Age | Commit message (Collapse) | Author |
|
We can now print gfp_flags more human-readable. Make use of this in
slab_out_of_memory() for SLUB and SLAB. Also convert the SLAB variant
it to pr_warn() along the way.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
SLUB already has a redzone debugging feature. But it is only positioned
at the end of object (aka right redzone) so it cannot catch left oob.
Although current object's right redzone acts as left redzone of next
object, first object in a slab cannot take advantage of this effect.
This patch explicitly adds a left red zone to each object to detect left
oob more precisely.
Background:
Someone complained to me that left OOB doesn't catch even if KASAN is
enabled which does page allocation debugging. That page is out of our
control so it would be allocated when left OOB happens and, in this
case, we can't find OOB. Moreover, SLUB debugging feature can be
enabled without page allocator debugging and, in this case, we will miss
that OOB.
Before trying to implement, I expected that changes would be too
complex, but, it doesn't look that complex to me now. Almost changes
are applied to debug specific functions so I feel okay.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When debug options are enabled, cmpxchg on the page is disabled. This
is because the page must be locked to ensure there are no false
positives when performing consistency checks. Some debug options such
as poisoning and red zoning only act on the object itself. There is no
need to protect other CPUs from modification on only the object. Allow
cmpxchg to happen with poisoning and red zoning are set on a slab.
Credit to Mathias Krause for the original work which inspired this
series
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned
on or off. Expand its use to be able to turn off all consistency
checks. This gives a nice speed up if you only want features such as
poisoning or tracing.
Credit to Mathias Krause for the original work which inspired this
series
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 19c7ff9ecd89 ("slub: Take node lock during object free
checks") check_object has been incorrectly returning success as it
follows the out label which just returns the node.
Thanks to refactoring, the out and fail paths are now basically the
same. Combine the two into one and just use a single label.
Credit to Mathias Krause for the original work which inspired this
series
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This series takes the suggestion of Christoph Lameter and only focuses
on optimizing the slow path where the debug processing runs. The two
main optimizations in this series are letting the consistency checks be
skipped and relaxing the cmpxchg restrictions when we are not doing
consistency checks. With hackbench -g 20 -l 1000 averaged over 100
runs:
Before slub_debug=P
mean 15.607
variance .086
stdev .294
After slub_debug=P
mean 10.836
variance .155
stdev .394
This still isn't as fast as what is in grsecurity unfortunately so there's
still work to be done. Profiling ___slab_alloc shows that 25-50% of time
is spent in deactivate_slab. I haven't looked too closely to see if this
is something that can be optimized. My plan for now is to focus on
getting all of this merged (if appropriate) before digging in to another
task.
This patch (of 4):
Currently, free_debug_processing has a comment "Keep node_lock to preserve
integrity until the object is actually freed". In actuallity, the lock is
dropped immediately in __slab_free. Rather than wait until __slab_free
and potentially throw off the unlikely marking, just drop the lock in
__slab_free. This also lets free_debug_processing take its own copy of
the spinlock flags rather than trying to share the ones from __slab_free.
Since there is no use for the node afterwards, change the return type of
free_debug_processing to return an int like alloc_debug_processing.
Credit to Mathias Krause for the original work which inspired this series
[akpm@linux-foundation.org: fix build]
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch introduce a new API call kfree_bulk() for bulk freeing memory
objects not bound to a single kmem_cache.
Christoph pointed out that it is possible to implement freeing of
objects, without knowing the kmem_cache pointer as that information is
available from the object's page->slab_cache. Proposing to remove the
kmem_cache argument from the bulk free API.
Jesper demonstrated that these extra steps per object comes at a
performance cost. It is only in the case CONFIG_MEMCG_KMEM is compiled
in and activated runtime that these steps are done anyhow. The extra
cost is most visible for SLAB allocator, because the SLUB allocator does
the page lookup (virt_to_head_page()) anyhow.
Thus, the conclusion was to keep the kmem_cache free bulk API with a
kmem_cache pointer, but we can still implement a kfree_bulk() API fairly
easily. Simply by handling if kmem_cache_free_bulk() gets called with a
kmem_cache NULL pointer.
This does increase the code size a bit, but implementing a separate
kfree_bulk() call would likely increase code size even more.
Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K
@ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y.
