summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2014-02-133.4.y: timekeeping: fix 32-bit overflow in get_monotonic_boottimeColin Cross
fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c get_monotonic_boottime adds three nanonsecond values stored in longs, followed by an s64. If the long values are all close to 1e9 the first three additions can overflow and become negative when added to the s64. Cast the first value to s64 so that all additions are 64 bit. Signed-off-by: Colin Cross <ccross@android.com> [jstultz: Fished this out of the AOSP commong.git tree. This was fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c] Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13timekeeping: Avoid possible deadlock from clock_was_set_delayedJohn Stultz
commit 6fdda9a9c5db367130cf32df5d6618d08b89f46a upstream. As part of normal operaions, the hrtimer subsystem frequently calls into the timekeeping code, creating a locking order of hrtimer locks -> timekeeping locks clock_was_set_delayed() was suppoed to allow us to avoid deadlocks between the timekeeping the hrtimer subsystem, so that we could notify the hrtimer subsytem the time had changed while holding the timekeeping locks. This was done by scheduling delayed work that would run later once we were out of the timekeeing code. But unfortunately the lock chains are complex enoguh that in scheduling delayed work, we end up eventually trying to grab an hrtimer lock. Sasha Levin noticed this in testing when the new seqlock lockdep enablement triggered the following (somewhat abrieviated) message: [ 251.100221] ====================================================== [ 251.100221] [ INFO: possible circular locking dependency detected ] [ 251.100221] 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 Not tainted [ 251.101967] ------------------------------------------------------- [ 251.101967] kworker/10:1/4506 is trying to acquire lock: [ 251.101967] (timekeeper_seq){----..}, at: [<ffffffff81160e96>] retrigger_next_event+0x56/0x70 [ 251.101967] [ 251.101967] but task is already holding lock: [ 251.101967] (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70 [ 251.101967] [ 251.101967] which lock already depends on the new lock. [ 251.101967] [ 251.101967] [ 251.101967] the existing dependency chain (in reverse order) is: [ 251.101967] -> #5 (hrtimer_bases.lock#11){-.-...}: [snipped] -> #4 (&rt_b->rt_runtime_lock){-.-...}: [snipped] -> #3 (&rq->lock){-.-.-.}: [snipped] -> #2 (&p->pi_lock){-.-.-.}: [snipped] -> #1 (&(&pool->lock)->rlock){-.-...}: [ 251.101967] [<ffffffff81194803>] validate_chain+0x6c3/0x7b0 [ 251.101967] [<ffffffff81194d9d>] __lock_acquire+0x4ad/0x580 [ 251.101967] [<ffffffff81194ff2>] lock_acquire+0x182/0x1d0 [ 251.101967] [<ffffffff84398500>] _raw_spin_lock+0x40/0x80 [ 251.101967] [<ffffffff81153e69>] __queue_work+0x1a9/0x3f0 [ 251.101967] [<ffffffff81154168>] queue_work_on+0x98/0x120 [ 251.101967] [<ffffffff81161351>] clock_was_set_delayed+0x21/0x30 [ 251.101967] [<ffffffff811c4bd1>] do_adjtimex+0x111/0x160 [ 251.101967] [<ffffffff811e2711>] compat_sys_adjtimex+0x41/0x70 [ 251.101967] [<ffffffff843a4b49>] ia32_sysret+0x0/0x5 [ 251.101967] -> #0 (timekeeper_seq){----..}: [snipped] [ 251.101967] other info that might help us debug this: [ 251.101967] [ 251.101967] Chain exists of: timekeeper_seq --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock#11 [ 251.101967] Possible unsafe locking scenario: [ 251.101967] [ 251.101967] CPU0 CPU1 [ 251.101967] ---- ---- [ 251.101967] lock(hrtimer_bases.lock#11); [ 251.101967] lock(&rt_b->rt_runtime_lock); [ 251.101967] lock(hrtimer_bases.lock#11); [ 251.101967] lock(timekeeper_seq); [ 251.101967] [ 251.101967] *** DEADLOCK *** [ 251.101967] [ 251.101967] 3 locks held by kworker/10:1/4506: [ 251.101967] #0: (events){.+.+.+}, at: [<ffffffff81154960>] process_one_work+0x200/0x530 [ 251.101967] #1: (hrtimer_work){+.+...}, at: [<ffffffff81154960>] process_one_work+0x200/0x530 [ 251.101967] #2: (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70 [ 251.101967] [ 251.101967] stack backtrace: [ 251.101967] CPU: 10 PID: 4506 Comm: kworker/10:1 Not tainted 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 [ 251.101967] Workqueue: events clock_was_set_work So the best solution is to avoid calling clock_was_set_delayed() while holding the timekeeping lock, and instead using a flag variable to decide if we should call clock_was_set() once we've released the locks. This works for the case here, where the do_adjtimex() was the deadlock trigger point. Unfortuantely, in update_wall_time() we still hold the jiffies lock, which would deadlock with the ipi triggered by clock_was_set(), preventing us from calling it even after we drop the timekeeping lock. So instead call clock_was_set_delayed() at that point. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched/rt: Avoid updating RT entry timeout twice within one tick periodYing Xue
commit 57d2aa00dcec67afa52478730f2b524521af14fb upstream. The issue below was found in 2.6.34-rt rather than mainline rt kernel, but the issue still exists upstream as well. So please let me describe how it was noticed on 2.6.34-rt: On this version, each softirq has its own thread, it means there is at least one RT FIFO task per cpu. The priority of these tasks is set to 49 by default. If user launches an RT FIFO task with priority lower than 49 of softirq RT tasks, it's possible there are two RT FIFO tasks enqueued one cpu runqueue at one moment. By current strategy of balancing RT tasks, when it comes to RT tasks, we really need to put them off to a CPU that they can run on as soon as possible. Even if it means a bit of cache line flushing, we want RT tasks to be run with the least latency. When the user RT FIFO task which just launched before is running, the sched timer tick of the current cpu happens. In this tick period, the timeout value of the user RT task will be updated once. Subsequently, we try to wake up one softirq