summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2011-01-13thp: select CONFIG_COMPACTION if TRANSPARENT_HUGEPAGE enabledAndrea Arcangeli
With transparent hugepage support we need compaction for the "defrag" sysfs controls to be effective. At the moment THP hangs the system if COMPACTION isn't selected, as without COMPACTION lumpy reclaim wouldn't be entirely disabled. So at the moment it's not orthogonal. When lumpy will be removed from the VM I can remove the select COMPACTION in theory, but then 99% of THP users would be still doing a mistake in disabling compaction, even if the mistake won't return in fatal runtime but just slightly degraded performance. So from a theoretical standpoing forcing the below select is not needed (the dependency isn't strict nor at compile time nor at runtime) but from a practical standpoint it is safer. If anybody really wants THP to run without compaction, it'd be such a weird setup that editing the Kconfig file to allow it will be surely not a problem. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transparent hugepage config choiceAndrea Arcangeli
Allow to choose between the always|madvise default for page faults and khugepaged at config time. madvise guarantees zero risk of higher memory footprint for applications (applications using madvise(MADV_HUGEPAGE) won't risk to use any more memory by backing their virtual regions with hugepages). Initially set the default to N and don't depend on EMBEDDED. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: allocate memory in khugepaged outside of mmap_sem write modeAndrea Arcangeli
This tries to be more friendly to filesystem in userland, with userland backends that allocate memory in the I/O paths and that could deadlock if khugepaged holds the mmap_sem write mode of the userland backend while allocating memory. Memory allocation may wait for writeback I/O completion from the daemon that may be blocked in the mmap_sem read mode if a page fault happens and the daemon wasn't using mlock for the memory required for the I/O submission and completion. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: add numa awareness to hugepage allocationsAndrea Arcangeli
It's mostly a matter of replacing alloc_pages with alloc_pages_vma after introducing alloc_pages_vma. khugepaged needs special handling as the allocation has to happen inside collapse_huge_page where the vma is known and an error has to be returned to the outer loop to sleep alloc_sleep_millisecs in case of failure. But it retains the more efficient logic of handling allocation failures in khugepaged in case of CONFIG_NUMA=n. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: enable direct defragAndrea Arcangeli
With memory compaction in, and lumpy-reclaim disabled, it seems safe enough to defrag memory during the (synchronous) transparent hugepage page faults (TRANSPARENT_HUGEPAGE_DEFRAG_FLAG) and not only during khugepaged (async) hugepage allocations that was already enabled even before memory compaction was in (TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: set recommended min free kbytesAndrea Arcangeli
If transparent hugepage is enabled initialize min_free_kbytes to an optimal value by default. This moves the hugeadm algorithm in kernel. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: mprotect: transparent huge page supportJohannes Weiner
Natively handle huge pmds when changing page tables on behalf of mprotect(). I left out update_mmu_cache() because we do not need it on x86 anyway but more importantly the interface works on ptes, not pmds. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: mprotect: pass vma down to page table walkersJohannes Weiner
Flushing the tlb for huge pmds requires the vma's anon_vma, so pass along the vma instead of the mm, we can always get the latter when we need it. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: mincore transparent hugepage supportJohannes Weiner
Handle transparent huge page pmd entries natively instead of splitting them into subpages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: add x86 32bit supportJohannes Weiner
Add support for transparent hugepages to x86 32bit. Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never support transparent hugepages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: remove PG_buddyAndrea Arcangeli
PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can be added to page->flags without overflowing (because of the sparse section bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also has to move the memory hotplug code from _mapcount to lru.next to avoid any risk of clashes. We can't use lru.next for PG_buddy removal, but memory hotplug can use lru.next even more easily than the mapcount instead. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: skip transhuge pages in ksm for nowAndrea Arcangeli
Skip transhuge pages in ksm for now. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: khugepaged vma mergeAndrea Arcangeli
register in khugepaged if the vma grows. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: khugepagedAndrea Arcangeli