Code size increase for SLAB:
add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74)
function old new delta
kmem_cache_free_bulk 660 734 +74
SLAB fastpath: 87 cycles(tsc) 21.814
sz - fallback - kmem_cache_free_bulk - kfree_bulk
1 - 103 cycles 25.878 ns - 41 cycles 10.498 ns - 81 cycles 20.312 ns
2 - 94 cycles 23.673 ns - 26 cycles 6.682 ns - 42 cycles 10.649 ns
3 - 92 cycles 23.181 ns - 21 cycles 5.325 ns - 39 cycles 9.950 ns
4 - 90 cycles 22.727 ns - 18 cycles 4.673 ns - 26 cycles 6.693 ns
8 - 89 cycles 22.270 ns - 14 cycles 3.664 ns - 23 cycles 5.835 ns
16 - 88 cycles 22.038 ns - 14 cycles 3.503 ns - 22 cycles 5.543 ns
30 - 89 cycles 22.284 ns - 13 cycles 3.310 ns - 20 cycles 5.197 ns
32 - 88 cycles 22.249 ns - 13 cycles 3.420 ns - 20 cycles 5.166 ns
34 - 88 cycles 22.224 ns - 14 cycles 3.643 ns - 20 cycles 5.170 ns
48 - 88 cycles 22.088 ns - 14 cycles 3.507 ns - 20 cycles 5.203 ns
64 - 88 cycles 22.063 ns - 13 cycles 3.428 ns - 20 cycles 5.152 ns
128 - 89 cycles 22.483 ns - 15 cycles 3.891 ns - 23 cycles 5.885 ns
158 - 89 cycles 22.381 ns - 15 cycles 3.779 ns - 22 cycles 5.548 ns
250 - 91 cycles 22.798 ns - 16 cycles 4.152 ns - 23 cycles 5.967 ns
SLAB when enabling MEMCG_KMEM runtime:
- kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0)
1 - 148 cycles 37.220 ns - 66 cycles 16.622 ns - 66 cycles 16.583 ns
2 - 141 cycles 35.510 ns - 51 cycles 12.820 ns - 58 cycles 14.625 ns
3 - 140 cycles 35.017 ns - 37 cycles 9.326 ns - 33 cycles 8.474 ns
4 - 137 cycles 34.507 ns - 31 cycles 7.888 ns - 33 cycles 8.300 ns
8 - 140 cycles 35.069 ns - 25 cycles 6.461 ns - 25 cycles 6.436 ns
16 - 138 cycles 34.542 ns - 23 cycles 5.945 ns - 22 cycles 5.670 ns
30 - 136 cycles 34.227 ns - 22 cycles 5.502 ns - 22 cycles 5.587 ns
32 - 136 cycles 34.253 ns - 21 cycles 5.475 ns - 21 cycles 5.324 ns
34 - 136 cycles 34.254 ns - 21 cycles 5.448 ns - 20 cycles 5.194 ns
48 - 136 cycles 34.075 ns - 21 cycles 5.458 ns - 21 cycles 5.367 ns
64 - 135 cycles 33.994 ns - 21 cycles 5.350 ns - 21 cycles 5.259 ns
128 - 137 cycles 34.446 ns - 23 cycles 5.816 ns - 22 cycles 5.688 ns
158 - 137 cycles 34.379 ns - 22 cycles 5.727 ns - 22 cycles 5.602 ns
250 - 138 cycles 34.755 ns - 24 cycles 6.093 ns - 23 cycles 5.986 ns
Code size increase for SLUB:
function old new delta
kmem_cache_free_bulk 717 799 +82
SLUB benchmark:
SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0)
sz - fallback - kmem_cache_free_bulk - kfree_bulk
1 - 61 cycles 15.486 ns - 53 cycles 13.364 ns - 57 cycles 14.464 ns
2 - 54 cycles 13.703 ns - 32 cycles 8.110 ns - 33 cycles 8.482 ns
3 - 53 cycles 13.272 ns - 25 cycles 6.362 ns - 27 cycles 6.947 ns
4 - 51 cycles 12.994 ns - 24 cycles 6.087 ns - 24 cycles 6.078 ns
8 - 50 cycles 12.576 ns - 21 cycles 5.354 ns - 22 cycles 5.513 ns
16 - 49 cycles 12.368 ns - 20 cycles 5.054 ns - 20 cycles 5.042 ns
30 - 49 cycles 12.273 ns - 18 cycles 4.748 ns - 19 cycles 4.758 ns
32 - 49 cycles 12.401 ns - 19 cycles 4.821 ns - 19 cycles 4.810 ns
34 - 98 cycles 24.519 ns - 24 cycles 6.154 ns - 24 cycles 6.157 ns
48 - 83 cycles 20.833 ns - 21 cycles 5.446 ns - 21 cycles 5.429 ns
64 - 75 cycles 18.891 ns - 20 cycles 5.247 ns - 20 cycles 5.238 ns
128 - 93 cycles 23.271 ns - 27 cycles 6.856 ns - 27 cycles 6.823 ns
158 - 102 cycles 25.581 ns - 30 cycles 7.714 ns - 30 cycles 7.695 ns
250 - 107 cycles 26.917 ns - 38 cycles 9.514 ns - 38 cycles 9.506 ns
SLUB when enabling MEMCG_KMEM runtime:
- kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0)
1 - 85 cycles 21.484 ns - 78 cycles 19.569 ns - 75 cycles 18.938 ns
2 - 81 cycles 20.363 ns - 45 cycles 11.258 ns - 44 cycles 11.076 ns
3 - 78 cycles 19.709 ns - 33 cycles 8.354 ns - 32 cycles 8.044 ns
4 - 77 cycles 19.430 ns - 28 cycles 7.216 ns - 28 cycles 7.003 ns
8 - 101 cycles 25.288 ns - 23 cycles 5.849 ns - 23 cycles 5.787 ns
16 - 76 cycles 19.148 ns - 20 cycles 5.162 ns - 20 cycles 5.081 ns
30 - 76 cycles 19.067 ns - 19 cycles 4.868 ns - 19 cycles 4.821 ns
32 - 76 cycles 19.052 ns - 19 cycles 4.857 ns - 19 cycles 4.815 ns
34 - 121 cycles 30.291 ns - 25 cycles 6.333 ns - 25 cycles 6.268 ns
48 - 108 cycles 27.111 ns - 21 cycles 5.498 ns - 21 cycles 5.458 ns
64 - 100 cycles 25.164 ns - 20 cycles 5.242 ns - 20 cycles 5.229 ns
128 - 155 cycles 38.976 ns - 27 cycles 6.886 ns - 27 cycles 6.892 ns
158 - 132 cycles 33.034 ns - 30 cycles 7.711 ns - 30 cycles 7.728 ns
250 - 130 cycles 32.612 ns - 38 cycles 9.560 ns - 38 cycles 9.549 ns
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
First step towards sharing alloc_hook's between SLUB and SLAB
allocators. Move the SLUB allocators *_alloc_hook to the common
mm/slab.h for internal slab definitions.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This change is primarily an attempt to make it easier to realize the
optimizations the compiler performs in-case CONFIG_MEMCG_KMEM is not
enabled.