RT task on its local cpu. As the priority of current user RT task is lower than the softirq RT task, the current task will be preempted by the higher priority softirq RT task. Before preemption, we check to see if current can readily move to a different cpu. If so, we will reschedule to allow the RT push logic to try to move current somewhere else. Whenever the woken softirq RT task runs, it first tries to migrate the user FIFO RT task over to a cpu that is running a task of lesser priority. If migration is done, it will send a reschedule request to the found cpu by IPI interrupt. Once the target cpu responds the IPI interrupt, it will pick the migrated user RT task to preempt its current task. When the user RT task is running on the new cpu, the sched timer tick of the cpu fires. So it will tick the user RT task again. This also means the RT task timeout value will be updated again. As the migration may be done in one tick period, it means the user RT task timeout value will be updated twice within one tick. If we set a limit on the amount of cpu time for the user RT task by setrlimit(RLIMIT_RTTIME), the SIGXCPU signal should be posted upon reaching the soft limit. But exactly when the SIGXCPU signal should be sent depends on the RT task timeout value. In fact the timeout mechanism of sending the SIGXCPU signal assumes the RT task timeout is increased once every tick. However, currently the timeout value may be added twice per tick. So it results in the SIGXCPU signal being sent earlier than expected. To solve this issue, we prevent the timeout value from increasing twice within one tick time by remembering the jiffies value of last updating the timeout. As long as the RT task's jiffies is different with the global jiffies value, we allow its timeout to be updated. Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Fan Du <fan.du@windriver.com> Reviewed-by: Yong Zhang <yong.zhang0@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: <peterz@infradead.org> Link: http://lkml.kernel.org/r/1342508623-2887-1-git-send-email-ying.xue@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [ lizf: backported to 3.4: adjust context ] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched: Unthrottle rt runqueues in __disable_runtime()Peter Boonstoppel
commit a4c96ae319b8047f62dedbe1eac79e321c185749 upstream. migrate_tasks() uses _pick_next_task_rt() to get tasks from the real-time runqueues to be migrated. When rt_rq is throttled _pick_next_task_rt() won't return anything, in which case migrate_tasks() can't move all threads over and gets stuck in an infinite loop. Instead unthrottle rt runqueues before migrating tasks. Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair() Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [ lizf: backported to 3.4: adjust context ] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched,rt: fix isolated CPUs leaving root_task_group indefinitely throttledMike Galbraith
commit e221d028bb08b47e624c5f0a31732c642db9d19a upstream. Root task group bandwidth replenishment must service all CPUs, regardless of where the timer was last started, and regardless of the isolation mechanism, lest 'Quoth the Raven, "Nevermore"' become rt scheduling policy. Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1344326558.6968.25.camel@marge.simpson.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched/rt: Fix SCHED_RR across cgroupsColin Cross
commit 454c79999f7eaedcdf4c15c449e43902980cbdf5 upstream. task_tick_rt() has an optimization to only reschedule SCHED_RR tasks if they were the only element on their rq. However, with cgroups a SCHED_RR task could be the only element on its per-cgroup rq but still be competing with other SCHED_RR tasks in its parent's cgroup. In this case, the SCHED_RR task in the child cgroup would never yield at the end of its timeslice. If the child cgroup rt_runtime_us was the same as the parent cgroup rt_runtime_us, the task in the parent cgroup would starve completely. Modify task_tick_rt() to check that the task is the only task on its rq, and that the each of the scheduling entities of its ancestors is also the only entity on its rq. Signed-off-by: Colin Cross <ccross@android.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1337229266-15798-1-git-send-email-ccross@android.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Guarantee new group-entities always have weightPaul Turner
commit 0ac9b1c21874d2490331233b3242085f8151e166 upstream. Currently, group entity load-weights are initialized to zero. This admits some races with respect to the first time they are re-weighted in earlty use. ( Let g[x] denote the se for "g" on cpu "x". ) Suppose that we have root->a and that a enters a throttled state, immediately followed by a[0]->t1 (the only task running on cpu[0]) blocking: put_prev_task(group_cfs_rq(a[0]), t1) put_prev_entity(..., t1) check_cfs_rq_runtime(group_cfs_rq(a[0])) throttle_cfs_rq(group_cfs_rq(a[0])) Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first time: enqueue_task_fair(rq[0], t2) enqueue_entity(group_cfs_rq(b[0]), t2) enqueue_entity_load_avg(group_cfs_rq(b[0]), t2) account_entity_enqueue(group_cfs_ra(b[0]), t2) update_cfs_shares(group_cfs_rq(b[0])) < skipped because b is part of a throttled hierarchy > enqueue_entity(group_cfs_rq(a[0]), b[0]) ... We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0 which violates invariants in several code-paths. Eliminate the possibility of this by initializing group entity weight. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix hrtimer_cancel()/rq->lock deadlockBen Segall
commit 927b54fccbf04207ec92f669dce6806848cbec7d upstream. __start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock, waiting for the hrtimer to finish. However, if sched_cfs_period_timer runs for another loop iteration, the hrtimer can attempt to take rq->lock, resulting in deadlock. Fix this by ensuring that cfs_b->timer_active is cleared only if the _latest_ call to do_sched_cfs_period_timer is returning as idle. Then __start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for that to succeed or timer_active == 1. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix cfs_bandwidth misuse of hrtimer_expires_remainingBen Segall
