summaryrefslogtreecommitdiff
path: root/security/keys/trusted-keys
AgeCommit message (Collapse)Author
2023-07-17security: keys: Modify mismatched function nameJiapeng Chong
No functional modification involved. security/keys/trusted-keys/trusted_tpm2.c:203: warning: expecting prototype for tpm_buf_append_auth(). Prototype was for tpm2_buf_append_auth() instead. Fixes: 2e19e10131a0 ("KEYS: trusted: Move TPM2 trusted keys code") Reported-by: Abaci Robot <abaci@linux.alibaba.com> Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=5524 Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Reviewed-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-12-08KEYS: trusted: tee: Make registered shm dependency explicitSumit Garg
TEE trusted keys support depends on registered shared memory support since the key buffers are needed to be registered with OP-TEE. So make that dependency explicit to not register trusted keys support if underlying implementation doesn't support registered shared memory. Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Tested-by: Jerome Forissier <jerome.forissier@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-06-08KEYS: trusted: tpm2: Fix migratable logicDavid Safford
When creating (sealing) a new trusted key, migratable trusted keys have the FIXED_TPM and FIXED_PARENT attributes set, and non-migratable keys don't. This is backwards, and also causes creation to fail when creating a migratable key under a migratable parent. (The TPM thinks you are trying to seal a non-migratable blob under a migratable parent.) The following simple patch fixes the logic, and has been tested for all four combinations of migratable and non-migratable trusted keys and parent storage keys. With this logic, you will get a proper failure if you try to create a non-migratable trusted key under a migratable parent storage key, and all other combinations work correctly. Cc: stable@vger.kernel.org # v5.13+ Fixes: e5fb5d2c5a03 ("security: keys: trusted: Make sealed key properly interoperable") Signed-off-by: David Safford <david.safford@gmail.com> Reviewed-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23KEYS: trusted: Introduce support for NXP CAAM-based trusted keysAhmad Fatoum
The Cryptographic Acceleration and Assurance Module (CAAM) is an IP core built into many newer i.MX and QorIQ SoCs by NXP. The CAAM does crypto acceleration, hardware number generation and has a blob mechanism for encapsulation/decapsulation of sensitive material. This blob mechanism depends on a device specific random 256-bit One Time Programmable Master Key that is fused in each SoC at manufacturing time. This key is unreadable and can only be used by the CAAM for AES encryption/decryption of user data. This makes it a suitable backend (source) for kernel trusted keys. Previous commits generalized trusted keys to support multiple backends and added an API to access the CAAM blob mechanism. Based on these, provide the necessary glue to use the CAAM for trusted keys. Reviewed-by: David Gstir <david@sigma-star.at> Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Tim Harvey <tharvey@gateworks.com> Tested-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com> Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com> Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E) Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23KEYS: trusted: allow use of kernel RNG for key materialAhmad Fatoum
The two existing trusted key sources don't make use of the kernel RNG, but instead let the hardware doing the sealing/unsealing also generate the random key material. However, both users and future backends may want to place less trust into the quality of the trust source's random number generator and instead reuse the kernel entropy pool, which can be seeded from multiple entropy sources. Make this possible by adding a new trusted.rng parameter, that will force use of the kernel RNG. In its absence, it's up to the trust source to decide, which random numbers to use, maintaining the existing behavior. Suggested-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Sumit Garg <sumit.garg@linaro.org> Acked-by: Pankaj Gupta <pankaj.gupta@nxp.com> Reviewed-by: David Gstir <david@sigma-star.at> Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com> Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E) Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-05-23KEYS: trusted: allow use of TEE as backend without TCG_TPM supportAhmad Fatoum