Performance wise, even when CONFIG_MEMCG_KMEM is compiled in, the
overhead is zero. This is because, as long as no process have enabled
kmem cgroups accounting, the assignment is replaced by asm-NOP
operations. This is possible because memcg_kmem_enabled() uses a
static_key_false() construct.
It also helps readability as it avoid accessing the p[] array like:
p[size - 1] which "expose" that the array is processed backwards inside
helper function build_detached_freelist().
Lastly this also makes the code more robust, in error case like passing
NULL pointers in the array. Which were previously handled before commit
033745189b1b ("slub: add missing kmem cgroup support to
kmem_cache_free_bulk").
Fixes: 033745189b1b ("slub: add missing kmem cgroup support to kmem_cache_free_bulk")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When slub_debug alloc_calls_show is enabled we will try to track
location and user of slab object on each online node, kmem_cache_node
structure and cpu_cache/cpu_slub shouldn't be freed till there is the
last reference to sysfs file.
This fixes the following panic:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
IP: list_locations+0x169/0x4e0
PGD 257304067 PUD 438456067 PMD 0
Oops: 0000 [#1] SMP
CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30
Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011
task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000
RIP: list_locations+0x169/0x4e0
Call Trace:
alloc_calls_show+0x1d/0x30
slab_attr_show+0x1b/0x30
sysfs_read_file+0x9a/0x1a0
vfs_read+0x9c/0x170
SyS_read+0x58/0xb0
system_call_fastpath+0x16/0x1b
Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10
CR2: 0000000000000020
Separated __kmem_cache_release from __kmem_cache_shutdown which now
called on slab_kmem_cache_release (after the last reference to sysfs
file object has dropped).
Reintroduced locking in free_partial as sysfs file might access cache's
partial list after shutdowning - partial revert of the commit
69cb8e6b7c29 ("slub: free slabs without holding locks"). Zap
__remove_partial and use remove_partial (w/o underscores) as
free_partial now takes list_lock which s partial revert for commit
1e4dd9461fab ("slub: do not assert not having lock in removing freed
partial")
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The cgroup2 memory controller will account important in-kernel memory
consumers per default. Move all necessary components to CONFIG_MEMCG.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
lock_page() must operate on the whole compound page. It doesn't make
much sense to lock part of compound page. Change code to use head
page's PG_locked, if tail page is passed.
This patch also gets rid of custom helper functions --
__set_page_locked() and __clear_page_locked(). They are replaced with
helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these
helper would trigger VM_BUG_ON().
SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never
appear there. VM_BUG_ON() is added to make sure that this assumption is
correct.
[akpm@linux-foundation.org: fix fs/cifs/file.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.
This patch does not make any of the existing caches use this flag - it
will be done later in the series.
Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags. Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Adjust kmem_cache_alloc_bulk API before we have any real users.
Adjust API to return type 'int' instead of previously type 'bool'. This
is done to allow future extension of the bulk alloc API.
A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.
The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled. With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist. To avoid overshooting we would
stop processing at a slab-page boundary. Else we always end up returning
some objects at the cost of another cmpxchg.
To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Initial implementation missed support for kmem cgroup support in
kmem_cache_free_bulk() call, add this.
If CONFIG_MEMCG_KMEM is not enabled, the compiler should be smart enough
to not add any asm code.
Incoming bulk free objects can belong to different kmem cgroups, and
object free call can happen at a later point outside memcg context. Thus,
we need to keep the orig kmem_cache, to correctly verify if a memcg object
match against its "root_cache" (s->memcg_params.root_cache).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The call slab_pre_alloc_hook() interacts with kmemgc and is not allowed to
be called several times inside the bulk alloc for loop, due to the call to
memcg_kmem_get_cache().
This would result in hitting the VM_BUG_ON in __memcg_kmem_get_cache.
As suggested by Vladimir Davydov, change slab_post_alloc_hook() to be able
to handle an array of objects.
A subtle detail is, loop iterator "i" in slab_post_alloc_hook() must have
same type (size_t) as size argument. This helps the compiler to easier
realize that it can remove the loop, when all debug statements inside loop
evaluates to nothing. Note, this is only an issue because the kernel is
compiled with GCC option: -fno-strict-overflow
In slab_alloc_node() the compiler inlines and optimizes the invocation of
slab_post_alloc_hook(s, flags, 1, &object) by removing the loop and access
object directly.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Reported-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This change focus on improving the speed of object freeing in the
"slowpath" of kmem_cache_free_bulk.
The calls slab_free (fastpath) and __slab_free (slowpath) have been
extended with support for bulk free, which amortize the overhead of
the (locked) cmpxchg_double.
To use the new bulking feature, we build what I call a detached
freelist. The detached freelist takes advantage of three properties:
1) the free function call owns the object that is about to be freed,
thus writing into this memory is synchronization-free.
2) many freelist's can co-exist side-by-side in the same slab-page
each with a separate head pointer.