Add khugepaged to relocate fragmented pages into hugepages if new hugepages become available. (this is indipendent of the defrag logic that will have to make new hugepages available) The fundamental reason why khugepaged is unavoidable, is that some memory can be fragmented and not everything can be relocated. So when a virtual machine quits and releases gigabytes of hugepages, we want to use those freely available hugepages to create huge-pmd in the other virtual machines that may be running on fragmented memory, to maximize the CPU efficiency at all times. The scan is slow, it takes nearly zero cpu time, except when it copies data (in which case it means we definitely want to pay for that cpu time) so it seems a good tradeoff. In addition to the hugepages being released by other process releasing memory, we have the strong suspicion that the performance impact of potentially defragmenting hugepages during or before each page fault could lead to more performance inconsistency than allocating small pages at first and having them collapsed into large pages later... if they prove themselfs to be long lived mappings (khugepaged scan is slow so short lived mappings have low probability to run into khugepaged if compared to long lived mappings). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transparent hugepage vmstatAndrea Arcangeli
Add hugepage stat information to /proc/vmstat and /proc/meminfo. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: memcg huge memoryAndrea Arcangeli
Add memcg charge/uncharge to hugepage faults in huge_memory.c. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transhuge-memcg: commit tail pages at chargeDaisuke Nishimura
By this patch, when a transparent hugepage is charged, not only the head page but also all the tail pages are committed, IOW pc->mem_cgroup and pc->flags of tail pages are set. Without this patch: - Tail pages are not linked to any memcg's LRU at splitting. This causes many problems, for example, the charged memcg's directory can never be rmdir'ed because it doesn't have enough pages to scan to make the usage decrease to 0. - "rss" field in memory.stat would be incorrect. Moreover, usage_in_bytes in root cgroup is calculated by the stat not by res_counter(since 2.6.32), it would be incorrect too. Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: memcg compoundAndrea Arcangeli
Teach memcg to charge/uncharge compound pages. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: pmd_trans_huge migrate bugcheckAndrea Arcangeli
No pmd_trans_huge should ever materialize in migration ptes areas, because we split the hugepage before migration ptes are instantiated. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: madvise(MADV_HUGEPAGE)Andrea Arcangeli
Add madvise MADV_HUGEPAGE to mark regions that are important to be hugepage backed. Return -EINVAL if the vma is not of an anonymous type, or the feature isn't built into the kernel. Never silently return success. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: verify pmd_trans_huge isn't leakingAndrea Arcangeli
pte_trans_huge must not leak in certain vmas like the mmio special pfn or filebacked mappings. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: split_huge_page anon_vma ordering dependencyAndrea Arcangeli
This documents how split_huge_page is safe vs new vma inserctions into the anon_vma that may have already released the anon_vma->lock but not established pmds yet when split_huge_page starts. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transparent hugepage core fixletHugh Dickins
If you configure THP in addition to HUGETLB_PAGE on x86_32 without PAE, the p?d-folding works out that munlock_vma_pages_range() can crash to follow_page()'s pud_huge() BUG_ON(flags & FOLL_GET): it needs the same VM_HUGETLB check already there on the pmd_huge() line. Conveniently, openSUSE provides a "blogd" which tests this out at startup! Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transparent hugepage coreAndrea Arcangeli
Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: don't alloc harder for gfp nomemalloc even if nowaitAndrea Arcangeli
Not worth throwing away the precious reserved free memory pool for allocations that can fail gracefully (either through mempool or because they're transhuge allocations later falling back to 4k allocations). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: _GFP_NO_KSWAPDAndrea Arcangeli
Transparent hugepage allocations must be allowed not to invoke kswapd or any other kind of indirect reclaim (especially when the defrag sysfs is control disabled). It's unacceptable to swap out anonymous pages (potentially anonymous transparent hugepages) in order to create new transparent hugepages. This is true for the MADV_HUGEPAGE areas too (swapping out a kvm virtual machine and so having it suffer an unbearable slowdown, so another one with guest physical memory marked MADV_HUGEPAGE can run 30% faster if it is running memory intensive workloads, makes no sense). If a transparent hugepage allocation fails the slowdown is minor and there is total fallback, so kswapd should never be asked to swapout memory to allow the high order allocation to succeed. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: clear_copy_huge_pageAndrea Arcangeli
Move the copy/clear_huge_page functions to common code to share between hugetlb.c and huge_memory.c. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: split_huge_page pagingAndrea Arcangeli