commit db06e78cc13d70f10877e0557becc88ab3ad2be8 upstream. hrtimer_expires_remaining does not take internal hrtimer locks and thus must be guarded against concurrent __hrtimer_start_range_ns (but returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix race on toggling cfs_bandwidth_usedBen Segall
commit 1ee14e6c8cddeeb8a490d7b54cd9016e4bb900b4 upstream. When we transition cfs_bandwidth_used to false, any currently throttled groups will incorrectly return false from cfs_rq_throttled. While tg_set_cfs_bandwidth will unthrottle them eventually, currently running code (including at least dequeue_task_fair and distribute_cfs_runtime) will cause errors. Fix this by turning off cfs_bandwidth_used only after unthrottling all cfs_rqs. Tested: toggle bandwidth back and forth on a loaded cgroup. Caused crashes in minutes without the patch, hasn't crashed with it. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-08sched: Avoid throttle_cfs_rq() racing with period_timer stoppingBen Segall
commit f9f9ffc237dd924f048204e8799da74f9ecf40cf upstream. throttle_cfs_rq() doesn't check to make sure that period_timer is running, and while update_curr/assign_cfs_runtime does, a concurrently running period_timer on another cpu could cancel itself between this cpu's update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running in the tg to restart the timer, this causes the cfs_rq to be stranded forever. Fix this by calling __start_cfs_bandwidth() in throttle if the timer is inactive. (Also add some sched_debug lines for cfs_bandwidth.) Tested: make a run/sleep task in a cgroup, loop switching the cgroup between 1ms/100ms quota and unlimited, checking for timer_active=0 and throttled=1 as a failure. With the throttle_cfs_rq() change commented out this fails, with the full patch it passes. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-08sched/rt: Fix rq's cpupri leak while enqueue/dequeue child RT entitiesKirill Tkhai
commit 757dfcaa41844595964f1220f1d33182dae49976 upstream. This patch touches the RT group scheduling case. Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's priority, while rt_rq passed to them may be not the top-level rt_rq. This is wrong, because changing of priority on a child level does not guarantee that the priority is the highest all over the rq. So, this leak makes RT balancing unusable. The short example: the task having the highest priority among all rq's RT tasks (no one other task has the same priority) are waking on a throttle rt_rq. The rq's cpupri is set to the task's priority equivalent, but real rq->rt.highest_prio.curr is less. The patch below fixes the problem. Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Peter Zijlstra <peterz@infradead.org> CC: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-08ftrace: Initialize the ftrace profiler for each possible cpuMiao Xie
commit c4602c1c818bd6626178d6d3fcc152d9f2f48ac0 upstream. Ftrace currently initializes only the online CPUs. This implementation has two problems: - If we online a CPU after we enable the function profile, and then run the test, we will lose the trace information on that CPU. Steps to reproduce: # echo 0 > /sys/devices/system/cpu/cpu1/online # cd <debugfs>/tracing/ # echo <some function name> >> set_ftrace_filter # echo 1 > function_profile_enabled # echo 1 > /sys/devices/system/cpu/cpu1/online # run test - If we offline a CPU before we enable the function profile, we will not clear the trace information when we enable the function profile. It will trouble the users. Steps to reproduce: # cd <debugfs>/tracing/ # echo <some function name> >> set_ftrace_filter # echo 1 > function_profile_enabled # run test # cat trace_stat/function* # echo 0 > /sys/devices/system/cpu/cpu1/online # echo 0 > function_profile_enabled # echo 1 > function_profile_enabled # cat trace_stat/function* # run test # cat trace_stat/function* So it is better that we initialize the ftrace profiler for each possible cpu every time we enable the function profile instead of just the online ones. Link: http://lkml.kernel.org/r/1387178401-10619-1-git-send-email-miaox@cn.fujitsu.com Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-20futex: fix handling of read-only-mapped hugepagesLinus Torvalds
commit f12d5bfceb7e1f9051563381ec047f7f13956c3c upstream. The hugepage code had the exact same bug that regular pages had in commit 7485d0d3758e ("futexes: Remove rw parameter from get_futex_key()"). The regular page case was fixed by commit 9ea71503a8ed ("futex: Fix regression with read only mappings"), but the transparent hugepage case (added in a5b338f2b0b1: "thp: update futex compound knowledge") case remained broken. Found by Dave Jones and his trinity tool. Reported-and-tested-by: Dave Jones <davej@fedoraproject.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-11irq: Enable all irqs unconditionally in irq_resumeLaxman Dewangan
commit ac01810c9d2814238f08a227062e66a35a0e1ea2 upstream. When the system enters suspend, it disables all interrupts in suspend_device_irqs(), including the interrupts marked EARLY_RESUME. On the resume side things are different. The EARLY_RESUME interrupts are reenabled in sys_core_ops->resume and the non EARLY_RESUME interrupts are reenabled in the normal system resume path. When suspend_noirq() failed or suspend is aborted for any other reason, we might omit the resume side call to sys_core_ops->resume() and therefor the interrupts marked EARLY_RESUME are not reenabled and stay disabled forever. To solve this, enable all irqs unconditionally in irq_resume() regardless whether interrupts marked EARLY_RESUMEhave been already enabled or not. This might try to reenable already enabled interrupts in the non failure case, but the only affected platform is XEN and it has been confirmed that it does not cause any side effects. [ tglx: Massaged changelog. ] Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com> Acked-by-and-tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Pavel Machek <pavel@ucw.cz> Cc: <ian.campbell@citrix.com> Cc: <rjw@rjwysocki.net> Cc: <len.brown@intel.com> Cc: <gregkh@linuxfoundation.org> Link: http://lkml.kernel.org/r/1385388587-16442-1-git-send-email-ldewangan@nvidia.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04ftrace: Fix function graph with loading of modulesSteven Rostedt (Red Hat)