3) it is the visibility of the head pointer that needs synchronization.
Given these properties, the brilliant part is that the detached
freelist can be constructed without any need for synchronization. The
freelist is constructed directly in the page objects, without any
synchronization needed. The detached freelist is allocated on the
stack of the function call kmem_cache_free_bulk. Thus, the freelist
head pointer is not visible to other CPUs.
All objects in a SLUB freelist must belong to the same slab-page.
Thus, constructing the detached freelist is about matching objects
that belong to the same slab-page. The bulk free array is scanned is
a progressive manor with a limited look-ahead facility.
Kmem debug support is handled in call of slab_free().
Notice kmem_cache_free_bulk no longer need to disable IRQs. This
only slowed down single free bulk with approx 3 cycles.
Performance data:
Benchmarked[1] obj size 256 bytes on CPU i7-4790K @ 4.00GHz
SLUB fastpath single object quick reuse: 47 cycles(tsc) 11.931 ns
To get stable and comparable numbers, the kernel have been booted with
"slab_merge" (this also improve performance for larger bulk sizes).
Performance data, compared against fallback bulking:
bulk - fallback bulk - improvement with this patch
1 - 62 cycles(tsc) 15.662 ns - 49 cycles(tsc) 12.407 ns- improved 21.0%
2 - 55 cycles(tsc) 13.935 ns - 30 cycles(tsc) 7.506 ns - improved 45.5%
3 - 53 cycles(tsc) 13.341 ns - 23 cycles(tsc) 5.865 ns - improved 56.6%
4 - 52 cycles(tsc) 13.081 ns - 20 cycles(tsc) 5.048 ns - improved 61.5%
8 - 50 cycles(tsc) 12.627 ns - 18 cycles(tsc) 4.659 ns - improved 64.0%
16 - 49 cycles(tsc) 12.412 ns - 17 cycles(tsc) 4.495 ns - improved 65.3%
30 - 49 cycles(tsc) 12.484 ns - 18 cycles(tsc) 4.533 ns - improved 63.3%
32 - 50 cycles(tsc) 12.627 ns - 18 cycles(tsc) 4.707 ns - improved 64.0%
34 - 96 cycles(tsc) 24.243 ns - 23 cycles(tsc) 5.976 ns - improved 76.0%
48 - 83 cycles(tsc) 20.818 ns - 21 cycles(tsc) 5.329 ns - improved 74.7%
64 - 74 cycles(tsc) 18.700 ns - 20 cycles(tsc) 5.127 ns - improved 73.0%
128 - 90 cycles(tsc) 22.734 ns - 27 cycles(tsc) 6.833 ns - improved 70.0%
158 - 99 cycles(tsc) 24.776 ns - 30 cycles(tsc) 7.583 ns - improved 69.7%
250 - 104 cycles(tsc) 26.089 ns - 37 cycles(tsc) 9.280 ns - improved 64.4%
Performance data, compared current in-kernel bulking:
bulk - curr in-kernel - improvement with this patch
1 - 46 cycles(tsc) - 49 cycles(tsc) - improved (cycles:-3) -6.5%
2 - 27 cycles(tsc) - 30 cycles(tsc) - improved (cycles:-3) -11.1%
3 - 21 cycles(tsc) - 23 cycles(tsc) - improved (cycles:-2) -9.5%
4 - 18 cycles(tsc) - 20 cycles(tsc) - improved (cycles:-2) -11.1%
8 - 17 cycles(tsc) - 18 cycles(tsc) - improved (cycles:-1) -5.9%
16 - 18 cycles(tsc) - 17 cycles(tsc) - improved (cycles: 1) 5.6%
30 - 18 cycles(tsc) - 18 cycles(tsc) - improved (cycles: 0) 0.0%
32 - 18 cycles(tsc) - 18 cycles(tsc) - improved (cycles: 0) 0.0%
34 - 78 cycles(tsc) - 23 cycles(tsc) - improved (cycles:55) 70.5%
48 - 60 cycles(tsc) - 21 cycles(tsc) - improved (cycles:39) 65.0%
64 - 49 cycles(tsc) - 20 cycles(tsc) - improved (cycles:29) 59.2%
128 - 69 cycles(tsc) - 27 cycles(tsc) - improved (cycles:42) 60.9%
158 - 79 cycles(tsc) - 30 cycles(tsc) - improved (cycles:49) 62.0%
250 - 86 cycles(tsc) - 37 cycles(tsc) - improved (cycles:49) 57.0%
Performance with normal SLUB merging is significantly slower for
larger bulking. This is believed to (primarily) be an effect of not
having to share the per-CPU data-structures, as tuning per-CPU size
can achieve similar performance.
bulk - slab_nomerge - normal SLUB merge
1 - 49 cycles(tsc) - 49 cycles(tsc) - merge slower with cycles:0
2 - 30 cycles(tsc) - 30 cycles(tsc) - merge slower with cycles:0
3 - 23 cycles(tsc) - 23 cycles(tsc) - merge slower with cycles:0
4 - 20 cycles(tsc) - 20 cycles(tsc) - merge slower with cycles:0
8 - 18 cycles(tsc) - 18 cycles(tsc) - merge slower with cycles:0
16 - 17 cycles(tsc) - 17 cycles(tsc) - merge slower with cycles:0
30 - 18 cycles(tsc) - 23 cycles(tsc) - merge slower with cycles:5
32 - 18 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:4
34 - 23 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:-1
48 - 21 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:1
64 - 20 cycles(tsc) - 48 cycles(tsc) - merge slower with cycles:28
128 - 27 cycles(tsc) - 57 cycles(tsc) - merge slower with cycles:30
158 - 30 cycles(tsc) - 59 cycles(tsc) - merge slower with cycles:29
250 - 37 cycles(tsc) - 56 cycles(tsc) - merge slower with cycles:19
Joint work with Alexander Duyck.
