime while * we're running in a context that doesn't allow us to let the * HW do its thing (aka vEL2): * * - HCR_EL2.E2H == 0 : a non-VHE guest * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode * * We don't expect these helpers to ever be called when running * in a vEL1 context. */ WARN_ON(!vcpu_is_el2(vcpu)); if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), &(union tlbi_info) { .va = { .addr = p->regval, .encoding = sys_encoding, }, }, s2_mmu_tlbi_s1e1); return true; } #define SYS_INSN(insn, access_fn) \ { \ SYS_DESC(OP_##insn), \ .access = (access_fn), \ } static struct sys_reg_desc sys_insn_descs[] = { { SYS_DESC(SYS_DC_ISW), access_dcsw }, { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, SYS_INSN(AT_S1E1R, handle_at_s1e01), SYS_INSN(AT_S1E1W, handle_at_s1e01), SYS_INSN(AT_S1E0R, handle_at_s1e01), SYS_INSN(AT_S1E0W, handle_at_s1e01), SYS_INSN(AT_S1E1RP, handle_at_s1e01), SYS_INSN(AT_S1E1WP, handle_at_s1e01), { SYS_DESC(SYS_DC_CSW), access_dcsw }, { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, { SYS_DESC(SYS_DC_CISW), access_dcsw }, { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1), SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1), SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1), SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1), SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1), SYS_INSN(TLBI_VAE1, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1, handle_tlbi_el1), SYS_INSN(TLBI_VALE1, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1, handle_tlbi_el1), SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1), SYS_INSN(AT_S1E2R, handle_at_s1e2), SYS_INSN(AT_S1E2W, handle_at_s1e2), SYS_INSN(AT_S12E1R, handle_at_s12), SYS_INSN(AT_S12E1W, handle_at_s12), SYS_INSN(AT_S12E0R, handle_at_s12), SYS_INSN(AT_S12E0W, handle_at_s12), SYS_INSN(AT_S1E2A, handle_at_s1e2), SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is), SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is), SYS_INSN(TLBI_ALLE2OS, undef_access), SYS_INSN(TLBI_VAE2OS, undef_access), SYS_INSN(TLBI_ALLE1OS, handle_alle1is), SYS_INSN(TLBI_VALE2OS, undef_access), SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is), SYS_INSN(TLBI_RVAE2IS, undef_access), SYS_INSN(TLBI_RVALE2IS, undef_access), SYS_INSN(TLBI_ALLE1IS, handle_alle1is), SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is), SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is), SYS_INSN(TLBI_RVAE2OS, undef_access), SYS_INSN(TLBI_RVALE2OS, undef_access), SYS_INSN(TLBI_RVAE2, undef_access), SYS_INSN(TLBI_RVALE2, undef_access), SYS_INSN(TLBI_ALLE1, handle_alle1is), SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is), SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is), SYS_INSN(TLBI_ALLE2OSNXS, undef_access), SYS_INSN(TLBI_VAE2OSNXS, undef_access), SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is), SYS_INSN(TLBI_VALE2OSNXS, undef_access), SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is), SYS_INSN(TLBI_RVAE2ISNXS, undef_access), SYS_INSN(TLBI_RVALE2ISNXS, undef_access), SYS_INSN(TLBI_ALLE2ISNXS, undef_access), SYS_INSN(TLBI_VAE2ISNXS, undef_access), SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is), SYS_INSN(TLBI_VALE2ISNXS, undef_access), SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is), SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is), SYS_INSN(TLBI_RVAE2OSNXS, undef_access), SYS_INSN(TLBI_RVALE2OSNXS, undef_access), SYS_INSN(TLBI_RVAE2NXS, undef_access), SYS_INSN(TLBI_RVALE2NXS, undef_access), SYS_INSN(TLBI_ALLE2NXS, undef_access), SYS_INSN(TLBI_VAE2NXS, undef_access), SYS_INSN(TLBI_ALLE1NXS, handle_alle1is), SYS_INSN(TLBI_VALE2NXS, undef_access), SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is), }; static bool trap_dbgdidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1); u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); return true; } } /* * AArch32 debug register mappings * * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] * * None of the other registers share their location, so treat them as * if they were 64bit. */ #define DBG_BCR_BVR_WCR_WVR(n) \ /* DBGBVRn */ \ { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ /* DBGBCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ /* DBGWVRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ /* DBGWCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } #define DBGBXVR(n) \ { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } /* * Trapped cp14 registers. We generally ignore most of the external * debug, on the principle that they don't really make sense to a * guest. Revisit this one day, would this principle change. */ static const struct sys_reg_desc cp14_regs[] = { /* DBGDIDR */ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, /* DBGDTRRXext */ { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(0), /* DBGDSCRint */ { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(1), /* DBGDCCINT */ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, /* DBGDSCRext */ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, DBG_BCR_BVR_WCR_WVR(2), /* DBGDTR[RT]Xint */ { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, /* DBGDTR[RT]Xext */ { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(3), DBG_BCR_BVR_WCR_WVR(4), DBG_BCR_BVR_WCR_WVR(5), /* DBGWFAR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, /* DBGOSECCR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(6), /* DBGVCR */ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, DBG_BCR_BVR_WCR_WVR(7), DBG_BCR_BVR_WCR_WVR(8), DBG_BCR_BVR_WCR_WVR(9), DBG_BCR_BVR_WCR_WVR(10), DBG_BCR_BVR_WCR_WVR(11), DBG_BCR_BVR_WCR_WVR(12), DBG_BCR_BVR_WCR_WVR(13), DBG_BCR_BVR_WCR_WVR(14), DBG_BCR_BVR_WCR_WVR(15), /* DBGDRAR (32bit) */ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, DBGBXVR(0), /* DBGOSLAR */ { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, DBGBXVR(1), /* DBGOSLSR */ { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, DBGBXVR(2), DBGBXVR(3), /* DBGOSDLR */ { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, DBGBXVR(4), /* DBGPRCR */ { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, DBGBXVR(5), DBGBXVR(6), DBGBXVR(7), DBGBXVR(8), DBGBXVR(9), DBGBXVR(10), DBGBXVR(11), DBGBXVR(12), DBGBXVR(13), DBGBXVR(14), DBGBXVR(15), /* DBGDSAR (32bit) */ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, /* DBGDEVID2 */ { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, /* DBGDEVID1 */ { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, /* DBGDEVID */ { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, /* DBGCLAIMSET */ { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, /* DBGCLAIMCLR */ { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, /* DBGAUTHSTATUS */ { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, }; /* Trapped cp14 64bit registers */ static const struct sys_reg_desc cp14_64_regs[] = { /* DBGDRAR (64bit) */ { Op1( 0), CRm( 1), .access = trap_raz_wi }, /* DBGDSAR (64bit) */ { Op1( 0), CRm( 2), .access = trap_raz_wi }, }; #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ AA32(_map), \ Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ .visibility = pmu_visibility /* Macro to expand the PMEVCNTRn register */ #define PMU_PMEVCNTR(n) \ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ .access = access_pmu_evcntr } /* Macro to expand the PMEVTYPERn register */ #define PMU_PMEVTYPER(n) \ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ .access = access_pmu_evtyper } /* * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, * depending on the way they are accessed (as a 32bit or a 64bit * register). */ static const struct sys_reg_desc cp15_regs[] = { { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, /* ACTLR */ { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, /* ACTLR2 */ { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, /* TTBCR */ { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, /* TTBCR2 */ { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, /* DFSR */ { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, /* ADFSR */ { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, /* AIFSR */ { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, /* DFAR */ { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, /* IFAR */ { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, /* * DC{C,I,CI}SW operations: */ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, /* PMU */ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, /* PMMIR */ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, /* PRRR/MAIR0 */ { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, /* NMRR/MAIR1 */ { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, /* AMAIR0 */ { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, /* AMAIR1 */ { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, /* Arch Tmers */ { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, /* PMEVCNTRn */ PMU_PMEVCNTR(0), PMU_PMEVCNTR(1), PMU_PMEVCNTR(2), PMU_PMEVCNTR(3), PMU_PMEVCNTR(4), PMU_PMEVCNTR(5), PMU_PMEVCNTR(6), PMU_PMEVCNTR(7), PMU_PMEVCNTR(8), PMU_PMEVCNTR(9), PMU_PMEVCNTR(10), PMU_PMEVCNTR(11), PMU_PMEVCNTR(12), PMU_PMEVCNTR(13), PMU_PMEVCNTR(14), PMU_PMEVCNTR(15), PMU_PMEVCNTR(16), PMU_PMEVCNTR(17), PMU_PMEVCNTR(18), PMU_PMEVCNTR(19), PMU_PMEVCNTR(20), PMU_PMEVCNTR(21), PMU_PMEVCNTR(22), PMU_PMEVCNTR(23), PMU_PMEVCNTR(24), PMU_PMEVCNTR(25), PMU_PMEVCNTR(26), PMU_PMEVCNTR(27), PMU_PMEVCNTR(28), PMU_PMEVCNTR(29), PMU_PMEVCNTR(30), /* PMEVTYPERn */ PMU_PMEVTYPER(0), PMU_PMEVTYPER(1), PMU_PMEVTYPER(2), PMU_PMEVTYPER(3), PMU_PMEVTYPER(4), PMU_PMEVTYPER(5), PMU_PMEVTYPER(6), PMU_PMEVTYPER(7), PMU_PMEVTYPER(8), PMU_PMEVTYPER(9), PMU_PMEVTYPER(10), PMU_PMEVTYPER(11), PMU_PMEVTYPER(12), PMU_PMEVTYPER(13), PMU_PMEVTYPER(14), PMU_PMEVTYPER(15), PMU_PMEVTYPER(16), PMU_PMEVTYPER(17), PMU_PMEVTYPER(18), PMU_PMEVTYPER(19), PMU_PMEVTYPER(20), PMU_PMEVTYPER(21), PMU_PMEVTYPER(22), PMU_PMEVTYPER(23), PMU_PMEVTYPER(24), PMU_PMEVTYPER(25), PMU_PMEVTYPER(26), PMU_PMEVTYPER(27), PMU_PMEVTYPER(28), PMU_PMEVTYPER(29), PMU_PMEVTYPER(30), /* PMCCFILTR */ { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, /* CCSIDR2 */ { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, }; static const struct sys_reg_desc cp15_64_regs[] = { { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, }; static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, bool is_32) { unsigned int i; for (i = 0; i < n; i++) { if (!is_32 && table[i].reg && !table[i].reset) { kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n", &table[i], i, table[i].name); return false; } if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n", &table[i], i, table[i - 1].name, table[i].name); return false; } } return true; } int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) { kvm_inject_undefined(vcpu); return 1; } static void perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); /* Check for regs disabled by runtime config */ if (sysreg_hidden(vcpu, r)) { kvm_inject_undefined(vcpu); return; } /* * Not having an accessor means that we have configured a trap * that we don't know how to handle. This certainly qualifies * as a gross bug that should be fixed right away. */ BUG_ON(!r->access); /* Skip instruction if instructed so */ if (likely(r->access(vcpu, params, r))) kvm_incr_pc(vcpu); } /* * emulate_cp -- tries to match a sys_reg access in a handling table, and * call the corresponding trap handler. * * @params: pointer to the descriptor of the access * @table: array of trap descriptors * @num: size of the trap descriptor array * * Return true if the access has been handled, false if not. */ static bool emulate_cp(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *table, size_t num) { const struct sys_reg_desc *r; if (!table) return false; /* Not handled */ r = find_reg(params, table, num); if (r) { perform_access(vcpu, params, r); return true; } /* Not handled */ return false; } static void unhandled_cp_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); int cp = -1; switch (esr_ec) { case ESR_ELx_EC_CP15_32: case ESR_ELx_EC_CP15_64: cp = 15; break; case ESR_ELx_EC_CP14_MR: case ESR_ELx_EC_CP14_64: cp = 14; break; default: WARN_ON(1); } print_sys_reg_msg(params, "Unsupported guest CP%d access at: %08lx [%08lx]\n", cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); kvm_inject_undefined(vcpu); } /** * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @global: &struct sys_reg_desc * @nr_global: size of the @global array */ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global) { struct sys_reg_params params; u64 esr = kvm_vcpu_get_esr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int Rt2 = (esr >> 10) & 0x1f; params.CRm = (esr >> 1) & 0xf; params.is_write = ((esr & 1) == 0); params.Op0 = 0; params.Op1 = (esr >> 16) & 0xf; params.Op2 = 0; params.CRn = 0; /* * Make a 64-bit value out of Rt and Rt2. As we use the same trap * backends between AArch32 and AArch64, we get away with it. */ if (params.is_write) { params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; } /* * If the table contains a handler, handle the * potential register operation in the case of a read and return * with success. */ if (emulate_cp(vcpu, ¶ms, global, nr_global)) { /* Split up the value between registers for the read side */ if (!params.is_write) { vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); } return 1; } unhandled_cp_access(vcpu, ¶ms); return 1; } static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); /* * The CP10 ID registers are architecturally mapped to AArch64 feature * registers. Abuse that fact so we can rely on the AArch64 handler for accesses * from AArch32. */ static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) { u8 reg_id = (esr >> 10) & 0xf; bool valid; params->is_write = ((esr & 1) == 0); params->Op0 = 3; params->Op1 = 0; params->CRn = 0; params->CRm = 3; /* CP10 ID registers are read-only */ valid = !params->is_write; switch (reg_id) { /* MVFR0 */ case 0b0111: params->Op2 = 0; break; /* MVFR1 */ case 0b0110: params->Op2 = 1; break; /* MVFR2 */ case 0b0101: params->Op2 = 2; break; default: valid = false; } if (valid) return true; kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", params->is_write ? "write" : "read", reg_id); return false; } /** * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and * VFP Register' from AArch32. * @vcpu: The vCPU pointer * * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. * Work