With recent rework, trusted keys are no longer limited to TPM as trust source. The Kconfig symbol is unchanged however leading to a few issues: - TCG_TPM is required, even if only TEE is to be used - Enabling TCG_TPM, but excluding it from available trusted sources is not possible - TEE=m && TRUSTED_KEYS=y will lead to TEE support being silently dropped, which is not the best user experience Remedy these issues by introducing two new boolean Kconfig symbols: TRUSTED_KEYS_TPM and TRUSTED_KEYS_TEE with the appropriate dependencies. Any new code depending on the TPM trusted key backend in particular or symbols exported by it will now need to explicitly state that it depends on TRUSTED_KEYS && TRUSTED_KEYS_TPM The latter to ensure the dependency is built and the former to ensure it's reachable for module builds. There are no such users yet. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com> Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com> Tested-by: Andreas Rammhold <andreas@rammhold.de> Tested-by: Tim Harvey <tharvey@gateworks.com> Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E) Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-03-23Merge tag 'arm-drivers-5.18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc Pull ARM driver updates from Arnd Bergmann: "There are a few separately maintained driver subsystems that we merge through the SoC tree, notable changes are: - Memory controller updates, mainly for Tegra and Mediatek SoCs, and clarifications for the memory controller DT bindings - SCMI firmware interface updates, in particular a new transport based on OPTEE and support for atomic operations. - Cleanups to the TEE subsystem, refactoring its memory management For SoC specific drivers without a separate subsystem, changes include - Smaller updates and fixes for TI, AT91/SAMA5, Qualcomm and NXP Layerscape SoCs. - Driver support for Microchip SAMA5D29, Tesla FSD, Renesas RZ/G2L, and Qualcomm SM8450. - Better power management on Mediatek MT81xx, NXP i.MX8MQ and older NVIDIA Tegra chips" * tag 'arm-drivers-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (154 commits) ARM: spear: fix typos in comments soc/microchip: fix invalid free in mpfs_sys_controller_delete soc: s4: Add support for power domains controller dt-bindings: power: add Amlogic s4 power domains bindings ARM: at91: add support in soc driver for new SAMA5D29 soc: mediatek: mmsys: add sw0_rst_offset in mmsys driver data dt-bindings: memory: renesas,rpc-if: Document RZ/V2L SoC memory: emif: check the pointer temp in get_device_details() memory: emif: Add check for setup_interrupts dt-bindings: arm: mediatek: mmsys: add support for MT8186 dt-bindings: mediatek: add compatible for MT8186 pwrap soc: mediatek: pwrap: add pwrap driver for MT8186 SoC soc: mediatek: mmsys: add mmsys reset control for MT8186 soc: mediatek: mtk-infracfg: Disable ACP on MT8192 soc: ti: k3-socinfo: Add AM62x JTAG ID soc: mediatek: add MTK mutex support for MT8186 soc: mediatek: mmsys: add mt8186 mmsys routing table soc: mediatek: pm-domains: Add support for mt8186 dt-bindings: power: Add MT8186 power domains soc: mediatek: pm-domains: Add support for mt8195 ...
2022-03-08KEYS: trusted: Avoid calling null function trusted_key_exitDave Kleikamp
If one loads and unloads the trusted module, trusted_key_exit can be NULL. Call it through static_call_cond() to avoid a kernel trap. Fixes: 5d0682be3189 ("KEYS: trusted: Add generic trusted keys framework") Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: James Bottomley <jejb@linux.ibm.com> Cc: Jarkko Sakkinen <jarkko@kernel.org> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: linux-integrity@vger.kernel.org Cc: keyrings@vger.kernel.org Cc: linux-security-module@vger.kernel.org Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-03-08KEYS: trusted: Fix trusted key backends when building as moduleAndreas Rammhold