Paging logic that splits the page before it is unmapped and added to swap to ensure backwards compatibility with the legacy swap code. Eventually swap should natively pageout the hugepages to increase performance and decrease seeking and fragmentation of swap space. swapoff can just skip over huge pmd as they cannot be part of swap yet. In add_to_swap be careful to split the page only if we got a valid swap entry so we don't split hugepages with a full swap. In theory we could split pages before isolating them during the lru scan, but for khugepaged to be safe, I'm relying on either mmap_sem write mode, or PG_lock taken, so split_huge_page has to run either with mmap_sem read/write mode or PG_lock taken. Calling it from isolate_lru_page would make locking more complicated, in addition to that split_huge_page would deadlock if called by __isolate_lru_page because it has to take the lru lock to add the tail pages. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: split_huge_page_mm/vmaAndrea Arcangeli
split_huge_page_pmd compat code. Each one of those would need to be expanded to hundred of lines of complex code without a fully reliable split_huge_page_pmd design. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: pte alloc trans splittingAndrea Arcangeli
pte alloc routines must wait for split_huge_page if the pmd is not present and not null (i.e. pmd_trans_splitting). The additional branches are optimized away at compile time by pmd_trans_splitting if the config option is off. However we must pass the vma down in order to know the anon_vma lock to wait for. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: add pmd mangling generic functionsAndrea Arcangeli
Some are needed to build but not actually used on archs not supporting transparent hugepages. Others like pmdp_clear_flush are used by x86 too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: CONFIG_TRANSPARENT_HUGEPAGEAndrea Arcangeli
Add config option. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: comment reminder in destroy_compound_pageAndrea Arcangeli
Warn destroy_compound_page that __split_huge_page_refcount is heavily dependent on its internal behavior. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: export maybe_mkwriteAndrea Arcangeli
huge_memory.c needs it too when it fallbacks in copying hugepages into regular fragmented pages if hugepage allocation fails during COW. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: clear compound mappingAndrea Arcangeli
Clear compound mapping for anonymous compound pages like it already happens for regular anonymous pages. But crash if mapping is set for any tail page, also the PageAnon check is meaningless for tail pages. This check only makes sense for the head page, for tail page it can only hide bugs and we definitely don't want to hide bugs. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: put_page: recheck PageHead after releasing the compound_lockAndrea Arcangeli
After releasing the compound_lock split_huge_page can still run and release the page before put_page_testzero runs. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: alter compound get_page/put_pageAndrea Arcangeli
Alter compound get_page/put_page to keep references on subpages too, in order to allow __split_huge_page_refcount to split an hugepage even while subpages have been pinned by one of the get_user_pages() variants. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: fix bad_page to show the real reason the page is badAndrea Arcangeli
page_count shows the count of the head page, but the actual check is done on the tail page, so show what is really being checked. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: ksm: free swap when swapcache page is replacedHugh Dickins
When a swapcache page is replaced by a ksm page, it's best to free that swap immediately. Reported-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13writeback: avoid unnecessary determine_dirtyable_memory callMinchan Kim
I think determine_dirtyable_memory() is a rather costly function since it need many atomic reads for gathering zone/global page state. But when we use vm_dirty_bytes && dirty_background_bytes, we don't need that costly calculation. This patch eliminates such unnecessary overhead. NOTE : newly added if condition might add overhead in normal path. But it should be _really_ small because anyway we need the access both vm_dirty_bytes and dirty_background_bytes so it is likely to hit the cache. [akpm@linux-foundation.org: fix used-uninitialised warning] Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: set correct numa_zonelist_order string when configured on the kernel ↵Volodymyr G. Lukiianyk
command line When numa_zonelist_order parameter is set to "node" or "zone" on the command line it's still showing as "default" in sysctl. That's because early_param parsing function changes only user_zonelist_order variable. Fix this by copying user-provided string to numa_zonelist_order if it was successfully parsed. Signed-off-by: Volodymyr G Lukiianyk <volodymyrgl@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: use the classzone idx that kswapd was using for ↵Mel Gorman
sleeping_prematurely() When kswapd is woken up for a high-order allocation, it takes account of the highest usable zone by the caller (the classzone idx). During allocation, this index is used to select the lowmem_reserve[] that should be applied to the watermark calculation in zone_watermark_ok(). When balancing a node, kswapd considers the highest unbalanced zone to be the classzone index. This will always be at least be the callers classzone_idx and can be higher. However, sleeping_prematurely() always considers the lowest zone (e.g. ZONE_DMA) to be the classzone index. This means that sleeping_prematurely() can consider a zone to be balanced that is unusable by the allocation request that originally woke kswapd. This patch changes sleeping_prematurely() to use a classzone_idx matching the value it used in balance_pgdat(). Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: treat zone->all_unreclaimable in sleeping_prematurely similar to ↵Mel Gorman