out the correct AArch64 system register encoding and reroute to the * AArch64 system register emulation. */ int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) { int Rt = kvm_vcpu_sys_get_rt(vcpu); u64 esr = kvm_vcpu_get_esr(vcpu); struct sys_reg_params params; /* UNDEF on any unhandled register access */ if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { kvm_inject_undefined(vcpu); return 1; } if (emulate_sys_reg(vcpu, ¶ms)) vcpu_set_reg(vcpu, Rt, params.regval); return 1; } /** * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where * CRn=0, which corresponds to the AArch32 feature * registers. * @vcpu: the vCPU pointer * @params: the system register access parameters. * * Our cp15 system register tables do not enumerate the AArch32 feature * registers. Conveniently, our AArch64 table does, and the AArch32 system * register encoding can be trivially remapped into the AArch64 for the feature * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. * * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit * System registers with (coproc=0b1111, CRn==c0)", read accesses from this * range are either UNKNOWN or RES0. Rerouting remains architectural as we * treat undefined registers in this range as RAZ. */ static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { int Rt = kvm_vcpu_sys_get_rt(vcpu); /* Treat impossible writes to RO registers as UNDEFINED */ if (params->is_write) { unhandled_cp_access(vcpu, params); return 1; } params->Op0 = 3; /* * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. * Avoid conflicting with future expansion of AArch64 feature registers * and simply treat them as RAZ here. */ if (params->CRm > 3) params->regval = 0; else if (!emulate_sys_reg(vcpu, params)) return 1; vcpu_set_reg(vcpu, Rt, params->regval); return 1; } /** * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @params: &struct sys_reg_params * @global: &struct sys_reg_desc * @nr_global: size of the @global array */ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *global, size_t nr_global) { int Rt = kvm_vcpu_sys_get_rt(vcpu); params->regval = vcpu_get_reg(vcpu, Rt); if (emulate_cp(vcpu, params, global, nr_global)) { if (!params->is_write) vcpu_set_reg(vcpu, Rt, params->regval); return 1; } unhandled_cp_access(vcpu, params); return 1; } int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) { return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); } int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) { struct sys_reg_params params; params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); /* * Certain AArch32 ID registers are handled by rerouting to the AArch64 * system register table. Registers in the ID range where CRm=0 are * excluded from this scheme as they do not trivially map into AArch64 * system register encodings. */ if (params.Op1 == 0 && params.CRn == 0 && params.CRm) return kvm_emulate_cp15_id_reg(vcpu, ¶ms); return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); } int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) { return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); } int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) { struct sys_reg_params params; params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); } /** * emulate_sys_reg - Emulate a guest access to an AArch64 system register * @vcpu: The VCPU pointer * @params: Decoded system register parameters * * Return: true if the system register access was successful, false otherwise. */ static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { const struct sys_reg_desc *r; r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); if (likely(r)) { perform_access(vcpu, params, r); return true; } print_sys_reg_msg(params, "Unsupported guest sys_reg access at: %lx [%08lx]\n", *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); kvm_inject_undefined(vcpu); return false; } static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos) { unsigned long i, idreg_idx = 0; for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { const struct sys_reg_desc *r = &sys_reg_descs[i]; if (!is_vm_ftr_id_reg(reg_to_encoding(r))) continue; if (idreg_idx == pos) return r; idreg_idx++; } return NULL; } static void *idregs_debug_start(struct seq_file *s, loff_t *pos) { struct kvm *kvm = s->private; u8 *iter; mutex_lock(&kvm->arch.config_lock); iter = &kvm->arch.idreg_debugfs_iter; if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && *iter == (u8)~0) { *iter = *pos; if (!idregs_debug_find(kvm, *iter)) iter = NULL; } else { iter = ERR_PTR(-EBUSY); } mutex_unlock(&kvm->arch.config_lock); return iter; } static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) { struct kvm *kvm = s->private; (*pos)++; if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) { kvm->arch.idreg_debugfs_iter++; return &kvm->arch.idreg_debugfs_iter; } return NULL; } static void idregs_debug_stop(struct seq_file *s, void *v) { struct kvm *kvm = s->private; if (IS_ERR(v)) return; mutex_lock(&kvm->arch.config_lock); kvm->arch.idreg_debugfs_iter = ~0; mutex_unlock(&kvm->arch.config_lock); } static int idregs_debug_show(struct seq_file *s, void *v) { const struct sys_reg_desc *desc; struct kvm *kvm = s->private; desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter); if (!desc->name) return 0; seq_printf(s, "%20s:\t%016llx\n", desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc))); return 0; } static const struct seq_operations idregs_debug_sops = { .start = idregs_debug_start, .next = idregs_debug_next, .stop = idregs_debug_stop, .show = idregs_debug_show, }; DEFINE_SEQ_ATTRIBUTE(idregs_debug); void kvm_sys_regs_create_debugfs(struct kvm *kvm) { kvm->arch.idreg_debugfs_iter = ~0; debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, &idregs_debug_fops); } static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg) { u32 id = reg_to_encoding(reg); struct kvm *kvm = vcpu->kvm; if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) return; kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg)); } static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg) { if (kvm_vcpu_initialized(vcpu)) return; reg->reset(vcpu, reg); } /** * kvm_reset_sys_regs - sets system registers to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on the * virtual CPU struct to their architecturally defined reset values. */ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; unsigned long i; for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { const struct sys_reg_desc *r = &sys_reg_descs[i]; if (!r->reset) continue; if (is_vm_ftr_id_reg(reg_to_encoding(r))) reset_vm_ftr_id_reg(vcpu, r); else if (is_vcpu_ftr_id_reg(reg_to_encoding(r))) reset_vcpu_ftr_id_reg(vcpu, r); else r->reset(vcpu, r); } set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); } /** * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction * trap on a guest execution * @vcpu: The VCPU pointer */ int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) { const struct sys_reg_desc *desc = NULL; struct sys_reg_params params; unsigned long esr = kvm_vcpu_get_esr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int sr_idx; trace_kvm_handle_sys_reg(esr); if (triage_sysreg_trap(vcpu, &sr_idx)) return 1; params = esr_sys64_to_params(esr); params.regval = vcpu_get_reg(vcpu, Rt); /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ if (params.Op0 == 2 || params.Op0 == 3) desc = &sys_reg_descs[sr_idx]; else desc = &sys_insn_descs[sr_idx]; perform_access(vcpu, ¶ms, desc); /* Read from system register? */ if (!params.is_write && (params.Op0 == 2 || params.Op0 == 3)) vcpu_set_reg(vcpu, Rt, params.regval); return 1; } /****************************************************************************** * Userspace API *****************************************************************************/ static bool index_to_params(u64 id, struct sys_reg_params *params) { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U64: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM64_SYSREG_OP0_MASK | KVM_REG_ARM64_SYSREG_OP1_MASK | KVM_REG_ARM64_SYSREG_CRN_MASK | KVM_REG_ARM64_SYSREG_CRM_MASK | KVM_REG_ARM64_SYSREG_OP2_MASK)) return false; params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); return true; default: return false; } } const struct sys_reg_desc *get_reg_by_id(u64 id, const struct sys_reg_desc table[], unsigned int num) { struct sys_reg_params params; if (!index_to_params(id, ¶ms)) return NULL; return find_reg(¶ms, table, num); } /* Decode an index value, and find the sys_reg_desc entry. */ static const struct sys_reg_desc * id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, const struct sys_reg_desc table[], unsigned int num) { const struct sys_reg_desc *r; /* We only do sys_reg for now. */ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) return NULL; r = get_reg_by_id(id, table, num); /* Not saved in the sys_reg array and not otherwise accessible? */ if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) r = NULL; return r; } /* * These are the invariant sys_reg registers: we let the guest see the * host versions of these, so they're part of the guest state. * * A future CPU may provide a mechanism to present different values to * the guest, or a future kvm may trap them. */ #define FUNCTION_INVARIANT(reg) \ static u64 reset_##reg(struct kvm_vcpu *v, \ const struct sys_reg_desc *r) \ { \ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ return ((struct sys_reg_desc *)r)->val; \ } FUNCTION_INVARIANT(midr_el1) FUNCTION_INVARIANT(revidr_el1) FUNCTION_INVARIANT(aidr_el1) /* ->val is filled in by kvm_sys_reg_table_init() */ static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { { SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 }, { SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 }, { SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 }, }; static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) { const struct sys_reg_desc *r; r = get_reg_by_id(id, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; return put_user(r->val, uaddr); } static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) { const struct sys_reg_desc *r; u64 val; r = get_reg_by_id(id, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; if (get_user(val, uaddr)) return -EFAULT; /* This is what we mean by invariant: you can't change it. */ if (r->val != val) return -EINVAL; return 0; } static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 val; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (val >= CSSELR_MAX) return -ENOENT; return put_user(get_ccsidr(vcpu, val), uval); default: return -ENOENT; } } static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 val, newval; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (val >= CSSELR_MAX) return -ENOENT; if (get_user(newval, uval)) return -EFAULT; return set_ccsidr(vcpu, val, newval); default: return -ENOENT; } } int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num) { u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; const struct sys_reg_desc *r; u64 val; int ret; r = id_to_sys_reg_desc(vcpu, reg->id, table, num); if (!r || sysreg_hidden(vcpu, r)) return -ENOENT; if (r->get_user) { ret = (r->get_user)(vcpu, r, &val); } else { val = __vcpu_sys_reg(vcpu, r->reg); ret = 0; } if (!ret) ret = put_user(val, uaddr); return ret; } int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(vcpu, reg->id, uaddr); err = get_invariant_sys_reg(reg->id, uaddr); if (err != -ENOENT) return err; return kvm_sys_reg_get_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num) { u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; const struct sys_reg_desc *r; u64 val; int ret; if (get_user(val, uaddr)) return -EFAULT; r = id_to_sys_reg_desc(vcpu, reg->id, table, num); if (!r || sysreg_hidden(vcpu, r)) return -ENOENT; if (sysreg_user_write_ignore(vcpu, r)) return 0; if (r->set_user) { ret = (r->set_user)(vcpu, r, val); } else { __vcpu_sys_reg(vcpu, r->reg) = val; ret = 0; } return ret; } int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(vcpu, reg->id, uaddr); err = set_invariant_sys_reg(reg->id, uaddr); if (err != -ENOENT) return err; return kvm_sys_reg_set_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } static unsigned int num_demux_regs(void) { return CSSELR_MAX; } static int write_demux_regids(u64 __user *uindices) { u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; unsigned int i; val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; for (i = 0; i < CSSELR_MAX; i++) { if (put_user(val | i, uindices)) return -EFAULT; uindices++; } return 0; } static u64 sys_reg_to_index(const struct sys_reg_desc *reg) { return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM64_SYSREG | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); } static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) { if (!*uind) return true; if (put_user(sys_reg_to_index(reg), *uind)) return false; (*uind)++; return true; } static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 __user **uind, unsigned int *total) { /* * Ignore registers we trap but don't save, * and for which no custom user accessor is provided. */ if (!(rd->reg || rd->get_user)) return 0; if (sysreg_hidden(vcpu, rd)) return 0; if (!copy_reg_to_user(rd, uind)) return -EFAULT; (*total)++; return 0; } /* Assumed ordered tables, see kvm_sys_reg_table_init. */ static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) { const struct sys_reg_desc *i2, *end2; unsigned int total = 0; int err; i2 = sys_reg_descs; end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); while (i2 != end2) { err = walk_one_sys_reg(vcpu, i2++, &uind, &total); if (err) return err; } return total; } unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(invariant_sys_regs) + num_demux_regs() + walk_sys_regs(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int err; /* Then give them all the invariant registers' indices. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) return -EFAULT; uindices++; } err = walk_sys_regs(vcpu, uindices); if (err < 0) return err; uindices += err; return write_demux_regids(uindices); } #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ sys_reg_Op1(r), \ sys_reg_CRn(r), \ sys_reg_CRm(r), \ sys_reg_Op2(r)) int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) { const void *zero_page = page_to_virt(ZERO_PAGE(0)); u64 __user *masks = (u64 __user *)range->addr; /* Only feature id range is supported, reserved[13] must be zero. */ if (range->range || memcmp(range->reserved, zero_page, sizeof(range->reserved))) return -EINVAL; /* Wipe the whole thing first */ if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) return -EFAULT; for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { const struct sys_reg_desc *reg = &sys_reg_descs[i]; u32 encoding = reg_to_encoding(reg); u64 val; if (!is_feature_id_reg(encoding) || !reg->set_user) continue; if (!reg->val || (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) { continue; } val = reg->val; if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) return -EFAULT; } return 0; } static void vcpu_set_hcr(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; if (has_vhe() || has_hvhe()) vcpu->arch.hcr_el2 |= HCR_E2H; if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) { /* route synchronous external abort exceptions to EL2 */ vcpu->arch.hcr_el2 |= HCR_TEA; /* trap error record accesses */ vcpu->arch.hcr_el2 |= HCR_TERR; } if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) vcpu->arch.hcr_el2 |= HCR_FWB; if (cpus_have_final_cap(ARM64_HAS_EVT) && !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) && kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0)) vcpu->arch.hcr_el2 |= HCR_TID4; else vcpu->arch.hcr_el2 |= HCR_TID2; if (vcpu_el1_is_32bit(vcpu)) vcpu->arch.hcr_el2 &= ~HCR_RW; if (kvm_has_mte(vcpu->kvm)) vcpu->arch.hcr_el2 |= HCR_ATA; /* * In the absence of FGT, we cannot independently trap TLBI * Range instructions. This isn't great, but trapping all * TLBIs would be far worse. Live with it... */ if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) vcpu->arch.hcr_el2 |= HCR_TTLBOS; } void kvm_calculate_traps(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->arch.config_lock); vcpu_set_hcr(vcpu); vcpu_set_ich_hcr(vcpu); if (cpus_have_final_cap(ARM64_HAS_HCX)) { /* * In general, all HCRX_EL2 bits are gated by a feature. * The only reason we can set SMPME without checking any * feature is that its effects are not directly observable * from the guest. */ vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME; if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); if (kvm_has_tcr2(kvm)) vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En; if (kvm_has_fpmr(kvm)) vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM; } if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) goto out; kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nS2POR_EL1 | HFGxTR_EL2_nACCDATA_EL1 | HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS | HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS | HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS | HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 | HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 | HFGITR_EL2_TLBIRVAALE1IS| HFGITR_EL2_TLBIRVALE1IS | HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS | HFGITR_EL2_TLBIRVAALE1OS| HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS); if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2)) kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP); if (!kvm_has_s1pie(kvm)) kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1); if (!kvm_has_s1poe(kvm)) kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 | HFGxTR_EL2_nPOR_EL0); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | HAFGRTR_EL2_RES1); set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); out: mutex_unlock(&kvm->arch.config_lock); } /* * Perform last adjustments to the ID registers that are implied by the * configuration outside of the ID regs themselves, as well as any * initialisation that directly depend on these ID registers (such as * RES0/RES1 behaviours). This is not the place to configure traps though. * * Because this can be called once per CPU, changes must be idempotent. */ int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; guard(mutex)(&kvm->arch.config_lock); if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) && irqchip_in_kernel(kvm) && kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) { kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK; kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK; } if (vcpu_has_nv(vcpu)) { int ret = kvm_init_nv_sysregs(kvm); if (ret) return ret; } return 0; } int __init kvm_sys_reg_table_init(void) { bool valid = true; unsigned int i; int ret = 0; /* Make sure tables are unique and in order. */ valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); if (!valid) return -EINVAL; /* We abuse the reset function to overwrite the table itself. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); ret = populate_nv_trap_config(); for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) ret = populate_sysreg_config(sys_reg_descs + i, i); for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) ret = populate_sysreg_config(sys_insn_descs + i, i); return ret; }