[1] https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/slab_bulk_test01.c
[akpm@linux-foundation.org: BUG_ON -> WARN_ON;return]
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make it possible to free a freelist with several objects by adjusting API
of slab_free() and __slab_free() to have head, tail and an objects counter
(cnt).
Tail being NULL indicate single object free of head object. This allow
compiler inline constant propagation in slab_free() and
slab_free_freelist_hook() to avoid adding any overhead in case of single
object free.
This allows a freelist with several objects (all within the same
slab-page) to be free'ed using a single locked cmpxchg_double in
__slab_free() and with an unlocked cmpxchg_double in slab_free().
Object debugging on the free path is also extended to handle these
freelists. When CONFIG_SLUB_DEBUG is enabled it will also detect if
objects don't belong to the same slab-page.
These changes are needed for the next patch to bulk free the detached
freelists it introduces and constructs.
Micro benchmarking showed no performance reduction due to this change,
when debugging is turned off (compiled with CONFIG_SLUB_DEBUG).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The #ifdef of CONFIG_SLUB_DEBUG is located very far from the associated
#else. For readability mark it with a comment.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the new function that can do allocation while interrupts are disabled.
Avoids irq on/off sequences.
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Bulk alloc needs a function like that because it enables interrupts before
calling __slab_alloc which promptly disables them again using the expensive
local_irq_save().
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have properly typed page->rcu_head, no need to cast page->lru.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It's recommended to have slub's user tracking enabled with CONFIG_KASAN,
because:
a) User tracking disables slab merging which improves
detecting out-of-bounds accesses.
b) User tracking metadata acts as redzone which also improves
detecting out-of-bounds accesses.
c) User tracking provides additional information about object.
This information helps to understand bugs.
Currently it is not enabled by default. Besides recompiling the kernel
with KASAN and reinstalling it, user also have to change the boot cmdline,
which is not very handy.
Enable slub user tracking by default with KASAN=y, since there is no good
reason to not do this.
[akpm@linux-foundation.org: little fixes, per David]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e. they are only used for charging pages allocated
with alloc_kmem_pages). The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.
To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context. Next, it makes the slab
subsystem use this function to charge slab pages.
Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.
Note, this patch switches slab to charge-after-alloc design. Since this
design is already used for all other memcg charges, it should not make any
difference.
[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In slub_order(), the order starts from max(min_order,
get_order(min_objects * size)). When (min_objects * size) has different
order from (min_objects * size + reserved), it will skip this order via a
check in the loop.
This patch optimizes this a little by calculating the start order with
`reserved' in consideration and removing the check in loop.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
get_order() is more easy to understand.
This patch just replaces it.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In calculate_order(), it tries to calculate the best order by adjusting
the fraction and min_objects. On each iteration on min_objects, fraction
iterates on 16, 8, 4. Which means the acceptable waste increases with
1/16, 1/8, 1/4.
This patch corrects the comment according to the code.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac301 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f8e ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Description is almost copied from commit fb05e7a89f50 ("net: don't wait
for order-3 page allocation").
I saw excessive direct memory reclaim/compaction triggered by slub. This
causes performance issues and add latency. Slub uses high-order
allocation to reduce internal fragmentation and management overhead. But,
direct memory reclaim/compaction has high overhead and the benefit of
high-order allocation can't compensate the overhead of both work.
This patch makes auxiliary high-order allocation atomic. If there is no
memory pressure and memory isn't fragmented, the alloction will still
success, so we don't sacrifice high-order allocation's benefit here. If
the atomic allocation fails, direct memory reclaim/compaction will not be
triggered, allocation fallback to low-order immediately, hence the direct
memory reclaim/compaction overhead is avoided. In the allocation failure
case, kswapd is waken up and trying to make high-order freepages, so
allocation could success next time.
Following is the test to measure effect of this patch.
System: QEMU, CPU 8, 512 MB
Mem: 25% memory is allocated at random position to make fragmentation.
Memory-hogger occupies 150 MB memory.
Workload: hackbench -g 20 -l 1000
Average result by 10 runs (Base va Patched)
elapsed_time(s): 4.3468 vs 2.9838
compact_stall: 461.7 vs 73.6
pgmigrate_success: 28315.9 vs 7256.1
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sysfs_slab_add() shouldn't call kobject_put at error path: this puts last
reference of kmem-cache kobject and frees it. Kmem cache will be freed
second time at error path in kmem_cache_create().
For example this happens when slub debug was enabled in runtime and
somebody creates new kmem cache:
# echo 1 | tee /sys/kernel/slab/*/sanity_checks
# modprobe configfs
"configfs_dir_cache" cannot be merged because existing slab have debug and
cannot create new slab because unique name ":t-0000096" already taken.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Initializing a new slab can introduce rather large latencies because most
of the initialization runs always with interrupts disabled.
There is no point in doing so. The newly allocated slab is not visible
yet, so there is no reason to protect it against concurrent alloc/free.
Move the expensive parts of the initialization into allocate_slab(), so
for all allocations with GFP_WAIT set, interrupts are enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Per request of Joonsoo Kim adding kmem debug support.