Before this commit the kernel could end up with no trusted key sources even though both of the currently supported backends (TPM and TEE) were compiled as modules. This manifested in the trusted key type not being registered at all. When checking if a CONFIG_… preprocessor variable is defined we only test for the builtin (=y) case and not the module (=m) case. By using the IS_REACHABLE() macro we do test for both cases. Fixes: 5d0682be3189 ("KEYS: trusted: Add generic trusted keys framework") Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Andreas Rammhold <andreas@rammhold.de> Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2022-02-16KEYS: trusted: tee: use tee_shm_register_kernel_buf()Jens Wiklander
Uses the new simplified tee_shm_register_kernel_buf() function instead of the old tee_shm_alloc() function which required specific TEE_SHM-flags Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2021-05-12trusted-keys: match tpm_get_ops on all return pathsBen Boeckel
The `tpm_get_ops` call at the beginning of the function is not paired with a `tpm_put_ops` on this return path. Cc: stable@vger.kernel.org Fixes: f2219745250f ("security: keys: trusted: use ASN.1 TPM2 key format for the blobs") Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Ben Boeckel <mathstuf@gmail.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-05-12KEYS: trusted: Fix memory leak on object tdColin Ian King
Two error return paths are neglecting to free allocated object td, causing a memory leak. Fix this by returning via the error return path that securely kfree's td. Fixes clang scan-build warning: security/keys/trusted-keys/trusted_tpm1.c:496:10: warning: Potential memory leak [unix.Malloc] Cc: stable@vger.kernel.org Fixes: 5df16caada3f ("KEYS: trusted: Fix incorrect handling of tpm_get_random()") Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-26Merge tag 'queue' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/tpmddLinus Torvalds
Pull tpm fixes from James Bottomley: "Fix a regression in the TPM trusted keys caused by the generic rework to add ARM TEE based trusted keys. Without this fix, the TPM trusted key subsystem fails to add or load any keys" * tag 'queue' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/tpmdd: KEYS: trusted: fix TPM trusted keys for generic framework
2021-04-26Merge tag 'tpmdd-next-v5.13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd Pull tpm updates from Jarkko Sakkinen: "New features: - ARM TEE backend for kernel trusted keys to complete the existing TPM backend - ASN.1 format for TPM2 trusted keys to make them interact with the user space stack, such as OpenConnect VPN Other than that, a bunch of bug fixes" * tag 'tpmdd-next-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd: KEYS: trusted: Fix missing null return from kzalloc call char: tpm: fix error return code in tpm_cr50_i2c_tis_recv() MAINTAINERS: Add entry for TEE based Trusted Keys doc: trusted-encrypted: updates with TEE as a new trust source KEYS: trusted: Introduce TEE based Trusted Keys KEYS: trusted: Add generic trusted keys framework security: keys: trusted: Make sealed key properly interoperable security: keys: trusted: use ASN.1 TPM2 key format for the blobs security: keys: trusted: fix TPM2 authorizations oid_registry: Add TCG defined OIDS for TPM keys lib: Add ASN.1 encoder tpm: vtpm_proxy: Avoid reading host log when using a virtual device tpm: acpi: Check eventlog signature before using it tpm: efi: Use local variable for calculating final log size
2021-04-21KEYS: trusted: fix TPM trusted keys for generic frameworkJames Bottomley
The generic framework patch broke the current TPM trusted keys because it doesn't correctly remove the values consumed by the generic parser before passing them on to the implementation specific parser. Fix this by having the generic parser return the string minus the consumed tokens. Additionally, there may be no tokens left for the implementation specific parser, so make it handle the NULL case correctly and finally fix a TPM 1.2 specific check for no keyhandle. Fixes: 5d0682be3189 ("KEYS: trusted: Add generic trusted keys framework") Tested-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2021-04-21KEYS: trusted: Fix TPM reservation for seal/unsealJames Bottomley