balance_pgdat() After DEF_PRIORITY, balance_pgdat() considers all_unreclaimable zones to be balanced but sleeping_prematurely does not. This can force kswapd to stay awake longer than it should. This patch fixes it. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: reset kswapd_max_order and classzone_idx after readingMel Gorman
When kswapd wakes up, it reads its order and classzone from pgdat and calls balance_pgdat. While its awake, it potentially reclaimes at a high order and a low classzone index. This might have been a once-off that was not required by subsequent callers. However, because the pgdat values were not reset, they remain artifically high while balance_pgdat() is running and potentially kswapd enters a second unnecessary reclaim cycle. Reset the pgdat order and classzone index after reading. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: use the order that kswapd was reclaiming at for ↵Mel Gorman
sleeping_prematurely() Before kswapd goes to sleep, it uses sleeping_prematurely() to check if there was a race pushing a zone below its watermark. If the race happened, it stays awake. However, balance_pgdat() can decide to reclaim at order-0 if it decides that high-order reclaim is not working as expected. This information is not passed back to sleeping_prematurely(). The impact is that kswapd remains awake reclaiming pages long after it should have gone to sleep. This patch passes the adjusted order to sleeping_prematurely and uses the same logic as balance_pgdat to decide if it's ok to go to sleep. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: keep kswapd awake for high-order allocations until a percentage ↵Mel Gorman
of the node is balanced When reclaiming for high-orders, kswapd is responsible for balancing a node but it should not reclaim excessively. It avoids excessive reclaim by considering if any zone in a node is balanced then the node is balanced. In the cases where there are imbalanced zone sizes (e.g. ZONE_DMA with both ZONE_DMA32 and ZONE_NORMAL), kswapd can go to sleep prematurely as just one small zone was balanced. This alters the sleep logic of kswapd slightly. It counts the number of pages that make up the balanced zones. If the total number of balanced pages is more than a quarter of the zone, kswapd will go back to sleep. This should keep a node balanced without reclaiming an excessive number of pages. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: kswapd: stop high-order balancing when any suitable zone is balancedMel Gorman
Simon Kirby reported the following problem We're seeing cases on a number of servers where cache never fully grows to use all available memory. Sometimes we see servers with 4 GB of memory that never seem to have less than 1.5 GB free, even with a constantly-active VM. In some cases, these servers also swap out while this happens, even though they are constantly reading the working set into memory. We have been seeing this happening for a long time; I don't think it's anything recent, and it still happens on 2.6.36. After some debugging work by Simon, Dave Hansen and others, the prevaling theory became that kswapd is reclaiming order-3 pages requested by SLUB too aggressive about it. There are two apparent problems here. On the target machine, there is a small Normal zone in comparison to DMA32. As kswapd tries to balance all zones, it would continually try reclaiming for Normal even though DMA32 was balanced enough for callers. The second problem is that sleeping_prematurely() does not use the same logic as balance_pgdat() when deciding whether to sleep or not. This keeps kswapd artifically awake. A number of tests were run and the figures from previous postings will look very different for a few reasons. One, the old figures were forcing my network card to use GFP_ATOMIC in attempt to replicate Simon's problem. Second, I previous specified slub_min_order=3 again in an attempt to reproduce Simon's problem. In this posting, I'm depending on Simon to say whether his problem is fixed or not and these figures are to show the impact to the ordinary cases. Finally, the "vmscan" figures are taken from /proc/vmstat instead of the tracepoints. There is less information but recording is less disruptive. The first test of relevance was postmark with a process running in the background reading a large amount of anonymous memory in blocks. The objective was to vaguely simulate what was happening on Simon's machine and it's memory intensive enough to have kswapd awake. POSTMARK traceonly kanyzone Transactions per second: 156.00 ( 0.00%) 153.00 (-1.96%) Data megabytes read per second: 21.51 ( 0.00%) 21.52 ( 0.05%) Data megabytes written per second: 29.28 ( 0.00%) 29.11 (-0.58%) Files created alone per second: 250.00 ( 0.00%) 416.00 (39.90%) Files create/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) Files deleted alone per second: 520.00 ( 0.00%) 420.00 (-23.81%) Files delete/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 16.58 17.4 Total Elapsed Time (seconds) 218.48 222.47 VMstat Reclaim Statistics: vmscan Direct reclaims 0 4 Direct reclaim pages scanned 0 203 Direct reclaim pages reclaimed 0 184 Kswapd pages scanned 326631 322018 Kswapd pages reclaimed 