I've tested that when debugging is disabled, then there is almost no
performance impact as this code basically gets removed by the compiler.
Need some guidance in enabling and testing this.
bulk- PREVIOUS - THIS-PATCH
1 - 43 cycles(tsc) 10.811 ns - 44 cycles(tsc) 11.236 ns improved -2.3%
2 - 27 cycles(tsc) 6.867 ns - 28 cycles(tsc) 7.019 ns improved -3.7%
3 - 21 cycles(tsc) 5.496 ns - 22 cycles(tsc) 5.526 ns improved -4.8%
4 - 24 cycles(tsc) 6.038 ns - 19 cycles(tsc) 4.786 ns improved 20.8%
8 - 17 cycles(tsc) 4.280 ns - 18 cycles(tsc) 4.572 ns improved -5.9%
16 - 17 cycles(tsc) 4.483 ns - 18 cycles(tsc) 4.658 ns improved -5.9%
30 - 18 cycles(tsc) 4.531 ns - 18 cycles(tsc) 4.568 ns improved 0.0%
32 - 58 cycles(tsc) 14.586 ns - 65 cycles(tsc) 16.454 ns improved -12.1%
34 - 53 cycles(tsc) 13.391 ns - 63 cycles(tsc) 15.932 ns improved -18.9%
48 - 65 cycles(tsc) 16.268 ns - 50 cycles(tsc) 12.506 ns improved 23.1%
64 - 53 cycles(tsc) 13.440 ns - 63 cycles(tsc) 15.929 ns improved -18.9%
128 - 79 cycles(tsc) 19.899 ns - 86 cycles(tsc) 21.583 ns improved -8.9%
158 - 90 cycles(tsc) 22.732 ns - 90 cycles(tsc) 22.552 ns improved 0.0%
250 - 95 cycles(tsc) 23.916 ns - 98 cycles(tsc) 24.589 ns improved -3.2%
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This implements SLUB specific kmem_cache_free_bulk(). SLUB allocator now
both have bulk alloc and free implemented.
Choose to reenable local IRQs while calling slowpath __slab_free(). In
worst case, where all objects hit slowpath call, the performance should
still be faster than fallback function __kmem_cache_free_bulk(), because
local_irq_{disable+enable} is very fast (7-cycles), while the fallback
invokes this_cpu_cmpxchg() which is slightly slower (9-cycles).
Nitpicking, this should be faster for N>=4, due to the entry cost of
local_irq_{disable+enable}.
Do notice that the save+restore variant is very expensive, this is key to
why this optimization works.
CPU: i7-4790K CPU @ 4.00GHz
* local_irq_{disable,enable}: 7 cycles(tsc) - 1.821 ns
* local_irq_{save,restore} : 37 cycles(tsc) - 9.443 ns
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 43 cycles(tsc) 10.834 ns
Bulk- fallback - this-patch
1 - 58 cycles(tsc) 14.542 ns - 43 cycles(tsc) 10.811 ns improved 25.9%
2 - 50 cycles(tsc) 12.659 ns - 27 cycles(tsc) 6.867 ns improved 46.0%
3 - 48 cycles(tsc) 12.168 ns - 21 cycles(tsc) 5.496 ns improved 56.2%
4 - 47 cycles(tsc) 11.987 ns - 24 cycles(tsc) 6.038 ns improved 48.9%
8 - 46 cycles(tsc) 11.518 ns - 17 cycles(tsc) 4.280 ns improved 63.0%
16 - 45 cycles(tsc) 11.366 ns - 17 cycles(tsc) 4.483 ns improved 62.2%
30 - 45 cycles(tsc) 11.433 ns - 18 cycles(tsc) 4.531 ns improved 60.0%
32 - 75 cycles(tsc) 18.983 ns - 58 cycles(tsc) 14.586 ns improved 22.7%
34 - 71 cycles(tsc) 17.940 ns - 53 cycles(tsc) 13.391 ns improved 25.4%
48 - 80 cycles(tsc) 20.077 ns - 65 cycles(tsc) 16.268 ns improved 18.8%
64 - 71 cycles(tsc) 17.799 ns - 53 cycles(tsc) 13.440 ns improved 25.4%
128 - 91 cycles(tsc) 22.980 ns - 79 cycles(tsc) 19.899 ns improved 13.2%
158 - 100 cycles(tsc) 25.241 ns - 90 cycles(tsc) 22.732 ns improved 10.0%
250 - 102 cycles(tsc) 25.583 ns - 95 cycles(tsc) 23.916 ns improved 6.9%
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Call slowpath __slab_alloc() from within the bulk loop, as the side-effect
of this call likely repopulates c->freelist.
Choose to reenable local IRQs while calling slowpath.
