/* * linux/arch/arm/plat-omap/dma.c * * Copyright (C) 2003 - 2008 Nokia Corporation * Author: Juha Yrjölä * DMA channel linking for 1610 by Samuel Ortiz * Graphics DMA and LCD DMA graphics tranformations * by Imre Deak * OMAP2/3 support Copyright (C) 2004-2007 Texas Instruments, Inc. * Merged to support both OMAP1 and OMAP2 by Tony Lindgren * Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc. * * Copyright (C) 2009 Texas Instruments * Added OMAP4 support - Santosh Shilimkar * * Support functions for the OMAP internal DMA channels. * * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ * Converted DMA library into DMA platform driver. * - G, Manjunath Kondaiah * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include /* * MAX_LOGICAL_DMA_CH_COUNT: the maximum number of logical DMA * channels that an instance of the SDMA IP block can support. Used * to size arrays. (The actual maximum on a particular SoC may be less * than this -- for example, OMAP1 SDMA instances only support 17 logical * DMA channels.) */ #define MAX_LOGICAL_DMA_CH_COUNT 32 #undef DEBUG #ifndef CONFIG_ARCH_OMAP1 enum { DMA_CH_ALLOC_DONE, DMA_CH_PARAMS_SET_DONE, DMA_CH_STARTED, DMA_CH_QUEUED, DMA_CH_NOTSTARTED, DMA_CH_PAUSED, DMA_CH_LINK_ENABLED }; enum { DMA_CHAIN_STARTED, DMA_CHAIN_NOTSTARTED }; #endif #define OMAP_DMA_ACTIVE 0x01 #define OMAP2_DMA_CSR_CLEAR_MASK 0xffffffff #define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec) static struct omap_system_dma_plat_info *p; static struct omap_dma_dev_attr *d; static int enable_1510_mode; static u32 errata; static struct omap_dma_global_context_registers { u32 dma_irqenable_l0; u32 dma_ocp_sysconfig; u32 dma_gcr; } omap_dma_global_context; struct dma_link_info { int *linked_dmach_q; int no_of_lchs_linked; int q_count; int q_tail; int q_head; int chain_state; int chain_mode; }; static struct dma_link_info *dma_linked_lch; #ifndef CONFIG_ARCH_OMAP1 /* Chain handling macros */ #define OMAP_DMA_CHAIN_QINIT(chain_id) \ do { \ dma_linked_lch[chain_id].q_head = \ dma_linked_lch[chain_id].q_tail = \ dma_linked_lch[chain_id].q_count = 0; \ } while (0) #define OMAP_DMA_CHAIN_QFULL(chain_id) \ (dma_linked_lch[chain_id].no_of_lchs_linked == \ dma_linked_lch[chain_id].q_count) #define OMAP_DMA_CHAIN_QLAST(chain_id) \ do { \ ((dma_linked_lch[chain_id].no_of_lchs_linked-1) == \ dma_linked_lch[chain_id].q_count) \ } while (0) #define OMAP_DMA_CHAIN_QEMPTY(chain_id) \ (0 == dma_linked_lch[chain_id].q_count) #define __OMAP_DMA_CHAIN_INCQ(end) \ ((end) = ((end)+1) % dma_linked_lch[chain_id].no_of_lchs_linked) #define OMAP_DMA_CHAIN_INCQHEAD(chain_id) \ do { \ __OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_head); \ dma_linked_lch[chain_id].q_count--; \ } while (0) #define OMAP_DMA_CHAIN_INCQTAIL(chain_id) \ do { \ __OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_tail); \ dma_linked_lch[chain_id].q_count++; \ } while (0) #endif static int dma_lch_count; static int dma_chan_count; static int omap_dma_reserve_channels; static spinlock_t dma_chan_lock; static struct omap_dma_lch *dma_chan; static inline void disable_lnk(int lch); static void omap_disable_channel_irq(int lch); static inline void omap_enable_channel_irq(int lch); #define REVISIT_24XX() printk(KERN_ERR "FIXME: no %s on 24xx\n", \ __func__); #ifdef CONFIG_ARCH_OMAP15XX /* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */ static int omap_dma_in_1510_mode(void) { return enable_1510_mode; } #else #define omap_dma_in_1510_mode() 0 #endif #ifdef CONFIG_ARCH_OMAP1 static inline int get_gdma_dev(int req) { u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4; int shift = ((req - 1) % 5) * 6; return ((omap_readl(reg) >> shift) & 0x3f) + 1; } static inline void set_gdma_dev(int req, int dev) { u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4; int shift = ((req - 1) % 5) * 6; u32 l; l = omap_readl(reg); l &= ~(0x3f << shift); l |= (dev - 1) << shift; omap_writel(l, reg); } #else #define set_gdma_dev(req, dev) do {} while (0) #define omap_readl(reg) 0 #define omap_writel(val, reg) do {} while (0) #endif #ifdef CONFIG_ARCH_OMAP1 void omap_set_dma_priority(int lch, int dst_port, int priority) { unsigned long reg; u32 l; if (dma_omap1()) { switch (dst_port) { case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */ reg = OMAP_TC_OCPT1_PRIOR; break; case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */ reg = OMAP_TC_OCPT2_PRIOR; break; case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */ reg = OMAP_TC_EMIFF_PRIOR; break; case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */ reg = OMAP_TC_EMIFS_PRIOR; break; default: BUG(); return; } l = omap_readl(reg); l &= ~(0xf << 8); l |= (priority & 0xf) << 8; omap_writel(l, reg); } } #endif #ifdef CONFIG_ARCH_OMAP2PLUS void omap_set_dma_priority(int lch, int dst_port, int priority) { u32 ccr; ccr = p->dma_read(CCR, lch); if (priority) ccr |= (1 << 6); else ccr &= ~(1 << 6); p->dma_write(ccr, CCR, lch); } #endif EXPORT_SYMBOL(omap_set_dma_priority); void omap_set_dma_transfer_params(int lch, int data_type, int elem_count, int frame_count, int sync_mode, int dma_trigger, int src_or_dst_synch) { u32 l; l = p->dma_read(CSDP, lch); l &= ~0x03; l |= data_type; p->dma_write(l, CSDP, lch); if (dma_omap1()) { u16 ccr; ccr = p->dma_read(CCR, lch); ccr &= ~(1 << 5); if (sync_mode == OMAP_DMA_SYNC_FRAME) ccr |= 1 << 5; p->dma_write(ccr, CCR, lch); ccr = p->dma_read(CCR2, lch); ccr &= ~(1 << 2); if (sync_mode == OMAP_DMA_SYNC_BLOCK) ccr |= 1 << 2; p->dma_write(ccr, CCR2, lch); } if (dma_omap2plus() && dma_trigger) { u32 val; val = p->dma_read(CCR, lch); /* DMA_SYNCHRO_CONTROL_UPPER depends on the channel number */ val &= ~((1 << 23) | (3 << 19) | 0x1f); val |= (dma_trigger & ~0x1f) << 14; val |= dma_trigger & 0x1f; if (sync_mode & OMAP_DMA_SYNC_FRAME) val |= 1 << 5; else val &= ~(1 << 5); if (sync_mode & OMAP_DMA_SYNC_BLOCK) val |= 1 << 18; else val &= ~(1 << 18); if (src_or_dst_synch == OMAP_DMA_DST_SYNC_PREFETCH) { val &= ~(1 << 24); /* dest synch */ val |= (1 << 23); /* Prefetch */ } else if (src_or_dst_synch) { val |= 1 << 24; /* source synch */ } else { val &= ~(1 << 24); /* dest synch */ } p->dma_write(val, CCR, lch); } p->dma_write(elem_count, CEN, lch); p->dma_write(frame_count, CFN, lch); } EXPORT_SYMBOL(omap_set_dma_transfer_params); void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color) { BUG_ON(omap_dma_in_1510_mode()); if (dma_omap1()) { u16 w; w = p->dma_read(CCR2, lch); w &= ~0x03; switch (mode) { case OMAP_DMA_CONSTANT_FILL: w |= 0x01; break; case OMAP_DMA_TRANSPARENT_COPY: w |= 0x02; break; case OMAP_DMA_COLOR_DIS: break; default: BUG(); } p->dma_write(w, CCR2, lch); w = p->dma_read(LCH_CTRL, lch); w &= ~0x0f; /* Default is channel type 2D */ if (mode) { p->dma_write(color, COLOR, lch); w |= 1; /* Channel type G */ } p->dma_write(w, LCH_CTRL, lch); } if (dma_omap2plus()) { u32 val; val = p->dma_read(CCR, lch); val &= ~((1 << 17) | (1 << 16)); switch (mode) { case OMAP_DMA_CONSTANT_FILL: val |= 1 << 16; break; case OMAP_DMA_TRANSPARENT_COPY: val |= 1 << 17; break; case OMAP_DMA_COLOR_DIS: break; default: BUG(); } p->dma_write(val, CCR, lch); color &= 0xffffff; p->dma_write(color, COLOR, lch); } } EXPORT_SYMBOL(omap_set_dma_color_mode); void omap_set_dma_write_mode(int lch, enum omap_dma_write_mode mode) { if (dma_omap2plus()) { u32 csdp; csdp = p->dma_read(CSDP, lch); csdp &= ~(0x3 << 16); csdp |= (mode << 16); p->dma_write(csdp, CSDP, lch); } } EXPORT_SYMBOL(omap_set_dma_write_mode); void omap_set_dma_channel_mode(int lch, enum omap_dma_channel_mode mode) { if (dma_omap1() && !dma_omap15xx()) { u32 l; l = p->dma_read(LCH_CTRL, lch); l &= ~0x7; l |= mode; p->dma_write(l, LCH_CTRL, lch); } } EXPORT_SYMBOL(omap_set_dma_channel_mode); /* Note that src_port is only for omap1 */ void omap_set_dma_src_params(int lch, int src_port, int src_amode, unsigned long src_start, int src_ei, int src_fi) { u32 l; if (dma_omap1()) { u16 w; w = p->dma_read(CSDP, lch); w &= ~(0x1f << 2); w |= src_port << 2; p->dma_write(w, CSDP, lch); } l = p->dma_read(CCR, lch); l &= ~(0x03 << 12); l |= src_amode << 12; p->dma_write(l, CCR, lch); p->dma_write(src_start, CSSA, lch); p->dma_write(src_ei, CSEI, lch); p->dma_write(src_fi, CSFI, lch); } EXPORT_SYMBOL(omap_set_dma_src_params); void omap_set_dma_params(int lch, struct omap_dma_channel_params *params) { omap_set_dma_transfer_params(lch, params->data_type, params->elem_count, params->frame_count, params->sync_mode, params->trigger, params->src_or_dst_synch); omap_set_dma_src_params(lch, params->src_port, params->src_amode, params->src_start, params->src_ei, params->src_fi); omap_set_dma_dest_params(lch, params->dst_port, params->dst_amode, params->dst_start, params->dst_ei, params->dst_fi); if (params->read_prio || params->write_prio) omap_dma_set_prio_lch(lch, params->read_prio, params->write_prio); } EXPORT_SYMBOL(omap_set_dma_params); void omap_set_dma_src_index(int lch, int eidx, int fidx) { if (dma_omap2plus()) return; p->dma_write(eidx, CSEI, lch); p->dma_write(fidx, CSFI, lch); } EXPORT_SYMBOL(omap_set_dma_src_index); void omap_set_dma_src_data_pack(int lch, int enable) { u32 l; l = p->dma_read(CSDP, lch); l &= ~(1 << 6); if (enable) l |= (1 << 6); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_src_data_pack); void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; u32 l; l = p->dma_read(CSDP, lch); l &= ~(0x03 << 7); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (dma_omap2plus()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (dma_omap2plus()) { burst = 0x2; break; } /* * not supported by current hardware on OMAP1 * w |= (0x03 << 7); * fall through */ case OMAP_DMA_DATA_BURST_16: if (dma_omap2plus()) { burst = 0x3; break; } /* * OMAP1 don't support burst 16 * fall through */ default: BUG(); } l |= (burst << 7); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_src_burst_mode); /* Note that dest_port is only for OMAP1 */ void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode, unsigned long dest_start, int dst_ei, int dst_fi) { u32 l; if (dma_omap1()) { l = p->dma_read(CSDP, lch); l &= ~(0x1f << 9); l |= dest_port << 9; p->dma_write(l, CSDP, lch); } l = p->dma_read(CCR, lch); l &= ~(0x03 << 14); l |= dest_amode << 14; p->dma_write(l, CCR, lch); p->dma_write(dest_start, CDSA, lch); p->dma_write(dst_ei, CDEI, lch); p->dma_write(dst_fi, CDFI, lch); } EXPORT_SYMBOL(omap_set_dma_dest_params); void omap_set_dma_dest_index(int lch, int eidx, int fidx) { if (dma_omap2plus()) return; p->dma_write(eidx, CDEI, lch); p->dma_write(fidx, CDFI, lch); } EXPORT_SYMBOL(omap_set_dma_dest_index); void omap_set_dma_dest_data_pack(int lch, int enable) { u32 l; l = p->dma_read(CSDP, lch); l &= ~(1 << 13); if (enable) l |= 1 << 13; p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_dest_data_pack); void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; u32 l; l = p->dma_read(CSDP, lch); l &= ~(0x03 << 14); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (dma_omap2plus()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (dma_omap2plus()) burst = 0x2; else burst = 0x3; break; case OMAP_DMA_DATA_BURST_16: if (dma_omap2plus()) { burst = 0x3; break; } /* * OMAP1 don't support burst 16 * fall through */ default: printk(KERN_ERR "Invalid DMA burst mode\n"); BUG(); return; } l |= (burst << 14); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_dest_burst_mode); static