commit 8a56d7761d2d041ae5e8215d20b4167d8aa93f51 upstream. Commit 8c4f3c3fa9681 "ftrace: Check module functions being traced on reload" fixed module loading and unloading with respect to function tracing, but it missed the function graph tracer. If you perform the following # cd /sys/kernel/debug/tracing # echo function_graph > current_tracer # modprobe nfsd # echo nop > current_tracer You'll get the following oops message: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 2910 at /linux.git/kernel/trace/ftrace.c:1640 __ftrace_hash_rec_update.part.35+0x168/0x1b9() Modules linked in: nfsd exportfs nfs_acl lockd ipt_MASQUERADE sunrpc ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 ip6table_filter ip6_tables uinput snd_hda_codec_idt CPU: 2 PID: 2910 Comm: bash Not tainted 3.13.0-rc1-test #7 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007 0000000000000668 ffff8800787efcf8 ffffffff814fe193 ffff88007d500000 0000000000000000 ffff8800787efd38 ffffffff8103b80a 0000000000000668 ffffffff810b2b9a ffffffff81a48370 0000000000000001 ffff880037aea000 Call Trace: [<ffffffff814fe193>] dump_stack+0x4f/0x7c [<ffffffff8103b80a>] warn_slowpath_common+0x81/0x9b [<ffffffff810b2b9a>] ? __ftrace_hash_rec_update.part.35+0x168/0x1b9 [<ffffffff8103b83e>] warn_slowpath_null+0x1a/0x1c [<ffffffff810b2b9a>] __ftrace_hash_rec_update.part.35+0x168/0x1b9 [<ffffffff81502f89>] ? __mutex_lock_slowpath+0x364/0x364 [<ffffffff810b2cc2>] ftrace_shutdown+0xd7/0x12b [<ffffffff810b47f0>] unregister_ftrace_graph+0x49/0x78 [<ffffffff810c4b30>] graph_trace_reset+0xe/0x10 [<ffffffff810bf393>] tracing_set_tracer+0xa7/0x26a [<ffffffff810bf5e1>] tracing_set_trace_write+0x8b/0xbd [<ffffffff810c501c>] ? ftrace_return_to_handler+0xb2/0xde [<ffffffff811240a8>] ? __sb_end_write+0x5e/0x5e [<ffffffff81122aed>] vfs_write+0xab/0xf6 [<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85 [<ffffffff81122dbd>] SyS_write+0x59/0x82 [<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85 [<ffffffff8150a2d2>] system_call_fastpath+0x16/0x1b ---[ end trace 940358030751eafb ]--- The above mentioned commit didn't go far enough. Well, it covered the function tracer by adding checks in __register_ftrace_function(). The problem is that the function graph tracer circumvents that (for a slight efficiency gain when function graph trace is running with a function tracer. The gain was not worth this). The problem came with ftrace_startup() which should always be called after __register_ftrace_function(), if you want this bug to be completely fixed. Anyway, this solution moves __register_ftrace_function() inside of ftrace_startup() and removes the need to call them both. Reported-by: Dave Wysochanski <dwysocha@redhat.com> Fixes: ed926f9b35cd ("ftrace: Use counters to enable functions to trace") Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04cpuset: Fix memory allocator deadlockPeter Zijlstra
commit 0fc0287c9ed1ffd3706f8b4d9b314aa102ef1245 upstream. Juri hit the below lockdep report: [ 4.303391] ====================================================== [ 4.303392] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ] [ 4.303394] 3.12.0-dl-peterz+ #144 Not tainted [ 4.303395] ------------------------------------------------------ [ 4.303397] kworker/u4:3/689 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire: [ 4.303399] (&p->mems_allowed_seq){+.+...}, at: [<ffffffff8114e63c>] new_slab+0x6c/0x290 [ 4.303417] [ 4.303417] and this task is already holding: [ 4.303418] (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff812d2dfb>] blk_execute_rq_nowait+0x5b/0x100 [ 4.303431] which would create a new lock dependency: [ 4.303432] (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...} [ 4.303436] [ 4.303898] the dependencies between the lock to be acquired and SOFTIRQ-irq-unsafe lock: [ 4.303918] -> (&p->mems_allowed_seq){+.+...} ops: 2762 { [ 4.303922] HARDIRQ-ON-W at: [ 4.303923] [<ffffffff8108ab9a>] __lock_acquire+0x65a/0x1ff0 [ 4.303926] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140 [ 4.303929] [<ffffffff81063dd6>] kthreadd+0x86/0x180 [ 4.303931] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0 [ 4.303933] SOFTIRQ-ON-W at: [ 4.303933] [<ffffffff8108abcc>] __lock_acquire+0x68c/0x1ff0 [ 4.303935] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140 [ 4.303940] [<ffffffff81063dd6>] kthreadd+0x86/0x180 [ 4.303955] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0 [ 4.303959] INITIAL USE at: [ 4.303960] [<ffffffff8108a884>] __lock_acquire+0x344/0x1ff0 [ 4.303963] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140 [ 4.303966] [<ffffffff81063dd6>] kthreadd+0x86/0x180 [ 4.303969] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0 [ 4.303972] } Which reports that we take mems_allowed_seq with interrupts enabled. A little digging found that this can only be from cpuset_change_task_nodemask(). This is an actual deadlock because an interrupt doing an allocation will hit get_mems_allowed()->...->__read_seqcount_begin(), which will spin forever waiting for the write side to complete. Cc: John Stultz <john.stultz@linaro.org> Cc: Mel Gorman <mgorman@suse.de> Reported-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@gmail.com> Acked-by: Li Zefan <lizefan@huawei.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04audit: fix info leak in AUDIT_GET requestsMathias Krause