Saving some optimizations for later. E.g. it is possible to extract
parts of __slab_alloc() and avoid the unnecessary and expensive (37
cycles) local_irq_{save,restore}. For now, be happy calling
__slab_alloc() this lower icache impact of this func and I don't have to
worry about correctness.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.601 ns
Bulk- fallback - this-patch
1 - 58 cycles(tsc) 14.516 ns - 49 cycles(tsc) 12.459 ns improved 15.5%
2 - 51 cycles(tsc) 12.930 ns - 38 cycles(tsc) 9.605 ns improved 25.5%
3 - 49 cycles(tsc) 12.274 ns - 34 cycles(tsc) 8.525 ns improved 30.6%
4 - 48 cycles(tsc) 12.058 ns - 32 cycles(tsc) 8.036 ns improved 33.3%
8 - 46 cycles(tsc) 11.609 ns - 31 cycles(tsc) 7.756 ns improved 32.6%
16 - 45 cycles(tsc) 11.451 ns - 32 cycles(tsc) 8.148 ns improved 28.9%
30 - 79 cycles(tsc) 19.865 ns - 68 cycles(tsc) 17.164 ns improved 13.9%
32 - 76 cycles(tsc) 19.212 ns - 66 cycles(tsc) 16.584 ns improved 13.2%
34 - 74 cycles(tsc) 18.600 ns - 63 cycles(tsc) 15.954 ns improved 14.9%
48 - 88 cycles(tsc) 22.092 ns - 77 cycles(tsc) 19.373 ns improved 12.5%
64 - 80 cycles(tsc) 20.043 ns - 68 cycles(tsc) 17.188 ns improved 15.0%
128 - 99 cycles(tsc) 24.818 ns - 89 cycles(tsc) 22.404 ns improved 10.1%
158 - 99 cycles(tsc) 24.977 ns - 92 cycles(tsc) 23.089 ns improved 7.1%
250 - 106 cycles(tsc) 26.552 ns - 99 cycles(tsc) 24.785 ns improved 6.6%
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
First piece: acceleration of retrieval of per cpu objects
If we are allocating lots of objects then it is advantageous to disable
interrupts and avoid the this_cpu_cmpxchg() operation to get these objects
faster.
Note that we cannot do the fast operation if debugging is enabled, because
we would have to add extra code to do all the debugging checks. And it
would not be fast anyway.
Note also that the requirement of having interrupts disabled avoids having
to do processor flag operations.
Allocate as many objects as possible in the fast way and then fall back to
the generic implementation for the rest of the objects.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.554 ns
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.432 ns - 48 cycles(tsc) 12.155 ns improved 15.8%
2 - 50 cycles(tsc) 12.746 ns - 37 cycles(tsc) 9.390 ns improved 26.0%
3 - 48 cycles(tsc) 12.180 ns - 33 cycles(tsc) 8.417 ns improved 31.2%
4 - 48 cycles(tsc) 12.015 ns - 32 cycles(tsc) 8.045 ns improved 33.3%
8 - 46 cycles(tsc) 11.526 ns - 30 cycles(tsc) 7.699 ns improved 34.8%
16 - 45 cycles(tsc) 11.418 ns - 32 cycles(tsc) 8.205 ns improved 28.9%
30 - 80 cycles(tsc) 20.246 ns - 73 cycles(tsc) 18.328 ns improved 8.8%
32 - 79 cycles(tsc) 19.946 ns - 72 cycles(tsc) 18.208 ns improved 8.9%
34 - 78 cycles(tsc) 19.659 ns - 71 cycles(tsc) 17.987 ns improved 9.0%
48 - 86 cycles(tsc) 21.516 ns - 82 cycles(tsc) 20.566 ns improved 4.7%
64 - 93 cycles(tsc) 23.423 ns - 89 cycles(tsc) 22.480 ns improved 4.3%
128 - 100 cycles(tsc) 25.170 ns - 99 cycles(tsc) 24.871 ns improved 1.0%
158 - 102 cycles(tsc) 25.549 ns - 101 cycles(tsc) 25.375 ns improved 1.0%
250 - 101 cycles(tsc) 25.344 ns - 100 cycles(tsc) 25.182 ns improved 1.0%
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.
Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed. These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.
Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions. They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With this patchset the SLUB allocator now has both bulk alloc and free
implemented.
This patchset mostly optimizes the "fastpath" where objects are available
on the per CPU fastpath page. This mostly amortize the less-heavy
none-locked cmpxchg_double used on fastpath.
The "fallback" bulking (e.g __kmem_cache_free_bulk) provides a good basis
for comparison. Measurements[1] of the fallback functions
__kmem_cache_{free,alloc}_bulk have been copied from slab_common.c and
forced "noinline" to force a function call like slab_common.c.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.601 ns
Measurements last-patch with disabled debugging:
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.448 ns - 44 cycles(tsc) 11.236 ns improved 22.8%
2 - 51 cycles(tsc) 12.768 ns - 28 cycles(tsc) 7.019 ns improved 45.1%
3 - 48 cycles(tsc) 12.232 ns - 22 cycles(tsc) 5.526 ns improved 54.2%
4 - 48 cycles(tsc) 12.025 ns - 19 cycles(tsc) 4.786 ns improved 60.4%
8 - 46 cycles(tsc) 11.558 ns - 18 cycles(tsc) 4.572 ns improved 60.9%
16 - 45 cycles(tsc) 11.458 ns - 18 cycles(tsc) 4.658 ns improved 60.0%
30 - 45 cycles(tsc) 11.499 ns - 18 cycles(tsc) 4.568 ns improved 60.0%
32 - 79 cycles(tsc) 19.917 ns - 65 cycles(tsc) 16.454 ns improved 17.7%
34 - 78 cycles(tsc) 19.655 ns - 63 cycles(tsc) 15.932 ns improved 19.2%
48 - 68 cycles(tsc) 17.049 ns - 50 cycles(tsc) 12.506 ns improved 26.5%
64 - 80 cycles(tsc) 20.009 ns - 63 cycles(tsc) 15.929 ns improved 21.3%
128 - 94 cycles(tsc) 23.749 ns - 86 cycles(tsc) 21.583 ns improved 8.5%
158 - 97 cycles(tsc) 24.299 ns - 90 cycles(tsc) 22.552 ns improved 7.2%
250 - 102 cycles(tsc) 25.681 ns - 98 cycles(tsc) 24.589 ns improved 3.9%
Benchmarking shows impressive improvements in the "fastpath" with a small
number of objects in the working set. Once the working set increases,
resulting in activating the "slowpath" (that contains the heavier locked
cmpxchg_double) the improvement decreases.