The original patch 8c657a0590de ("KEYS: trusted: Reserve TPM for seal and unseal operations") was correct on the mailing list: https://lore.kernel.org/linux-integrity/20210128235621.127925-4-jarkko@kernel.org/ But somehow got rebased so that the tpm_try_get_ops() in tpm2_seal_trusted() got lost. This causes an imbalanced put of the TPM ops and causes oopses on TIS based hardware. This fix puts back the lost tpm_try_get_ops() Fixes: 8c657a0590de ("KEYS: trusted: Reserve TPM for seal and unseal operations") Reported-by: Mimi Zohar <zohar@linux.ibm.com> Acked-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2021-04-14KEYS: trusted: Fix missing null return from kzalloc callColin Ian King
The kzalloc call can return null with the GFP_KERNEL flag so add a null check and exit via a new error exit label. Use the same exit error label for another error path too. Addresses-Coverity: ("Dereference null return value") Fixes: 830027e2cb55 ("KEYS: trusted: Add generic trusted keys framework") Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14KEYS: trusted: Introduce TEE based Trusted KeysSumit Garg
Add support for TEE based trusted keys where TEE provides the functionality to seal and unseal trusted keys using hardware unique key. Refer to Documentation/staging/tee.rst for detailed information about TEE. Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14KEYS: trusted: Add generic trusted keys frameworkSumit Garg
Current trusted keys framework is tightly coupled to use TPM device as an underlying implementation which makes it difficult for implementations like Trusted Execution Environment (TEE) etc. to provide trusted keys support in case platform doesn't posses a TPM device. Add a generic trusted keys framework where underlying implementations can be easily plugged in. Create struct trusted_key_ops to achieve this, which contains necessary functions of a backend. Also, define a module parameter in order to select a particular trust source in case a platform support multiple trust sources. In case its not specified then implementation itetrates through trust sources list starting with TPM and assign the first trust source as a backend which has initiazed successfully during iteration. Note that current implementation only supports a single trust source at runtime which is either selectable at compile time or during boot via aforementioned module parameter. Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14security: keys: trusted: Make sealed key properly interoperableJames Bottomley
The current implementation appends a migratable flag to the end of a key, meaning the format isn't exactly interoperable because the using party needs to know to strip this extra byte. However, all other consumers of TPM sealed blobs expect the unseal to return exactly the key. Since TPM2 keys have a key property flag that corresponds to migratable, use that flag instead and make the actual key the only sealed quantity. This is secure because the key properties are bound to a hash in the private part, so if they're altered the key won't load. Backwards compatibility is implemented by detecting whether we're loading a new format key or not and correctly setting migratable from the last byte of old format keys. Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14security: keys: trusted: use ASN.1 TPM2 key format for the blobsJames Bottomley
Modify the TPM2 key format blob output to export and import in the ASN.1 form for TPM2 sealed object keys. For compatibility with prior trusted keys, the importer will also accept two TPM2B quantities representing the public and private parts of the key. However, the export via keyctl pipe will only output the ASN.1 format. The benefit of the ASN.1 format is that it's a standard and thus the exported key can be used by userspace tools (openssl_tpm2_engine, openconnect and tpm2-tss-engine). The format includes policy specifications, thus it gets us out of having to construct policy handles in userspace and the format includes the parent meaning you don't have to keep passing it in each time. This patch only implements basic handling for the ASN.1 format, so keys with passwords but no policy. Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Tested-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-04-14security: keys: trusted: fix TPM2 authorizationsJames Bottomley