inline void omap_enable_channel_irq(int lch) { /* Clear CSR */ if (dma_omap1()) p->dma_read(CSR, lch); else p->dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR, lch); /* Enable some nice interrupts. */ p->dma_write(dma_chan[lch].enabled_irqs, CICR, lch); } static inline void omap_disable_channel_irq(int lch) { /* disable channel interrupts */ p->dma_write(0, CICR, lch); /* Clear CSR */ if (dma_omap1()) p->dma_read(CSR, lch); else p->dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR, lch); } void omap_enable_dma_irq(int lch, u16 bits) { dma_chan[lch].enabled_irqs |= bits; } EXPORT_SYMBOL(omap_enable_dma_irq); void omap_disable_dma_irq(int lch, u16 bits) { dma_chan[lch].enabled_irqs &= ~bits; } EXPORT_SYMBOL(omap_disable_dma_irq); static inline void enable_lnk(int lch) { u32 l; l = p->dma_read(CLNK_CTRL, lch); if (dma_omap1()) l &= ~(1 << 14); /* Set the ENABLE_LNK bits */ if (dma_chan[lch].next_lch != -1) l = dma_chan[lch].next_lch | (1 << 15); #ifndef CONFIG_ARCH_OMAP1 if (dma_omap2plus()) if (dma_chan[lch].next_linked_ch != -1) l = dma_chan[lch].next_linked_ch | (1 << 15); #endif p->dma_write(l, CLNK_CTRL, lch); } static inline void disable_lnk(int lch) { u32 l; l = p->dma_read(CLNK_CTRL, lch); /* Disable interrupts */ omap_disable_channel_irq(lch); if (dma_omap1()) { /* Set the STOP_LNK bit */ l |= 1 << 14; } if (dma_omap2plus()) { /* Clear the ENABLE_LNK bit */ l &= ~(1 << 15); } p->dma_write(l, CLNK_CTRL, lch); dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } static inline void omap2_enable_irq_lch(int lch) { u32 val; unsigned long flags; if (dma_omap1()) return; spin_lock_irqsave(&dma_chan_lock, flags); /* clear IRQ STATUS */ p->dma_write(1 << lch, IRQSTATUS_L0, lch); /* Enable interrupt */ val = p->dma_read(IRQENABLE_L0, lch); val |= 1 << lch; p->dma_write(val, IRQENABLE_L0, lch); spin_unlock_irqrestore(&dma_chan_lock, flags); } static inline void omap2_disable_irq_lch(int lch) { u32 val; unsigned long flags; if (dma_omap1()) return; spin_lock_irqsave(&dma_chan_lock, flags); /* Disable interrupt */ val = p->dma_read(IRQENABLE_L0, lch); val &= ~(1 << lch); p->dma_write(val, IRQENABLE_L0, lch); /* clear IRQ STATUS */ p->dma_write(1 << lch, IRQSTATUS_L0, lch); spin_unlock_irqrestore(&dma_chan_lock, flags); } int omap_request_dma(int dev_id, const char *dev_name, void (*callback)(int lch, u16 ch_status, void *data), void *data, int *dma_ch_out) { int ch, free_ch = -1; unsigned long flags; struct omap_dma_lch *chan; spin_lock_irqsave(&dma_chan_lock, flags); for (ch = 0; ch < dma_chan_count; ch++) { if (free_ch == -1 && dma_chan[ch].dev_id == -1) { free_ch = ch; /* Exit after first free channel found */ break; } } if (free_ch == -1) { spin_unlock_irqrestore(&dma_chan_lock, flags); return -EBUSY; } chan = dma_chan + free_ch; chan->dev_id = dev_id; if (p->clear_lch_regs) p->clear_lch_regs(free_ch); if (dma_omap2plus()) omap_clear_dma(free_ch); spin_unlock_irqrestore(&dma_chan_lock, flags); chan->dev_name = dev_name; chan->callback = callback; chan->data = data; chan->flags = 0; #ifndef CONFIG_ARCH_OMAP1 if (dma_omap2plus()) { chan->chain_id = -1; chan->next_linked_ch = -1; } #endif chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ; if (dma_omap1()) chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ; else if (dma_omap2plus()) chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ; if (dma_omap16xx()) { /* If the sync device is set, configure it dynamically. */ if (dev_id != 0) { set_gdma_dev(free_ch + 1, dev_id); dev_id = free_ch + 1; } /* * Disable the 1510 compatibility mode and set the sync device * id. */ p->dma_write(dev_id | (1 << 10), CCR, free_ch); } else if (dma_omap1()) { p->dma_write(dev_id, CCR, free_ch); } if (dma_omap2plus()) { omap_enable_channel_irq(free_ch); omap2_enable_irq_lch(free_ch); } *dma_ch_out = free_ch; return 0; } EXPORT_SYMBOL(omap_request_dma); void omap_free_dma(int lch) { unsigned long flags; if (dma_chan[lch].dev_id == -1) { pr_err("omap_dma: trying to free unallocated DMA channel %d\n", lch); return; } /* Disable interrupt for logical channel */ if (dma_omap2plus()) omap2_disable_irq_lch(lch); /* Disable all DMA interrupts for the channel. */ omap_disable_channel_irq(lch); /* Make sure the DMA transfer is stopped. */ p->dma_write(0, CCR, lch); /* Clear registers */ if (dma_omap2plus()) omap_clear_dma(lch); spin_lock_irqsave(&dma_chan_lock, flags); dma_chan[lch].dev_id = -1; dma_chan[lch].next_lch = -1; dma_chan[lch].callback = NULL; spin_unlock_irqrestore(&dma_chan_lock, flags); } EXPORT_SYMBOL(omap_free_dma); /** * @brief omap_dma_set_global_params : Set global priority settings for dma * * @param arb_rate * @param max_fifo_depth * @param tparams - Number of threads to reserve : DMA_THREAD_RESERVE_NORM * DMA_THREAD_RESERVE_ONET * DMA_THREAD_RESERVE_TWOT * DMA_THREAD_RESERVE_THREET */ void omap_dma_set_global_params(int arb_rate, int max_fifo_depth, int tparams) { u32 reg; if (dma_omap1()) { printk(KERN_ERR "FIXME: no %s on 15xx/16xx\n", __func__); return; } if (max_fifo_depth == 0) max_fifo_depth = 1; if (arb_rate == 0) arb_rate = 1; reg = 0xff & max_fifo_depth; reg |= (0x3 & tparams) << 12; reg |= (arb_rate & 0xff) << 16; p->dma_write(reg, GCR, 0); } EXPORT_SYMBOL(omap_dma_set_global_params); /** * @brief omap_dma_set_prio_lch : Set channel wise priority settings * * @param lch * @param read_prio - Read priority * @param write_prio - Write priority * Both of the above can be set with one of the following values : * DMA_CH_PRIO_HIGH/DMA_CH_PRIO_LOW */ int omap_dma_set_prio_lch(int lch, unsigned char read_prio, unsigned char write_prio) { u32 l; if (unlikely((lch < 0 || lch >= dma_lch_count))) { printk(KERN_ERR "Invalid channel id\n"); return -EINVAL; } l = p->dma_read(CCR, lch); l &= ~((1 << 6) | (1 << 26)); if (d->dev_caps & IS_RW_PRIORITY) l |= ((read_prio & 0x1) << 6) | ((write_prio & 0x1) << 26); else l |= ((read_prio & 0x1) << 6); p->dma_write(l, CCR, lch); return 0; } EXPORT_SYMBOL(omap_dma_set_prio_lch); /* * Clears any DMA state so the DMA engine is ready to restart with new buffers * through omap_start_dma(). Any buffers in flight are discarded. */ void omap_clear_dma(int lch) { unsigned long flags; local_irq_save(flags); p->clear_dma(lch); local_irq_restore(flags); } EXPORT_SYMBOL(omap_clear_dma); void omap_start_dma(int lch) { u32 l; /* * The CPC/CDAC register needs to be initialized to zero * before starting dma transfer. */ if (dma_omap15xx()) p->dma_write(0, CPC, lch); else p->dma_write(0, CDAC, lch); if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch; char dma_chan_link_map[MAX_LOGICAL_DMA_CH_COUNT]; /* Set the link register of the first channel */ enable_lnk(lch); memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); dma_chan_link_map[lch] = 1; cur_lch = dma_chan[lch].next_lch; do { next_lch = dma_chan[cur_lch].next_lch; /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; enable_lnk(cur_lch); omap_enable_channel_irq(cur_lch); cur_lch = next_lch; } while (next_lch != -1); } else if (IS_DMA_ERRATA(DMA_ERRATA_PARALLEL_CHANNELS)) p->dma_write(lch, CLNK_CTRL, lch); omap_enable_channel_irq(lch); l = p->dma_read(CCR, lch); if (IS_DMA_ERRATA(DMA_ERRATA_IFRAME_BUFFERING)) l |= OMAP_DMA_CCR_BUFFERING_DISABLE; l |= OMAP_DMA_CCR_EN; /* * As dma_write() uses IO accessors which are weakly ordered, there * is no guarantee that data in coherent DMA memory will be visible * to the DMA device. Add a memory barrier here to ensure that any * such data is visible prior to enabling DMA. */ mb(); p->dma_write(l, CCR, lch); dma_chan[lch].flags |= OMAP_DMA_ACTIVE; } EXPORT_SYMBOL(omap_start_dma); void omap_stop_dma(int lch) { u32 l; /* Disable all interrupts on the channel */ omap_disable_channel_irq(lch); l = p->dma_read(CCR, lch); if (IS_DMA_ERRATA(DMA_ERRATA_i541) && (l & OMAP_DMA_CCR_SEL_SRC_DST_SYNC)) { int i = 0; u32 sys_cf; /* Configure No-Standby */ l = p->dma_read(OCP_SYSCONFIG, lch); sys_cf = l; l &= ~DMA_SYSCONFIG_MIDLEMODE_MASK; l |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE); p->dma_write(l , OCP_SYSCONFIG, 0); l = p->dma_read(CCR, lch); l &= ~OMAP_DMA_CCR_EN; p->dma_write(l, CCR, lch); /* Wait for sDMA FIFO drain */ l = p->dma_read(CCR, lch); while (i < 100 && (l & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE))) { udelay(5); i++; l = p->dma_read(CCR, lch); } if (i >= 100) pr_err("DMA drain did not complete on lch %d\n", lch); /* Restore OCP_SYSCONFIG */ p->dma_write(sys_cf, OCP_SYSCONFIG, lch); } else { l &= ~OMAP_DMA_CCR_EN; p->dma_write(l, CCR, lch); } /* * Ensure that data transferred by DMA is visible to any access * after DMA has been disabled. This is important for coherent * DMA regions. */ mb(); if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch = lch; char dma_chan_link_map[MAX_LOGICAL_DMA_CH_COUNT]; memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); do { /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; disable_lnk(cur_lch); next_lch = dma_chan[cur_lch].next_lch; cur_lch = next_lch; } while (next_lch != -1); } dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } EXPORT_SYMBOL(omap_stop_dma); /* * Allows changing the DMA callback function or data. This may be needed if * the driver shares a single DMA channel for multiple dma triggers. */ int omap_set_dma_callback(int lch, void (*callback)(int lch, u16 ch_status, void *data), void *data) { unsigned long flags; if (lch < 0) return -ENODEV; spin_lock_irqsave(&dma_chan_lock, flags); if (dma_chan[lch].dev_id == -1) { printk(KERN_ERR "DMA callback for not set for free channel\n"); spin_unlock_irqrestore(&dma_chan_lock, flags); return -EINVAL; } dma_chan[lch].callback = callback; dma_chan[lch].data = data; spin_unlock_irqrestore(&dma_chan_lock, flags); return 0; } EXPORT_SYMBOL(omap_set_dma_callback); /* * Returns current physical source address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CSSA_L register overflow between the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_src_pos(int lch) { dma_addr_t offset = 0; if (dma_omap15xx()) offset = p->dma_read(CPC, lch); else offset = p->dma_read(CSAC, lch); if (IS_DMA_ERRATA(DMA_ERRATA_3_3) && offset == 0) offset = p->dma_read(CSAC, lch); if (!dma_omap15xx()) { /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed source start address in this case. */ if (likely(p->dma_read(CDAC, lch))) offset = p->dma_read(CSAC, lch); else offset = p->dma_read(CSSA, lch); } if (dma_omap1()) offset |= (p->dma_read(CSSA, lch) & 0xFFFF0000); return offset; } EXPORT_SYMBOL(omap_get_dma_src_pos); /* * Returns current physical destination address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CDSA_L register overflow between the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_dst_pos(int lch) { dma_addr_t offset = 0; if (dma_omap15xx()) offset = p->dma_read(CPC, lch); else offset = p->dma_read(CDAC, lch); /* * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is * read before the DMA controller finished disabling the channel. */ if (!dma_omap15xx() && offset == 0) { offset = p->dma_read(CDAC, lch); /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed destination start address in this case. */ if (unlikely(!offset)) offset = p->dma_read(CDSA, lch); } if (dma_omap1()) offset |= (p->dma_read(CDSA, lch) & 0xFFFF0000); return offset; } EXPORT_SYMBOL(omap_get_dma_dst_pos); int