commit 64fbff9ae0a0a843365d922e0057fc785f23f0e3 upstream. We leak 4 bytes of kernel stack in response to an AUDIT_GET request as we miss to initialize the mask member of status_set. Fix that. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04audit: use nlmsg_len() to get message payload lengthMathias Krause
commit 4d8fe7376a12bf4524783dd95cbc00f1fece6232 upstream. Using the nlmsg_len member of the netlink header to test if the message is valid is wrong as it includes the size of the netlink header itself. Thereby allowing to send short netlink messages that pass those checks. Use nlmsg_len() instead to test for the right message length. The result of nlmsg_len() is guaranteed to be non-negative as the netlink message already passed the checks of nlmsg_ok(). Also switch to min_t() to please checkpatch.pl. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04audit: printk USER_AVC messages when audit isn't enabledTyler Hicks
commit 0868a5e150bc4c47e7a003367cd755811eb41e0b upstream. When the audit=1 kernel parameter is absent and auditd is not running, AUDIT_USER_AVC messages are being silently discarded. AUDIT_USER_AVC messages should be sent to userspace using printk(), as mentioned in the commit message of 4a4cd633 ("AUDIT: Optimise the audit-disabled case for discarding user messages"). When audit_enabled is 0, audit_receive_msg() discards all user messages except for AUDIT_USER_AVC messages. However, audit_log_common_recv_msg() refuses to allocate an audit_buffer if audit_enabled is 0. The fix is to special case AUDIT_USER_AVC messages in both functions. It looks like commit 50397bd1 ("[AUDIT] clean up audit_receive_msg()") introduced this bug. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Cc: linux-audit@redhat.com Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04PM / hibernate: Avoid overflow in hibernate_preallocate_memory()Aaron Lu
commit fd432b9f8c7c88428a4635b9f5a9c6e174df6e36 upstream. When system has a lot of highmem (e.g. 16GiB using a 32 bits kernel), the code to calculate how much memory we need to preallocate in normal zone may cause overflow. As Leon has analysed: It looks that during computing 'alloc' variable there is overflow: alloc = (3943404 - 1970542) - 1978280 = -5418 (signed) And this function goes to err_out. Fix this by avoiding that overflow. References: https://bugzilla.kernel.org/show_bug.cgi?id=60817 Reported-and-tested-by: Leon Drugi <eyak@wp.pl> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04alarmtimer: return EINVAL instead of ENOTSUPP if rtcdev doesn't existKOSAKI Motohiro
commit 98d6f4dd84a134d942827584a3c5f67ffd8ec35f upstream. Fedora Ruby maintainer reported latest Ruby doesn't work on Fedora Rawhide on ARM. (http://bugs.ruby-lang.org/issues/9008) Because of, commit 1c6b39ad3f (alarmtimers: Return -ENOTSUPP if no RTC device is present) intruduced to return ENOTSUPP when clock_get{time,res} can't find a RTC device. However this is incorrect. First, ENOTSUPP isn't exported to userland (ENOTSUP or EOPNOTSUP are the closest userland equivlents). Second, Posix and Linux man pages agree that clock_gettime and clock_getres should return EINVAL if clk_id argument is invalid. While the arugment that the clockid is valid, but just not supported on this hardware could be made, this is just a technicality that doesn't help userspace applicaitons, and only complicates error handling. Thus, this patch changes the code to use EINVAL. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Reported-by: Vit Ondruch <v.ondruch@tiscali.cz> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> [jstultz: Tweaks to commit message to include full rational] Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29exec/ptrace: fix get_dumpable() incorrect testsKees Cook
commit d049f74f2dbe71354d43d393ac3a188947811348 upstream. The get_dumpable() return value is not boolean. Most users of the function actually want to be testing for non-SUID_DUMP_USER(1) rather than SUID_DUMP_DISABLE(0). The SUID_DUMP_ROOT(2) is also considered a protected state. Almost all places did this correctly, excepting the two places fixed in this patch. Wrong logic: if (dumpable == SUID_DUMP_DISABLE) { /* be protective */ } or if (dumpable == 0) { /* be protective */ } or if (!dumpable) { /* be protective */ } Correct logic: if (dumpable != SUID_DUMP_USER) { /* be protective */ } or if (dumpable != 1) { /* be protective */ } Without this patch, if the system had set the sysctl fs/suid_dumpable=2, a user was able to ptrace attach to processes that had dropped privileges to that user. (This may have been partially mitigated if Yama was enabled.) The macros have been moved into the file that declares get/set_dumpable(), which means things like the ia64 code can see them too. CVE-2013-2929 Reported-by: Vasily Kulikov <segoon@openwall.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29perf/ftrace: Fix paranoid level for enabling function tracerSteven Rostedt
commit 12ae030d54ef250706da5642fc7697cc60ad0df7 upstream. The current default perf paranoid level is "1" which has "perf_paranoid_kernel()" return false, and giving any operations that use it, access to normal users. Unfortunately, this includes function tracing and normal users should not be allowed to enable function tracing by default. The proper level is defined at "-1" (full perf access), which "perf_paranoid_tracepoint_raw()" will only give access to. Use that check instead for enabling function tracing. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Vince Weaver <vincent.weaver@maine.edu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> CVE: CVE-2013-2930 Fixes: ced39002f5ea ("ftrace, perf: Add support to use function tracepoint in perf") Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-20tracing: Fix potential out-of-bounds in trace_get_user()Steven Rostedt