In TPM 1.2 an authorization was a 20 byte number. The spec actually recommended you to hash variable length passwords and use the sha1 hash as the authorization. Because the spec doesn't require this hashing, the current authorization for trusted keys is a 40 digit hex number. For TPM 2.0 the spec allows the passing in of variable length passwords and passphrases directly, so we should allow that in trusted keys for ease of use. Update the 'blobauth' parameter to take this into account, so we can now use plain text passwords for the keys. so before keyctl add trusted kmk "new 32 blobauth=f572d396fae9206628714fb2ce00f72e94f2258fkeyhandle=81000001" @u after we will accept both the old hex sha1 form as well as a new directly supplied password: keyctl add trusted kmk "new 32 blobauth=hello keyhandle=81000001" @u Since a sha1 hex code must be exactly 40 bytes long and a direct password must be 20 or less, we use the length as the discriminator for which form is input. Note this is both and enhancement and a potential bug fix. The TPM 2.0 spec requires us to strip leading zeros, meaning empyty authorization is a zero length HMAC whereas we're currently passing in 20 bytes of zeros. A lot of TPMs simply accept this as OK, but the Microsoft TPM emulator rejects it with TPM_RC_BAD_AUTH, so this patch makes the Microsoft TPM emulator work with trusted keys. Fixes: 0fe5480303a1 ("keys, trusted: seal/unseal with TPM 2.0 chips") Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16KEYS: trusted: Reserve TPM for seal and unseal operationsJarkko Sakkinen
When TPM 2.0 trusted keys code was moved to the trusted keys subsystem, the operations were unwrapped from tpm_try_get_ops() and tpm_put_ops(), which are used to take temporarily the ownership of the TPM chip. The ownership is only taken inside tpm_send(), but this is not sufficient, as in the key load TPM2_CC_LOAD, TPM2_CC_UNSEAL and TPM2_FLUSH_CONTEXT need to be done as a one single atom. Take the TPM chip ownership before sending anything with tpm_try_get_ops() and tpm_put_ops(), and use tpm_transmit_cmd() to send TPM commands instead of tpm_send(), reverting back to the old behaviour. Fixes: 2e19e10131a0 ("KEYS: trusted: Move TPM2 trusted keys code") Reported-by: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: stable@vger.kernel.org Cc: David Howells <dhowells@redhat.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Sumit Garg <sumit.garg@linaro.org> Acked-by Sumit Garg <sumit.garg@linaro.org> Tested-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16KEYS: trusted: Fix migratable=1 failingJarkko Sakkinen
Consider the following transcript: $ keyctl add trusted kmk "new 32 blobauth=helloworld keyhandle=80000000 migratable=1" @u add_key: Invalid argument The documentation has the following description: migratable= 0|1 indicating permission to reseal to new PCR values, default 1 (resealing allowed) The consequence is that "migratable=1" should succeed. Fix this by allowing this condition to pass instead of return -EINVAL. [*] Documentation/security/keys/trusted-encrypted.rst Cc: stable@vger.kernel.org Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: David Howells <dhowells@redhat.com> Fixes: d00a1c72f7f4 ("keys: add new trusted key-type") Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-02-16KEYS: trusted: Fix incorrect handling of tpm_get_random()Jarkko Sakkinen
When tpm_get_random() was introduced, it defined the following API for the return value: 1. A positive value tells how many bytes of random data was generated. 2. A negative value on error. However, in the call sites the API was used incorrectly, i.e. as it would only return negative values and otherwise zero. Returning he positive read counts to the user space does not make any possible sense. Fix this by returning -EIO when tpm_get_random() returns a positive value. Fixes: 41ab999c80f1 ("tpm: Move tpm_get_random api into the TPM device driver") Cc: stable@vger.kernel.org Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: David Howells <dhowells@redhat.com> Cc: Kent Yoder <key@linux.vnet.ibm.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
2020-11-20crypto: sha - split sha.h into sha1.h and sha2.hEric Biggers