omap_get_dma_active_status(int lch) { return (p->dma_read(CCR, lch) & OMAP_DMA_CCR_EN) != 0; } EXPORT_SYMBOL(omap_get_dma_active_status); int omap_dma_running(void) { int lch; if (dma_omap1()) if (omap_lcd_dma_running()) return 1; for (lch = 0; lch < dma_chan_count; lch++) if (p->dma_read(CCR, lch) & OMAP_DMA_CCR_EN) return 1; return 0; } /* * lch_queue DMA will start right after lch_head one is finished. * For this DMA link to start, you still need to start (see omap_start_dma) * the first one. That will fire up the entire queue. */ void omap_dma_link_lch(int lch_head, int lch_queue) { if (omap_dma_in_1510_mode()) { if (lch_head == lch_queue) { p->dma_write(p->dma_read(CCR, lch_head) | (3 << 8), CCR, lch_head); return; } printk(KERN_ERR "DMA linking is not supported in 1510 mode\n"); BUG(); return; } if ((dma_chan[lch_head].dev_id == -1) || (dma_chan[lch_queue].dev_id == -1)) { pr_err("omap_dma: trying to link non requested channels\n"); dump_stack(); } dma_chan[lch_head].next_lch = lch_queue; } EXPORT_SYMBOL(omap_dma_link_lch); /* * Once the DMA queue is stopped, we can destroy it. */ void omap_dma_unlink_lch(int lch_head, int lch_queue) { if (omap_dma_in_1510_mode()) { if (lch_head == lch_queue) { p->dma_write(p->dma_read(CCR, lch_head) & ~(3 << 8), CCR, lch_head); return; } printk(KERN_ERR "DMA linking is not supported in 1510 mode\n"); BUG(); return; } if (dma_chan[lch_head].next_lch != lch_queue || dma_chan[lch_head].next_lch == -1) { pr_err("omap_dma: trying to unlink non linked channels\n"); dump_stack(); } if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) || (dma_chan[lch_queue].flags & OMAP_DMA_ACTIVE)) { pr_err("omap_dma: You need to stop the DMA channels before unlinking\n"); dump_stack(); } dma_chan[lch_head].next_lch = -1; } EXPORT_SYMBOL(omap_dma_unlink_lch); #ifndef CONFIG_ARCH_OMAP1 /* Create chain of DMA channesls */ static void create_dma_lch_chain(int lch_head, int lch_queue) { u32 l; /* Check if this is the first link in chain */ if (dma_chan[lch_head].next_linked_ch == -1) { dma_chan[lch_head].next_linked_ch = lch_queue; dma_chan[lch_head].prev_linked_ch = lch_queue; dma_chan[lch_queue].next_linked_ch = lch_head; dma_chan[lch_queue].prev_linked_ch = lch_head; } /* a link exists, link the new channel in circular chain */ else { dma_chan[lch_queue].next_linked_ch = dma_chan[lch_head].next_linked_ch; dma_chan[lch_queue].prev_linked_ch = lch_head; dma_chan[lch_head].next_linked_ch = lch_queue; dma_chan[dma_chan[lch_queue].next_linked_ch].prev_linked_ch = lch_queue; } l = p->dma_read(CLNK_CTRL, lch_head); l &= ~(0x1f); l |= lch_queue; p->dma_write(l, CLNK_CTRL, lch_head); l = p->dma_read(CLNK_CTRL, lch_queue); l &= ~(0x1f); l |= (dma_chan[lch_queue].next_linked_ch); p->dma_write(l, CLNK_CTRL, lch_queue); } /** * @brief omap_request_dma_chain : Request a chain of DMA channels * * @param dev_id - Device id using the dma channel * @param dev_name - Device name * @param callback - Call back function * @chain_id - * @no_of_chans - Number of channels requested * @chain_mode - Dynamic or static chaining : OMAP_DMA_STATIC_CHAIN * OMAP_DMA_DYNAMIC_CHAIN * @params - Channel parameters * * @return - Success : 0 * Failure: -EINVAL/-ENOMEM */ int omap_request_dma_chain(int dev_id, const char *dev_name, void (*callback) (int lch, u16 ch_status, void *data), int *chain_id, int no_of_chans, int chain_mode, struct omap_dma_channel_params params) { int *channels; int i, err; /* Is the chain mode valid ? */ if (chain_mode != OMAP_DMA_STATIC_CHAIN && chain_mode != OMAP_DMA_DYNAMIC_CHAIN) { printk(KERN_ERR "Invalid chain mode requested\n"); return -EINVAL; } if (unlikely((no_of_chans < 1 || no_of_chans > dma_lch_count))) { printk(KERN_ERR "Invalid Number of channels requested\n"); return -EINVAL; } /* * Allocate a queue to maintain the status of the channels * in the chain */ channels = kmalloc(sizeof(*channels) * no_of_chans, GFP_KERNEL); if (channels == NULL) { printk(KERN_ERR "omap_dma: No memory for channel queue\n"); return -ENOMEM; } /* request and reserve DMA channels for the chain */ for (i = 0; i < no_of_chans; i++) { err = omap_request_dma(dev_id, dev_name, callback, NULL, &channels[i]); if (err < 0) { int j; for (j = 0; j < i; j++) omap_free_dma(channels[j]); kfree(channels); printk(KERN_ERR "omap_dma: Request failed %d\n", err); return err; } dma_chan[channels[i]].prev_linked_ch = -1; dma_chan[channels[i]].state = DMA_CH_NOTSTARTED; /* * Allowing client drivers to set common parameters now, * so that later only relevant (src_start, dest_start * and element count) can be set */ omap_set_dma_params(channels[i], ¶ms); } *chain_id = channels[0]; dma_linked_lch[*chain_id].linked_dmach_q = channels; dma_linked_lch[*chain_id].chain_mode = chain_mode; dma_linked_lch[*chain_id].chain_state = DMA_CHAIN_NOTSTARTED; dma_linked_lch[*chain_id].no_of_lchs_linked = no_of_chans; for (i = 0; i < no_of_chans; i++) dma_chan[channels[i]].chain_id = *chain_id; /* Reset the Queue pointers */ OMAP_DMA_CHAIN_QINIT(*chain_id); /* Set up the chain */ if (no_of_chans == 1) create_dma_lch_chain(channels[0], channels[0]); else { for (i = 0; i < (no_of_chans - 1); i++) create_dma_lch_chain(channels[i], channels[i + 1]); } return 0; } EXPORT_SYMBOL(omap_request_dma_chain); /** * @brief omap_modify_dma_chain_param : Modify the chain's params - Modify the * params after setting it. Dont do this while dma is running!! * * @param chain_id - Chained logical channel id. * @param params * * @return - Success : 0 * Failure : -EINVAL */ int omap_modify_dma_chain_params(int chain_id, struct omap_dma_channel_params params) { int *channels; u32 i; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) { /* * Allowing