commit 057db8488b53d5e4faa0cedb2f39d4ae75dfbdbb upstream. Andrey reported the following report: ERROR: AddressSanitizer: heap-buffer-overflow on address ffff8800359c99f3 ffff8800359c99f3 is located 0 bytes to the right of 243-byte region [ffff8800359c9900, ffff8800359c99f3) Accessed by thread T13003: #0 ffffffff810dd2da (asan_report_error+0x32a/0x440) #1 ffffffff810dc6b0 (asan_check_region+0x30/0x40) #2 ffffffff810dd4d3 (__tsan_write1+0x13/0x20) #3 ffffffff811cd19e (ftrace_regex_release+0x1be/0x260) #4 ffffffff812a1065 (__fput+0x155/0x360) #5 ffffffff812a12de (____fput+0x1e/0x30) #6 ffffffff8111708d (task_work_run+0x10d/0x140) #7 ffffffff810ea043 (do_exit+0x433/0x11f0) #8 ffffffff810eaee4 (do_group_exit+0x84/0x130) #9 ffffffff810eafb1 (SyS_exit_group+0x21/0x30) #10 ffffffff81928782 (system_call_fastpath+0x16/0x1b) Allocated by thread T5167: #0 ffffffff810dc778 (asan_slab_alloc+0x48/0xc0) #1 ffffffff8128337c (__kmalloc+0xbc/0x500) #2 ffffffff811d9d54 (trace_parser_get_init+0x34/0x90) #3 ffffffff811cd7b3 (ftrace_regex_open+0x83/0x2e0) #4 ffffffff811cda7d (ftrace_filter_open+0x2d/0x40) #5 ffffffff8129b4ff (do_dentry_open+0x32f/0x430) #6 ffffffff8129b668 (finish_open+0x68/0xa0) #7 ffffffff812b66ac (do_last+0xb8c/0x1710) #8 ffffffff812b7350 (path_openat+0x120/0xb50) #9 ffffffff812b8884 (do_filp_open+0x54/0xb0) #10 ffffffff8129d36c (do_sys_open+0x1ac/0x2c0) #11 ffffffff8129d4b7 (SyS_open+0x37/0x50) #12 ffffffff81928782 (system_call_fastpath+0x16/0x1b) Shadow bytes around the buggy address: ffff8800359c9700: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd ffff8800359c9780: fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa ffff8800359c9800: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa ffff8800359c9880: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa ffff8800359c9900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =>ffff8800359c9980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00[03]fb ffff8800359c9a00: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa ffff8800359c9a80: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa ffff8800359c9b00: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 ffff8800359c9b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8800359c9c00: 00 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap redzone: fa Heap kmalloc redzone: fb Freed heap region: fd Shadow gap: fe The out-of-bounds access happens on 'parser->buffer[parser->idx] = 0;' Although the crash happened in ftrace_regex_open() the real bug occurred in trace_get_user() where there's an incrementation to parser->idx without a check against the size. The way it is triggered is if userspace sends in 128 characters (EVENT_BUF_SIZE + 1), the loop that reads the last character stores it and then breaks out because there is no more characters. Then the last character is read to determine what to do next, and the index is incremented without checking size. Then the caller of trace_get_user() usually nulls out the last character with a zero, but since the index is equal to the size, it writes a nul character after the allocated space, which can corrupt memory. Luckily, only root user has write access to this file. Link: http://lkml.kernel.org/r/20131009222323.04fd1a0d@gandalf.local.home Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-13clockevents: Sanitize ticks to nsec conversionThomas Gleixner
commit 97b9410643475d6557d2517c2aff9fd2221141a9 upstream. Marc Kleine-Budde pointed out, that commit 77cc982 "clocksource: use clockevents_config_and_register() where possible" caused a regression for some of the converted subarchs. The reason is, that the clockevents core code converts the minimal hardware tick delta to a nanosecond value for core internal usage. This conversion is affected by integer math rounding loss, so the backwards conversion to hardware ticks will likely result in a value which is less than the configured hardware limitation. The affected subarchs used their own workaround (SIGH!) which got lost in the conversion. The solution for the issue at hand is simple: adding evt->mult - 1 to the shifted value before the integer divison in the core conversion function takes care of it. But this only works for the case where for the scaled math mult/shift pair "mult <= 1 << shift" is true. For the case where "mult > 1 << shift" we can apply the rounding add only for the minimum delta value to make sure that the backward conversion is not less than the given hardware limit. For the upper bound we need to omit the rounding add, because the backwards conversion is always larger than the original latch value. That would violate the upper bound of the hardware device. Though looking closer at the details of that function reveals another bogosity: The upper bounds check is broken as well. Checking for a resulting "clc" value greater than KTIME_MAX after the conversion is pointless. The conversion does: u64 clc = (latch << evt->shift) / evt->mult; So there is no sanity check for (latch << evt->shift) exceeding the 64bit boundary. The latch argument is "unsigned long", so on a 64bit arch the handed in argument could easily lead to an unnoticed shift overflow. With the above rounding fix applied the calculation before the divison is: u64 clc = (latch << evt->shift) + evt->mult - 1; So we need to make sure, that neither the shift nor the rounding add is overflowing the u64 boundary. [ukl: move assignment to rnd after eventually changing mult, fix build issue and correct comment with the right math] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Cc: Marc Kleine-Budde <mkl@pengutronix.de> Cc: nicolas.ferre@atmel.com Cc: Marc Pignat <marc.pignat@hevs.ch> Cc: john.stultz@linaro.org Cc: kernel@pengutronix.de Cc: Ronald Wahl <ronald.wahl@raritan.com> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: Ludovic Desroches <ludovic.desroches@atmel.com> Link: http://lkml.kernel.org/r/1380052223-24139-1-git-send-email-u.kleine-koenig@pengutronix.de Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01perf: Fix perf_cgroup_switch for sw-eventsPeter Zijlstra