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2, and <crypto/sha3.h> contains declarations for SHA-3. This organization is inconsistent, but more importantly SHA-1 is no longer considered to be cryptographically secure. So to the extent possible, SHA-1 shouldn't be grouped together with any of the other SHA versions, and usage of it should be phased out. Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and <crypto/sha2.h>, and make everyone explicitly specify whether they want the declarations for SHA-1, SHA-2, or both. This avoids making the SHA-1 declarations visible to files that don't want anything to do with SHA-1. It also prepares for potentially moving sha1.h into a new insecure/ or dangerous/ directory. Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-08-07mm, treewide: rename kzfree() to kfree_sensitive()Waiman Long
As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-29KEYS: Don't write out to userspace while holding key semaphoreWaiman Long
A lockdep circular locking dependency report was seen when running a keyutils test: [12537.027242] ====================================================== [12537.059309] WARNING: possible circular locking dependency detected [12537.088148] 4.18.0-147.7.1.el8_1.x86_64+debug #1 Tainted: G OE --------- - - [12537.125253] ------------------------------------------------------ [12537.153189] keyctl/25598 is trying to acquire lock: [12537.175087] 000000007c39f96c (&mm->mmap_sem){++++}, at: __might_fault+0xc4/0x1b0 [12537.208365] [12537.208365] but task is already holding lock: [12537.234507] 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12537.270476] [12537.270476] which lock already depends on the new lock. [12537.270476] [12537.307209] [12537.307209] the existing dependency chain (in reverse order) is: [12537.340754] [12537.340754] -> #3 (&type->lock_class){++++}: [12537.367434] down_write+0x4d/0x110 [12537.385202] __key_link_begin+0x87/0x280 [12537.405232] request_key_and_link+0x483/0xf70 [12537.427221] request_key+0x3c/0x80 [12537.444839] dns_query+0x1db/0x5a5 [dns_resolver] [12537.468445] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.496731] cifs_reconnect+0xe04/0x2500 [cifs] [12537.519418] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.546263] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.573551] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.601045] kthread+0x30c/0x3d0 [12537.617906] ret_from_fork+0x3a/0x50 [12537.636225] [12537.636225] -> #2 (root_key_user.cons_lock){+.+.}: [12537.664525] __mutex_lock+0x105/0x11f0 [12537.683734] request_key_and_link+0x35a/0xf70 [12537.705640] request_key+0x3c/0x80 [12537.723304] dns_query+0x1db/0x5a5 [dns_resolver] [12537.746773] dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs] [12537.775607] cifs_reconnect+0xe04/0x2500 [cifs] [12537.798322] cifs_readv_from_socket+0x461/0x690 [cifs] [12537.823369] cifs_read_from_socket+0xa0/0xe0 [cifs] [12537.847262] cifs_demultiplex_thread+0x311/0x2db0 [cifs] [12537.873477] kthread+0x30c/0x3d0 [12537.890281] ret_from_fork+0x3a/0x50 [12537.908649] [12537.908649] -> #1 (&tcp_ses->srv_mutex){+.+.}: [12537.935225] __mutex_lock+0x105/0x11f0 [12537.954450] cifs_call_async+0x102/0x7f0 [cifs] [12537.977250] smb2_async_readv+0x6c3/0xc90 [cifs] [12538.000659] cifs_readpages+0x120a/0x1e50 [cifs] [12538.023920] read_pages+0xf5/0x560 [12538.041583] __do_page_cache_readahead+0x41d/0x4b0 [12538.067047] ondemand_readahead+0x44c/0xc10 [12538.092069] filemap_fault+0xec1/0x1830 [12538.111637] __do_fault+0x82/0x260 [12538.129216] do_fault+0x419/0xfb0 [12538.146390] __handle_mm_fault+0x862/0xdf0 [12538.167408] handle_mm_fault+0x154/0x550 [12538.187401] __do_page_fault+0x42f/0xa60 [12538.207395] do_page_fault+0x38/0x5e0 [12538.225777] page_fault+0x1e/0x30 [12538.243010] [12538.243010] -> #0 (&mm->mmap_sem){++++}: [12538.267875] lock_acquire+0x14c/0x420 [12538.286848] __might_fault+0x119/0x1b0 [12538.306006] keyring_read_iterator+0x7e/0x170 [12538.327936] assoc_array_subtree_iterate+0x97/0x280 [12538.352154] keyring_read+0xe9/0x110 [12538.370558] keyctl_read_key+0x1b9/0x220 [12538.391470] do_syscall_64+0xa5/0x4b0 [12538.410511] entry_SYSCALL_64_after_hwframe+0x6a/0xdf [12538.435535] [12538.435535] other info that might help us debug this: [12538.435535] [12538.472829] Chain exists of: [12538.472829] &mm->mmap_sem --> root_key_user.cons_lock --> &type->lock_class [12538.472829] [12538.524820] Possible unsafe