summaryrefslogtreecommitdiff
path: root/security/landlock/Kconfig
AgeCommit message (Collapse)Author
2023-10-26landlock: Support network rules with TCP bind and connectKonstantin Meskhidze
Add network rules support in the ruleset management helpers and the landlock_create_ruleset() syscall. Extend user space API to support network actions: * Add new network access rights: LANDLOCK_ACCESS_NET_BIND_TCP and LANDLOCK_ACCESS_NET_CONNECT_TCP. * Add a new network rule type: LANDLOCK_RULE_NET_PORT tied to struct landlock_net_port_attr. The allowed_access field contains the network access rights, and the port field contains the port value according to the controlled protocol. This field can take up to a 64-bit value but the maximum value depends on the related protocol (e.g. 16-bit value for TCP). Network port is in host endianness [1]. * Add a new handled_access_net field to struct landlock_ruleset_attr that contains network access rights. * Increment the Landlock ABI version to 4. Implement socket_bind() and socket_connect() LSM hooks, which enable to control TCP socket binding and connection to specific ports. Expand access_masks_t from u16 to u32 to be able to store network access rights alongside filesystem access rights for rulesets' handled access rights. Access rights are not tied to socket file descriptors but checked at bind() or connect() call time against the caller's Landlock domain. For the filesystem, a file descriptor is a direct access to a file/data. However, for network sockets, we cannot identify for which data or peer a newly created socket will give access to. Indeed, we need to wait for a connect or bind request to identify the use case for this socket. Likewise a directory file descriptor may enable to open another file (i.e. a new data item), but this opening is also restricted by the caller's domain, not the file descriptor's access rights [2]. [1] https://lore.kernel.org/r/278ab07f-7583-a4e0-3d37-1bacd091531d@digikod.net [2] https://lore.kernel.org/r/263c1eb3-602f-57fe-8450-3f138581bee7@digikod.net Signed-off-by: Konstantin Meskhidze <konstantin.meskhidze@huawei.com> Link: https://lore.kernel.org/r/20231026014751.414649-9-konstantin.meskhidze@huawei.com [mic: Extend commit message, fix typo in comments, and specify endianness in the documentation] Co-developed-by: Mickaël Salaün <mic@digikod.net> Signed-off-by: Mickaël Salaün <mic@digikod.net>
2023-06-12hostfs: Fix ephemeral inodesMickaël Salaün
hostfs creates a new inode for each opened or created file, which created useless inode allocations and forbade identifying a host file with a kernel inode. Fix this uncommon filesystem behavior by tying kernel inodes to host file's inode and device IDs. Even if the host filesystem inodes may be recycled, this cannot happen while a file referencing it is opened, which is the case with hostfs. It should be noted that hostfs inode IDs may not be unique for the same hostfs superblock because multiple host's (backed) superblocks may be used. Delete inodes when dropping them to force backed host's file descriptors closing. This enables to entirely remove ARCH_EPHEMERAL_INODES, and then makes Landlock fully supported by UML. This is very useful for testing changes. These changes also factor out and simplify some helpers thanks to the new hostfs_inode_update() and the hostfs_iget() revamp: read_name(), hostfs_create(), hostfs_lookup(), hostfs_mknod(), and hostfs_fill_sb_common(). A following commit with new Landlock tests check this new hostfs inode consistency. Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Johannes Berg <johannes@sipsolutions.net> Acked-by: Richard Weinberger <richard@nod.at> Link: https://lore.kernel.org/r/20230612191430.339153-2-mic@digikod.net Signed-off-by: Mickaël Salaün <mic@digikod.net>
2021-04-22landlock: Support filesystem access-controlMickaël Salaün
Using Landlock objects and ruleset, it is possible to tag inodes according to a process's domain. To enable an unprivileged process to express a file hierarchy, it first needs to open a directory (or a file) and pass this file descriptor to the kernel through landlock_add_rule(2). When checking if a file access request is allowed, we walk from the requested dentry to the real root, following the different mount layers. The access to each "tagged" inodes are collected according to their rule layer level, and ANDed to create access to the requested file hierarchy. This makes possible to identify a lot of files without tagging every inodes nor modifying the filesystem, while still following the view and understanding the user has from the filesystem. Add a new ARCH_EPHEMERAL_INODES for UML because it currently does not keep the same struct inodes for the same inodes whereas these inodes are in use. This commit adds a minimal set of supported filesystem access-control which doesn't enable to restrict all file-related actions. This is the result of multiple discussions to minimize the code of Landlock to ease review. Thanks to the Landlock design, extending this access-control without breaking user space will not be a problem. Moreover, seccomp filters can be used to restrict the use of syscall families which may not be currently handled by Landlock. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: James Morris <jmorris@namei.org> Cc: Jann Horn <jannh@google.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Kees Cook <keescook@chromium.org> Cc: Richard Weinberger <richard@nod.at> Cc: Serge E. Hallyn <serge@hallyn.com> Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com> Link: https://lore.kernel.org/r/20210422154123.13086-8-mic@digikod.net Signed-off-by: James Morris <jamorris@linux.microsoft.com>
2021-04-22landlock: Add object managementMickaël Salaün
A Landlock object enables to identify a kernel object (e.g. an inode). A Landlock rule is a set of access rights allowed on an object. Rules are grouped in rulesets that may be tied to a set of processes (i.e. subjects) to enforce a scoped access-control (i.e. a domain). Because Landlock's goal is to empower any process (especially unprivileged ones) to sandbox themselves, we cannot rely on a system-wide object identification such as file extended attributes. Indeed, we need innocuous, composable and modular access-controls. The main challenge with these constraints is to identify kernel objects while this identification is useful (i.e. when a security policy makes use of this object). But this identification data should be freed once no policy is using it. This ephemeral tagging should not and may not be written in the filesystem. We then need to manage the lifetime of a rule according to the lifetime of its objects. To avoid a global lock, this implementation make use of RCU and counters to safely reference objects. A following commit uses this generic object management for inodes. Cc: James Morris <jmorris@namei.org> Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com> Reviewed-by: Jann Horn <jannh@google.com> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210422154123.13086-2-mic@digikod.net Signed-off-by: James Morris <jamorris@linux.microsoft.com>