commit 95cf59ea72331d0093010543b8951bb43f262cac upstream. Jiri reported that he could trigger the WARN_ON_ONCE() in perf_cgroup_switch() using sw-events. This is because sw-events share a cpuctx with multiple PMUs. Use the ->unique_pmu pointer to limit the pmu iteration to unique cpuctx instances. Reported-and-Tested-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-so7wi2zf3jjzrwcutm2mkz0j@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01perf: Clarify perf_cpu_context::active_pmu usage by renaming it to ::unique_pmuPeter Zijlstra
commit 3f1f33206c16c7b3839d71372bc2ac3f305aa802 upstream. Stephane thought the perf_cpu_context::active_pmu name confusing and suggested using 'unique_pmu' instead. This pointer is a pointer to a 'random' pmu sharing the cpuctx instance, therefore limiting a for_each_pmu loop to those where cpuctx->unique_pmu matches the pmu we get a loop over unique cpuctx instances. Suggested-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-kxyjqpfj2fn9gt7kwu5ag9ks@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01cgroup: fail if monitored file and event_control are in different cgroupLi Zefan
commit f169007b2773f285e098cb84c74aac0154d65ff7 upstream. If we pass fd of memory.usage_in_bytes of cgroup A to cgroup.event_control of cgroup B, then we won't get memory usage notification from A but B! What's worse, if A and B are in different mount hierarchy, we'll end up accessing NULL pointer! Disallow this kind of invalid usage. Signed-off-by: Li Zefan <lizefan@huawei.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Weng Meiling <wengmeiling.weng@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01sched/fair: Fix small race where child->se.parent,cfs_rq might point to ↵Daisuke Nishimura
invalid ones commit 6c9a27f5da9609fca46cb2b183724531b48f71ad upstream. There is a small race between copy_process() and cgroup_attach_task() where child->se.parent,cfs_rq points to invalid (old) ones. parent doing fork() | someone moving the parent to another cgroup -------------------------------+--------------------------------------------- copy_process() + dup_task_struct() -> parent->se is copied to child->se. se.parent,cfs_rq of them point to old ones. cgroup_attach_task() + cgroup_task_migrate() -> parent->cgroup is updated. + cpu_cgroup_attach() + sched_move_task() + task_move_group_fair() +- set_task_rq() -> se.parent,cfs_rq of parent are updated. + cgroup_fork() -> parent->cgroup is copied to child->cgroup. (*1) + sched_fork() + task_fork_fair() -> se.parent,cfs_rq of child are accessed while they point to old ones. (*2) In the worst case, this bug can lead to "use-after-free" and cause a panic, because it's new cgroup's refcount that is incremented at (*1), so the old cgroup(and related data) can be freed before (*2). In fact, a panic caused by this bug was originally caught in RHEL6.4. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff81051e3e>] sched_slice+0x6e/0xa0 [...] Call Trace: [<ffffffff81051f25>] place_entity+0x75/0xa0 [<ffffffff81056a3a>] task_fork_fair+0xaa/0x160 [<ffffffff81063c0b>] sched_fork+0x6b/0x140 [<ffffffff8106c3c2>] copy_process+0x5b2/0x1450 [<ffffffff81063b49>] ? wake_up_new_task+0xd9/0x130 [<ffffffff8106d2f4>] do_fork+0x94/0x460 [<ffffffff81072a9e>] ? sys_wait4+0xae/0x100 [<ffffffff81009598>] sys_clone+0x28/0x30 [<ffffffff8100b393>] stub_clone+0x13/0x20 [<ffffffff8100b072>] ? system_call_fastpath+0x16/0x1b Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/039601ceae06$733d3130$59b79390$@mxp.nes.nec.co.jp Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-29workqueue: consider work function when searching for busy work itemsTejun Heo
commit a2c1c57be8d9fd5b716113c8991d3d702eeacf77 upstream. To avoid executing the same work item concurrenlty, workqueue hashes currently busy workers according to their current work items and looks up the the table when it wants to execute a new work item. If there already is a worker which is executing the new work item, the new item is queued to the found worker so that it gets executed only after the current execution finishes. Unfortunately, a work item may be freed while being executed and thus recycled for different purposes. If it gets recycled for a different work item and queued while the previous execution is still in progress, workqueue may make the new work item wait for the old one although the two aren't really related in any way. In extreme cases, this false dependency may lead to deadlock although it's extremely unlikely given that there aren't too many self-freeing work item users and they usually don't wait for other work items. To alleviate the problem, record the current work function in each busy worker and match it together with the work item address in find_worker_executing_work(). While this isn't complete, it ensures that unrelated work items don't interact with each other and in the very unlikely case where a twisted wq user triggers it, it's always onto itself making the culprit easy to spot. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Andrey Isakov <andy51@gmx.ru> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=51701 [lizf: Backported to 3.4: - Adjust context - Incorporate earlier logging cleanup in process_one_work() from 044c782ce3a9 ('workqueue: fix checkpatch issues')] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-29workqueue: fix possible stall on try_to_grab_pending() of a delayed work itemLai Jiangshan
commit 3aa62497594430ea522050b75c033f71f2c60ee6 upstream. Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Tejun Heo <tj@kernel.org> [lizf: backported to 3.4: adjust context] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-20futex: Take hugepages into account when generating futex_keyZhang Yi