locking scenario: [12538.524820] [12538.551431] CPU0 CPU1 [12538.572654] ---- ---- [12538.595865] lock(&type->lock_class); [12538.613737] lock(root_key_user.cons_lock); [12538.644234] lock(&type->lock_class); [12538.672410] lock(&mm->mmap_sem); [12538.687758] [12538.687758] *** DEADLOCK *** [12538.687758] [12538.714455] 1 lock held by keyctl/25598: [12538.732097] #0: 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220 [12538.770573] [12538.770573] stack backtrace: [12538.790136] CPU: 2 PID: 25598 Comm: keyctl Kdump: loaded Tainted: G [12538.844855] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015 [12538.881963] Call Trace: [12538.892897] dump_stack+0x9a/0xf0 [12538.907908] print_circular_bug.isra.25.cold.50+0x1bc/0x279 [12538.932891] ? save_trace+0xd6/0x250 [12538.948979] check_prev_add.constprop.32+0xc36/0x14f0 [12538.971643] ? keyring_compare_object+0x104/0x190 [12538.992738] ? check_usage+0x550/0x550 [12539.009845] ? sched_clock+0x5/0x10 [12539.025484] ? sched_clock_cpu+0x18/0x1e0 [12539.043555] __lock_acquire+0x1f12/0x38d0 [12539.061551] ? trace_hardirqs_on+0x10/0x10 [12539.080554] lock_acquire+0x14c/0x420 [12539.100330] ? __might_fault+0xc4/0x1b0 [12539.119079] __might_fault+0x119/0x1b0 [12539.135869] ? __might_fault+0xc4/0x1b0 [12539.153234] keyring_read_iterator+0x7e/0x170 [12539.172787] ? keyring_read+0x110/0x110 [12539.190059] assoc_array_subtree_iterate+0x97/0x280 [12539.211526] keyring_read+0xe9/0x110 [12539.227561] ? keyring_gc_check_iterator+0xc0/0xc0 [12539.249076] keyctl_read_key+0x1b9/0x220 [12539.266660] do_syscall_64+0xa5/0x4b0 [12539.283091] entry_SYSCALL_64_after_hwframe+0x6a/0xdf One way to prevent this deadlock scenario from happening is to not allow writing to userspace while holding the key semaphore. Instead, an internal buffer is allocated for getting the keys out from the read method first before copying them out to userspace without holding the lock. That requires taking out the __user modifier from all the relevant read methods as well as additional changes to not use any userspace write helpers. That is, 1) The put_user() call is replaced by a direct copy. 2) The copy_to_user() call is replaced by memcpy(). 3) All the fault handling code is removed. Compiling on a x86-64 system, the size of the rxrpc_read() function is reduced from 3795 bytes to 2384 bytes with this patch. Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2") Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-12-17security: keys: trusted: fix lost handle flushJames Bottomley
The original code, before it was moved into security/keys/trusted-keys had a flush after the blob unseal. Without that flush, the volatile handles increase in the TPM until it becomes unusable and the system either has to be rebooted or the TPM volatile area manually flushed. Fix by adding back the lost flush, which we now have to export because of the relocation of the trusted key code may cause the consumer to be modular. Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Fixes: 2e19e10131a0 ("KEYS: trusted: Move TPM2 trusted keys code") Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12KEYS: trusted: Remove set but not used variable 'keyhndl'zhengbin
Fixes gcc '-Wunused-but-set-variable' warning: security/keys/trusted-keys/trusted_tpm1.c: In function tpm_unseal: security/keys/trusted-keys/trusted_tpm1.c:588:11: warning: variable keyhndl set but not used [-Wunused-but-set-variable] Fixes: 00aa975bd031 ("KEYS: trusted: Create trusted keys subsystem") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: zhengbin <zhengbin13@huawei.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12KEYS: trusted: Move TPM2 trusted keys codeSumit Garg
Move TPM2 trusted keys code to trusted keys subsystem. The reason being it's better to consolidate all the trusted keys code to a single location so that it can be maintained sanely. Also, utilize existing tpm_send() exported API which wraps the internal tpm_transmit_cmd() API. Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-11-12KEYS: trusted: Create trusted keys subsystemSumit Garg
Move existing code to trusted keys subsystem. Also, rename files with "tpm" as suffix which provides the underlying implementation. Suggested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>