I'm currently working on also optimizing the "slowpath" (as network stack
use-case hits this), but this patchset should provide a good foundation
for further improvements. Rest of my patch queue in this area needs some
more work, but preliminary results are good. I'm attending Netfilter
Workshop[2] next week, and I'll hopefully return working on further
improvements in this area.
This patch (of 6):
s/succedd/succeed/
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb") added
checks for page->pfmemalloc to __skb_fill_page_desc():
if (page->pfmemalloc && !page->mapping)
skb->pfmemalloc = true;
It assumes page->mapping == NULL implies that page->pfmemalloc can be
trusted. However, __delete_from_page_cache() can set set page->mapping
to NULL and leave page->index value alone. Due to being in union, a
non-zero page->index will be interpreted as true page->pfmemalloc.
So the assumption is invalid if the networking code can see such a page.
And it seems it can. We have encountered this with a NFS over loopback
setup when such a page is attached to a new skbuf. There is no copying
going on in this case so the page confuses __skb_fill_page_desc which
interprets the index as pfmemalloc flag and the network stack drops
packets that have been allocated using the reserves unless they are to
be queued on sockets handling the swapping which is the case here and
that leads to hangs when the nfs client waits for a response from the
server which has been dropped and thus never arrive.
The struct page is already heavily packed so rather than finding another
hole to put it in, let's do a trick instead. We can reuse the index
again but define it to an impossible value (-1UL). This is the page
index so it should never see the value that large. Replace all direct
users of page->pfmemalloc by page_is_pfmemalloc which will hide this
nastiness from unspoiled eyes.
The information will get lost if somebody wants to use page->index
obviously but that was the case before and the original code expected
that the information should be persisted somewhere else if that is
really needed (e.g. what SLAB and SLUB do).
[akpm@linux-foundation.org: fix blooper in slub]
Fixes: c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.com>
Debugged-by: Jiri Bohac <jbohac@suse.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.
There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called. It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.
The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
size_index[size_index_elem(size)]. For MIPS, size is 56, and the
expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
create_kmalloc_caches() at this point which would have changed
size_index[size_index_elem(size)] to 7.
I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem. I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.
Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the normal return values for bool functions
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
By moving the O option detection into the switch statement, we allow this
parameter to be combined with other options correctly. Previously options
like slub_debug=OFZ would only detect the 'o' and use DEBUG_DEFAULT_FLAGS
to fill in the rest of the flags.
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 9aabf810a67c ("mm/slub: optimize alloc/free fastpath by removing
preemption on/off") introduced an occasional hang for kernels built with
CONFIG_PREEMPT && !CONFIG_SMP.
The problem is the following loop the patch introduced to
slab_alloc_node and slab_free:
do {
tid = this_cpu_read(s->cpu_slab->tid);
c = raw_cpu_ptr(s->cpu_slab);
} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
GCC 4.9 has been observed to hoist the load of c and c->tid above the
loop for !SMP kernels (as in this case raw_cpu_ptr(x) is compile-time
constant and does not force a reload). On arm64 the generated assembly
looks like:
ldr x4, [x0,#8]
loop:
ldr x1, [x0,#8]
cmp x1, x4
b.ne loop
If the thread is preempted between the load of c->tid (into x1) and tid
(into x4), and an allocation or free occurs in another thread (bumping
the cpu_slab's tid), the thread will be stuck in the loop until
s->cpu_slab->tid wraps, which may be forever in the absence of
allocations/frees on the same CPU.
This patch changes the loop condition to access c->tid with READ_ONCE.
This ensures that the value is reloaded even when the compiler would
otherwise assume it could cache the value, and also ensures that the
load will not be torn.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With this patch kasan will be able to catch bugs in memory allocated by
slub. Initially all objects in newly allocated slab page, marked as
redzone. Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).
We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area. Such callers could validly access whole
allocated memory, so it should be marked as accessible.
Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It's ok for slub to access memory that marked by kasan as inaccessible
(object's metadata). Kasan shouldn't print report in that case because
these accesses are valid. Disabling instrumentation of slub.c code is not
enough to achieve this because slub passes pointer to object's metadata
into external functions like memchr_inv().
We don't want to disable instrumentation for memchr_inv() because this is
quite generic function, and we don't want to miss bugs.
metadata_access_enable/metadata_access_disable used to tell KASan where
accesses to metadata starts/end, so we could temporarily disable KASan
reports.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove static and add function declarations to linux/slub_def.h so it
could be used by kernel address sanitizer.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
* This is an equivalent conversion but the whole function should be
converted to use scnprinf famiily of functions rather than
performing custom output length predictions in multiple places.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately. This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.
To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed. It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.
The runtime overhead is minimal. From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup. Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead. We do have to disable preemption
for put_cpu_partial() to achieve that though.
The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time. I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list. Besides, we currently do not
even call per-memcg shrinkers for offline memcgs. Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.
Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically. Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.
[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It is supposed to return 0 if the cache has no remaining objects and 1
otherwise, while currently it always returns 0. Fix it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|