312632 309784 Kswapd low wmark quickly 1 4 Kswapd high wmark quickly 122 475 Kswapd skip congestion_wait 1 0 Pages activated 700040 705317 Pages deactivated 212113 203922 Pages written 9875 6363 Total pages scanned 326631 322221 Total pages reclaimed 312632 309968 %age total pages scanned/reclaimed 95.71% 96.20% %age total pages scanned/written 3.02% 1.97% proc vmstat: Faults Major Faults 300 254 Minor Faults 645183 660284 Page ins 493588 486704 Page outs 4960088 4986704 Swap ins 1230 661 Swap outs 9869 6355 Performance is mildly affected because kswapd is no longer doing as much work and the background memory consumer process is getting in the way. Note that kswapd scanned and reclaimed fewer pages as it's less aggressive and overall fewer pages were scanned and reclaimed. Swap in/out is particularly reduced again reflecting kswapd throwing out fewer pages. The slight performance impact is unfortunate here but it looks like a direct result of kswapd being less aggressive. As the bug report is about too many pages being freed by kswapd, it may have to be accepted for now. The second test is a streaming IO benchmark that was previously used by Johannes to show regressions in page reclaim. MICRO traceonly kanyzone User/Sys Time Running Test (seconds) 29.29 28.87 Total Elapsed Time (seconds) 492.18 488.79 VMstat Reclaim Statistics: vmscan Direct reclaims 2128 1460 Direct reclaim pages scanned 2284822 1496067 Direct reclaim pages reclaimed 148919 110937 Kswapd pages scanned 15450014 16202876 Kswapd pages reclaimed 8503697 8537897 Kswapd low wmark quickly 3100 3397 Kswapd high wmark quickly 1860 7243 Kswapd skip congestion_wait 708 801 Pages activated 9635 9573 Pages deactivated 1432 1271 Pages written 223 1130 Total pages scanned 17734836 17698943 Total pages reclaimed 8652616 8648834 %age total pages scanned/reclaimed 48.79% 48.87% %age total pages scanned/written 0.00% 0.01% proc vmstat: Faults Major Faults 165 221 Minor Faults 9655785 9656506 Page ins 3880 7228 Page outs 37692940 37480076 Swap ins 0 69 Swap outs 19 15 Again fewer pages are scanned and reclaimed as expected and this time the test completed faster. Note that kswapd is hitting its watermarks faster (low and high wmark quickly) which I expect is due to kswapd reclaiming fewer pages. I also ran fs-mark, iozone and sysbench but there is nothing interesting to report in the figures. Performance is not significantly changed and the reclaim statistics look reasonable. Tgis patch: When the allocator enters its slow path, kswapd is woken up to balance the node. It continues working until all zones within the node are balanced. For order-0 allocations, this makes perfect sense but for higher orders it can have unintended side-effects. If the zone sizes are imbalanced, kswapd may reclaim heavily within a smaller zone discarding an excessive number of pages. The user-visible behaviour is that kswapd is awake and reclaiming even though plenty of pages are free from a suitable zone. This patch alters the "balance" logic for high-order reclaim allowing kswapd to stop if any suitable zone becomes balanced to reduce the number of pages it reclaims from other zones. kswapd still tries to ensure that order-0 watermarks for all zones are met before sleeping. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Eric B Munson <emunson@mgebm.net> Cc: Simon Kirby <sim@hostway.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm: remove likely() from grab_cache_page_write_begin()Steven Rostedt
Running the annotated branch profiler on a box doing average work (firefox, evolution, xchat, distcc farm), the likely() used in grab_cache_page_write_begin() was incorrect most of the time: correct incorrect % Function File Line ------- --------- - -------- ---- ---- 1924262 71332401 97 grab_cache_page_write_begin filemap.c 2206 Adding a trace_printk() and running the function tracer limited to just this function I can see: gconfd-2-2696 [000] 4467.268935: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=7 gconfd-2-2696 [000] 4467.268946: grab_cache_page_write_begin <-ext3_write_begin gconfd-2-2696 [000] 4467.268947: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=8 gconfd-2-2696 [000] 4467.268959: grab_cache_page_write_begin <-ext3_write_begin gconfd-2-2696 [000] 4467.268960: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=9 gconfd-2-2696 [000] 4467.268972: grab_cache_page_write_begin <-ext3_write_begin gconfd-2-2696 [000] 4467.268973: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=10 gconfd-2-2696 [000] 4467.268991: grab_cache_page_write_begin <-ext3_write_begin gconfd-2-2696 [000] 4467.268992: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=11 gconfd-2-2696 [000] 4467.269005: grab_cache_page_write_begin <-ext3_write_begin Which shows that a lot of calls from ext3_write_begin will result in the page returned by "find_lock_page" will be NULL. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Nick Piggin <npiggin@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13vmalloc: remove redundant unlikely()Tobias Klauser
IS_ERR() already implies unlikely(), so it can be omitted here. Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mempolicy: remove tasklist_lock from migrate_pagesKOSAKI Motohiro
Today, tasklist_lock in migrate_pages doesn't protect anything. rcu_read_lock() provide enough protection from pid hash walk. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reported-by: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>