client drivers to set common parameters now, * so that later only relevant (src_start, dest_start * and element count) can be set */ omap_set_dma_params(channels[i], ¶ms); } return 0; } EXPORT_SYMBOL(omap_modify_dma_chain_params); /** * @brief omap_free_dma_chain - Free all the logical channels in a chain. * * @param chain_id * * @return - Success : 0 * Failure : -EINVAL */ int omap_free_dma_chain(int chain_id) { int *channels; u32 i; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) { dma_chan[channels[i]].next_linked_ch = -1; dma_chan[channels[i]].prev_linked_ch = -1; dma_chan[channels[i]].chain_id = -1; dma_chan[channels[i]].state = DMA_CH_NOTSTARTED; omap_free_dma(channels[i]); } kfree(channels); dma_linked_lch[chain_id].linked_dmach_q = NULL; dma_linked_lch[chain_id].chain_mode = -1; dma_linked_lch[chain_id].chain_state = -1; return (0); } EXPORT_SYMBOL(omap_free_dma_chain); /** * @brief omap_dma_chain_status - Check if the chain is in * active / inactive state. * @param chain_id * * @return - Success : OMAP_DMA_CHAIN_ACTIVE/OMAP_DMA_CHAIN_INACTIVE * Failure : -EINVAL */ int omap_dma_chain_status(int chain_id) { /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } pr_debug("CHAINID=%d, qcnt=%d\n", chain_id, dma_linked_lch[chain_id].q_count); if (OMAP_DMA_CHAIN_QEMPTY(chain_id)) return OMAP_DMA_CHAIN_INACTIVE; return OMAP_DMA_CHAIN_ACTIVE; } EXPORT_SYMBOL(omap_dma_chain_status); /** * @brief omap_dma_chain_a_transfer - Get a free channel from a chain, * set the params and start the transfer. * * @param chain_id * @param src_start - buffer start address * @param dest_start - Dest address * @param elem_count * @param frame_count * @param callbk_data - channel callback parameter data. * * @return - Success : 0 * Failure: -EINVAL/-EBUSY */ int omap_dma_chain_a_transfer(int chain_id, int src_start, int dest_start, int elem_count, int frame_count, void *callbk_data) { int *channels; u32 l, lch; int start_dma = 0; /* * if buffer size is less than 1 then there is * no use of starting the chain */ if (elem_count < 1) { printk(KERN_ERR "Invalid buffer size\n"); return -EINVAL; } /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exist\n"); return -EINVAL; } /* Check if all the channels in chain are in use */ if (OMAP_DMA_CHAIN_QFULL(chain_id)) return -EBUSY; /* Frame count may be negative in case of indexed transfers */ channels = dma_linked_lch[chain_id].linked_dmach_q; /* Get a free channel */ lch = channels[dma_linked_lch[chain_id].q_tail]; /* Store the callback data */ dma_chan[lch].data = callbk_data; /* Increment the q_tail */ OMAP_DMA_CHAIN_INCQTAIL(chain_id); /* Set the params to the free channel */ if (src_start != 0) p->dma_write(src_start, CSSA, lch); if (dest_start != 0) p->dma_write(dest_start, CDSA, lch); /* Write the buffer size */ p->dma_write(elem_count, CEN, lch); p->dma_write(frame_count, CFN, lch); /* * If the chain is dynamically linked, * then we may have to start the chain if its not active */ if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_DYNAMIC_CHAIN) { /* * In Dynamic chain, if the chain is not started, * queue the channel */ if (dma_linked_lch[chain_id].chain_state == DMA_CHAIN_NOTSTARTED) { /* Enable the link in previous channel */ if (dma_chan[dma_chan[lch].prev_linked_ch].state == DMA_CH_QUEUED) enable_lnk(dma_chan[lch].prev_linked_ch); dma_chan[lch].state = DMA_CH_QUEUED; } /* * Chain is already started, make sure its active, * if not then start the chain */ else { start_dma = 1; if (dma_chan[dma_chan[lch].prev_linked_ch].state == DMA_CH_STARTED) { enable_lnk(dma_chan[lch].prev_linked_ch); dma_chan[lch].state = DMA_CH_QUEUED; start_dma = 0; if (0 == ((1 << 7) & p->dma_read( CCR, dma_chan[lch].prev_linked_ch))) { disable_lnk(dma_chan[lch]. prev_linked_ch); pr_debug("\n prev ch is stopped\n"); start_dma = 1; } } else if (dma_chan[dma_chan[lch].prev_linked_ch].state == DMA_CH_QUEUED) { enable_lnk(dma_chan[lch].prev_linked_ch); dma_chan[lch].state = DMA_CH_QUEUED; start_dma = 0; } omap_enable_channel_irq(lch); l = p->dma_read(CCR, lch); if ((0 == (l & (1 << 24)))) l &= ~(1 << 25); else l |= (1 << 25); if (start_dma == 1) { if (0 == (l & (1 << 7))) { l |= (1 << 7); dma_chan[lch].state = DMA_CH_STARTED; pr_debug("starting %d\n", lch); p->dma_write(l, CCR, lch); } else start_dma = 0; } else { if (0 == (l & (1 << 7))) p->dma_write(l, CCR, lch); } dma_chan[lch].flags |= OMAP_DMA_ACTIVE; } } return 0; } EXPORT_SYMBOL(omap_dma_chain_a_transfer); /** * @brief omap_start_dma_chain_transfers - Start the chain * * @param chain_id * * @return - Success : 0 * Failure : -EINVAL/-EBUSY */ int omap_start_dma_chain_transfers(int chain_id) { int *channels; u32 l, i; if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; if (dma_linked_lch[channels[0]].chain_state == DMA_CHAIN_STARTED) { printk(KERN_ERR "Chain is already started\n"); return -EBUSY; } if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_STATIC_CHAIN) { for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) { enable_lnk(channels[i]); omap_enable_channel_irq(channels[i]); } } else { omap_enable_channel_irq(channels[0]); } l = p->dma_read(CCR, channels[0]); l |= (1 << 7); dma_linked_lch[chain_id].chain_state = DMA_CHAIN_STARTED; dma_chan[channels[0]].state = DMA_CH_STARTED; if ((0 == (l & (1 << 24)))) l &= ~(1 << 25); else l |= (1 << 25); p->dma_write(l, CCR, channels[0]); dma_chan[channels[0]].flags |= OMAP_DMA_ACTIVE; return 0; } EXPORT_SYMBOL(omap_start_dma_chain_transfers); /** * @brief omap_stop_dma_chain_transfers - Stop the dma transfer of a chain. * * @param chain_id * * @return - Success : 0 * Failure : EINVAL */ int omap_stop_dma_chain_transfers(int chain_id) { int *channels; u32 l, i; u32 sys_cf = 0; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; if (IS_DMA_ERRATA(DMA_ERRATA_i88)) { sys_cf = p->dma_read(OCP_SYSCONFIG, 0); l = sys_cf; /* Middle mode reg set no Standby */ l &= ~((1 << 12)|(1 << 13)); p->dma_write(l, OCP_SYSCONFIG, 0); } for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) { /* Stop the Channel transmission */ l = p->dma_read(CCR, channels[i]); l &= ~(1 << 7); p->dma_write(l, CCR, channels[i]); /* Disable the link in all the channels */ disable_lnk(channels[i]); dma_chan[channels[i]].state = DMA_CH_NOTSTARTED; } dma_linked_lch[chain_id].chain_state = DMA_CHAIN_NOTSTARTED; /* Reset the Queue pointers */ OMAP_DMA_CHAIN_QINIT(chain_id); if (IS_DMA_ERRATA(DMA_ERRATA_i88)) p->dma_write(sys_cf, OCP_SYSCONFIG, 0); return 0; } EXPORT_SYMBOL(omap_stop_dma_chain_transfers); /* Get the index of the ongoing DMA in chain */ /** * @brief omap_get_dma_chain_index - Get the element and frame index * of the ongoing DMA in chain * * @param chain_id * @param ei - Element index * @param fi - Frame index * * @return - Success : 0 * Failure : -EINVAL */ int omap_get_dma_chain_index(int chain_id, int *ei, int *fi) { int lch; int *channels; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } if ((!ei) || (!fi)) return -EINVAL; channels = dma_linked_lch[chain_id].linked_dmach_q; /* Get the current channel */ lch = channels[dma_linked_lch[chain_id].q_head]; *ei = p->dma_read(CCEN, lch); *fi = p->dma_read(CCFN, lch); return 0; } EXPORT_SYMBOL(omap_get_dma_chain_index); /** * @brief omap_get_dma_chain_dst_pos - Get the destination position of the * ongoing DMA in chain * * @param chain_id * * @return - Success : Destination position * Failure : -EINVAL */ int omap_get_dma_chain_dst_pos(int chain_id) { int lch; int *channels; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; /* Get the current channel */ lch = channels[dma_linked_lch[chain_id].q_head]; return p->dma_read(CDAC, lch); } EXPORT_SYMBOL(omap_get_dma_chain_dst_pos); /** * @brief omap_get_dma_chain_src_pos - Get the source position * of the ongoing DMA in chain * @param chain_id * * @return - Success : Destination position * Failure : -EINVAL */ int omap_get_dma_chain_src_pos(int chain_id) { int lch; int *channels; /* Check for input params */ if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) { printk(KERN_ERR "Invalid chain id\n"); return -EINVAL; } /* Check if the chain exists */ if (dma_linked_lch[chain_id].linked_dmach_q == NULL) { printk(KERN_ERR "Chain doesn't exists\n"); return -EINVAL; } channels = dma_linked_lch[chain_id].linked_dmach_q; /* Get the current channel */ lch = channels[dma_linked_lch[chain_id].q_head]; return p->dma_read(CSAC, lch); } EXPORT_SYMBOL(omap_get_dma_chain_src_pos); #endif /* ifndef CONFIG_ARCH_OMAP1 */ /*----------------------------------------------------------------------------*/ #ifdef CONFIG_ARCH_OMAP1 static int omap1_dma_handle_ch(int ch) { u32 csr; if (enable_1510_mode && ch >= 6) { csr = dma_chan[ch].saved_csr; dma_chan[ch].saved_csr = 0; } else csr = p->dma_read(CSR, ch); if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) { dma_chan[ch + 6].saved_csr = csr >> 7; csr &= 0x7f; } if ((csr & 0x3f) == 0) return 0; if (unlikely(dma_chan[ch].dev_id == -1)) { pr_warn("Spurious interrupt from DMA channel %d (CSR %04x)\n", ch, csr); return 0; } if (unlikely(csr & OMAP1_DMA_TOUT_IRQ)) pr_warn("DMA timeout with device %d\n", dma_chan[ch].dev_id); if (unlikely(csr & OMAP_DMA_DROP_IRQ)) pr_warn("DMA synchronization event drop occurred with device %d\n", dma_chan[ch].dev_id); if (likely(csr & OMAP_DMA_BLOCK_IRQ)) dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE; if (likely(dma_chan[ch].callback != NULL)) dma_chan[ch].callback(ch, csr, dma_chan[ch].data); return 1; } static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id) { int ch = ((int) dev_id) - 1; int handled = 0; for (;;) { int handled_now = 0; handled_now += omap1_dma_handle_ch(ch); if (enable_1510_mode && dma_chan[ch + 6].saved_csr) handled_now += omap1_dma_handle_ch(ch + 6); if (!handled_now) break; handled += handled_now; } return handled ? IRQ_HANDLED : IRQ_NONE; } #else #define omap1_dma_irq_handler NULL #endif #ifdef CONFIG_ARCH_OMAP2PLUS static int omap2_dma_handle_ch(int ch) { u32 status = p->dma_read(CSR, ch); if (!status) { if (printk_ratelimit()) pr_warn("Spurious DMA IRQ for lch %d\n", ch); p->dma_write(1 << ch, IRQSTATUS_L0, ch); return 0; } if (unlikely(dma_chan[ch].dev_id == -1)) { if (printk_ratelimit()) pr_warn("IRQ %04x for non-allocated DMA channel %d\n", status, ch); return 0; } if (unlikely(status & OMAP_DMA_DROP_IRQ)) pr_info("DMA synchronization event drop occurred with device %d\n", dma_chan[ch].dev_id); if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ)) { printk(KERN_INFO "DMA transaction error with device %d\n", dma_chan[ch].dev_id); if (IS_DMA_ERRATA(DMA_ERRATA_i378)) { u32 ccr; ccr = p->dma_read(CCR, ch); ccr &= ~OMAP_DMA_CCR_EN; p->dma_write(ccr, CCR, ch); dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE; } } if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ)) printk(KERN_INFO "DMA secure error with device %d\n", dma_chan[ch].dev_id); if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ)) printk(KERN_INFO "DMA misaligned error with device %d\n", dma_chan[ch].dev_id); p->dma_write(status, CSR, ch); p->dma_write(1 << ch, IRQSTATUS_L0, ch); /* read back the register to flush the write */ p->dma_read(IRQSTATUS_L0, ch); /* If the ch is not chained then chain_id will be -1 */ if (dma_chan[ch].chain_id != -1) { int chain_id = dma_chan[ch].chain_id; dma_chan[ch].state = DMA_CH_NOTSTARTED; if (p->dma_read(CLNK_CTRL, ch) & (1 << 15)) dma_chan[dma_chan[ch].next_linked_ch].state = DMA_CH_STARTED; if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_DYNAMIC_CHAIN) disable_lnk(ch); if (!OMAP_DMA_CHAIN_QEMPTY(chain_id)) OMAP_DMA_CHAIN_INCQHEAD(chain_id); status = p->dma_read(CSR, ch); p->dma_write(status, CSR, ch); } if (likely(dma_chan[ch].callback != NULL)) dma_chan[ch].callback(ch, status, dma_chan[ch].data); return 0; } /* STATUS register count is from 1-32 while our is 0-31 */ static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id) { u32 val, enable_reg; int i; val = p->dma_read(IRQSTATUS_L0, 0); if (val == 0) { if (printk_ratelimit()) printk(KERN_WARNING "Spurious DMA IRQ\n"); return IRQ_HANDLED; } enable_reg = p->dma_read(IRQENABLE_L0, 0); val &= enable_reg; /* Dispatch only relevant interrupts */ for (i = 0; i < dma_lch_count && val != 0; i++) { if (val & 1) omap2_dma_handle_ch(i); val >>= 1; } return IRQ_HANDLED; } static struct irqaction omap24xx_dma_irq = { .name = "DMA", .handler = omap2_dma_irq_handler, .flags = IRQF_DISABLED }; #else static struct irqaction omap24xx_dma_irq; #endif /*----------------------------------------------------------------------------*/ void omap_dma_global_context_save(void) { omap_dma_global_context.dma_irqenable_l0 = p->dma_read(IRQENABLE_L0, 0); omap_dma_global_context.dma_ocp_sysconfig = p->dma_read(OCP_SYSCONFIG, 0); omap_dma_global_context.dma_gcr = p->dma_read(GCR, 0); } void omap_dma_global_context_restore(void) { int ch; p->dma_write(omap_dma_global_context.dma_gcr, GCR, 0); p->dma_write(omap_dma_global_context.dma_ocp_sysconfig, OCP_SYSCONFIG, 0); p->dma_write(omap_dma_global_context.dma_irqenable_l0, IRQENABLE_L0, 0); if (IS_DMA_ERRATA(DMA_ROMCODE_BUG)) p->dma_write(0x3 , IRQSTATUS_L0, 0); for (ch = 0; ch < dma_chan_count; ch++) if (dma_chan[ch].dev_id != -1) omap_clear_dma(ch); } static int omap_system_dma_probe(struct platform_device *pdev) { int ch, ret = 0; int dma_irq; char irq_name[4]; int irq_rel; p = pdev->dev.platform_data; if (!p) { dev_err(&pdev->dev, "%s: System DMA initialized without platform data\n", __func__); return -EINVAL; } d = p->dma_attr; errata = p->errata; if ((d->dev_caps & RESERVE_CHANNEL) && omap_dma_reserve_channels && (omap_dma_reserve_channels < d->lch_count)) d->lch_count = omap_dma_reserve_channels; dma_lch_count = d->lch_count; dma_chan_count = dma_lch_count; dma_chan = d->chan; enable_1510_mode = d->dev_caps & ENABLE_1510_MODE; if (dma_omap2plus()) { dma_linked_lch = kzalloc(sizeof(struct dma_link_info) * dma_lch_count, GFP_KERNEL); if (!dma_linked_lch) { ret = -ENOMEM; goto exit_dma_lch_fail; } } spin_lock_init(&dma_chan_lock); for (ch = 0; ch < dma_chan_count; ch++) { omap_clear_dma(ch); if (dma_omap2plus()) omap2_disable_irq_lch(ch); dma_chan[ch].dev_id = -1; dma_chan[ch].next_lch = -1; if (ch >= 6 && enable_1510_mode) continue; if (dma_omap1()) { /* * request_irq() doesn't like dev_id (ie. ch) being * zero, so we have to kludge around this. */ sprintf(&irq_name[0], "%d", ch); dma_irq = platform_get_irq_byname(pdev, irq_name); if (dma_irq < 0) { ret = dma_irq; goto exit_dma_irq_fail; } /* INT_DMA_LCD is handled in lcd_dma.c */ if (dma_irq == INT_DMA_LCD) continue; ret = request_irq(dma_irq, omap1_dma_irq_handler, 0, "DMA", (void *) (ch + 1)); if (ret != 0) goto exit_dma_irq_fail; } } if (d->dev_caps & IS_RW_PRIORITY) omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, DMA_DEFAULT_FIFO_DEPTH, 0); if (dma_omap2plus()) { strcpy(irq_name, "0"); dma_irq = platform_get_irq_byname(pdev, irq_name); if (dma_irq < 0) { dev_err(&pdev->dev, "failed: request IRQ %d", dma_irq); goto exit_dma_lch_fail; } ret = setup_irq(dma_irq, &omap24xx_dma_irq); if (ret) { dev_err(&pdev->dev, "set_up failed for IRQ %d for DMA (error %d)\n", dma_irq, ret); goto exit_dma_lch_fail; } } /* reserve dma channels 0 and 1 in high security devices on 34xx */ if (d->dev_caps & HS_CHANNELS_RESERVED) { pr_info("Reserving DMA channels 0 and 1 for HS ROM code\n"); dma_chan[0].dev_id = 0; dma_chan[1].dev_id = 1; } p->show_dma_caps(); return 0; exit_dma_irq_fail: dev_err(&pdev->dev, "unable to request IRQ %d for DMA (error %d)\n", dma_irq, ret); for (irq_rel = 0; irq_rel < ch; irq_rel++) { dma_irq = platform_get_irq(pdev, irq_rel); free_irq(dma_irq, (void *)(irq_rel + 1)); } exit_dma_lch_fail: kfree(p); kfree(d); kfree(dma_chan); return ret; } static int omap_system_dma_remove(struct platform_device *pdev) { int dma_irq; if (dma_omap2plus()) { char irq_name[4]; strcpy(irq_name, "0"); dma_irq = platform_get_irq_byname(pdev, irq_name); remove_irq(dma_irq, &omap24xx_dma_irq); } else { int irq_rel = 0; for ( ; irq_rel < dma_chan_count; irq_rel++) { dma_irq = platform_get_irq(pdev, irq_rel); free_irq(dma_irq, (void *)(irq_rel + 1)); } } kfree(p); kfree(d); kfree(dma_chan); return 0; } static struct platform_driver omap_system_dma_driver = { .probe = omap_system_dma_probe, .remove = omap_system_dma_remove, .driver = { .name = "omap_dma_system" }, }; static int __init omap_system_dma_init(void) { return platform_driver_register(&omap_system_dma_driver); } arch_initcall(omap_system_dma_init); static void __exit omap_system_dma_exit(void) { platform_driver_unregister(&omap_system_dma_driver); } MODULE_DESCRIPTION("OMAP SYSTEM DMA DRIVER"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Texas Instruments Inc"); /* * Reserve the omap SDMA channels using cmdline bootarg * "omap_dma_reserve_ch=". The valid range is 1 to 32 */ static int __init omap_dma_cmdline_reserve_ch(char *str) { if (get_option(&str, &omap_dma_reserve_channels) != 1) omap_dma_reserve_channels = 0; return 1; } __setup("omap_dma_reserve_ch=", omap_dma_cmdline_reserve_ch);