commit 13d60f4b6ab5b702dc8d2ee20999f98a93728aec upstream. The futex_keys of process shared futexes are generated from the page offset, the mapping host and the mapping index of the futex user space address. This should result in an unique identifier for each futex. Though this is not true when futexes are located in different subpages of an hugepage. The reason is, that the mapping index for all those futexes evaluates to the index of the base page of the hugetlbfs mapping. So a futex at offset 0 of the hugepage mapping and another one at offset PAGE_SIZE of the same hugepage mapping have identical futex_keys. This happens because the futex code blindly uses page->index. Steps to reproduce the bug: 1. Map a file from hugetlbfs. Initialize pthread_mutex1 at offset 0 and pthread_mutex2 at offset PAGE_SIZE of the hugetlbfs mapping. The mutexes must be initialized as PTHREAD_PROCESS_SHARED because PTHREAD_PROCESS_PRIVATE mutexes are not affected by this issue as their keys solely depend on the user space address. 2. Lock mutex1 and mutex2 3. Create thread1 and in the thread function lock mutex1, which results in thread1 blocking on the locked mutex1. 4. Create thread2 and in the thread function lock mutex2, which results in thread2 blocking on the locked mutex2. 5. Unlock mutex2. Despite the fact that mutex2 got unlocked, thread2 still blocks on mutex2 because the futex_key points to mutex1. To solve this issue we need to take the normal page index of the page which contains the futex into account, if the futex is in an hugetlbfs mapping. In other words, we calculate the normal page mapping index of the subpage in the hugetlbfs mapping. Mappings which are not based on hugetlbfs are not affected and still use page->index. Thanks to Mel Gorman who provided a patch for adding proper evaluation functions to the hugetlbfs code to avoid exposing hugetlbfs specific details to the futex code. [ tglx: Massaged changelog ] Signed-off-by: Zhang Yi <zhang.yi20@zte.com.cn> Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn> Tested-by: Ma Chenggong <ma.chenggong@zte.com.cn> Reviewed-by: 'Mel Gorman' <mgorman@suse.de> Acked-by: 'Darren Hart' <dvhart@linux.intel.com> Cc: 'Peter Zijlstra' <peterz@infradead.org> Link: http://lkml.kernel.org/r/000101ce71a6%24a83c5880%24f8b50980%24@com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mike Galbraith <mgalbraith@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-14tracing: Fix fields of struct trace_iterator that are zeroed by mistakeAndrew Vagin
commit ed5467da0e369e65b247b99eb6403cb79172bcda upstream. tracing_read_pipe zeros all fields bellow "seq". The declaration contains a comment about that, but it doesn't help. The first field is "snapshot", it's true when current open file is snapshot. Looks obvious, that it should not be zeroed. The second field is "started". It was converted from cpumask_t to cpumask_var_t (v2.6.28-4983-g4462344), in other words it was converted from cpumask to pointer on cpumask. Currently the reference on "started" memory is lost after the first read from tracing_read_pipe and a proper object will never be freed. The "started" is never dereferenced for trace_pipe, because trace_pipe can't have the TRACE_FILE_ANNOTATE options. Link: http://lkml.kernel.org/r/1375463803-3085183-1-git-send-email-avagin@openvz.org Signed-off-by: Andrew Vagin <avagin@openvz.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11perf: Use css_tryget() to avoid propping up css refcountSalman Qazi
commit 9c5da09d266ca9b32eb16cf940f8161d949c2fe5 upstream. An rmdir pushes css's ref count to zero. However, if the associated directory is open at the time, the dentry ref count is non-zero. If the fd for this directory is then passed into perf_event_open, it does a css_get(). This bounces the ref count back up from zero. This is a problem by itself. But what makes it turn into a crash is the fact that we end up doing an extra dput, since we perform a dput when css_put sees the ref count go down to zero. css_tryget() does not fall into that trap. So, we use that instead. Reproduction test-case for the bug: #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <linux/unistd.h> #include <linux/perf_event.h> #include <string.h> #include <errno.h> #include <stdio.h> #define PERF_FLAG_PID_CGROUP (1U << 2) int perf_event_open(struct perf_event_attr *hw_event_uptr, pid_t pid, int cpu, int group_fd, unsigned long flags) { return syscall(__NR_perf_event_open,hw_event_uptr, pid, cpu, group_fd, flags); } /* * Directly poke at the perf_event bug, since it's proving hard to repro * depending on where in the kernel tree. what moved? */ int main(int argc, char **argv) { int fd; struct perf_event_attr attr; memset(&attr, 0, sizeof(attr)); attr.exclude_kernel = 1; attr.size = sizeof(attr); mkdir("/dev/cgroup/perf_event/blah", 0777); fd = open("/dev/cgroup/perf_event/blah", O_RDONLY); perror("open"); rmdir("/dev/cgroup/perf_event/blah"); sleep(2); perf_event_open(&attr, fd, 0, -1, PERF_FLAG_PID_CGROUP); perror("perf_event_open"); close(fd); return 0; } Signed-off-by: Salman Qazi <sqazi@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20120614223108.1025.2503.stgit@dungbeetle.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11perf: Fix event group context moveJiri Olsa
commit 0231bb5336758426b44ccd798ccd3c5419c95d58 upstream. When we have group with mixed events (hw/sw) we want to end up with group leader being in hw context. So if group leader is initialy sw event, we move all the events under hw context. The move is done for each event by removing it from its context and adding it back into proper one. As a part of the removal the event is automatically disabled, which is not what we want at this stage of creating groups. The fix is to initialize event state after removal from sw context. This fix resulted from the following discussion: http://thread.gmane.org/gmane.linux.kernel.perf.user/1144 Reported-by: Andreas Hollmann <hollmann@in.tum.de> Signed-off-by: Jiri Olsa <jolsa@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vince@deater.net> Link: http://lkml.kernel.org/r/1359714225-4231-1-git-send-email-jolsa@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11sched: Fix the broken sched_rr_get_interval()Zhu Yanhai
commit a59f4e079d19464eebb9b06513a1d4f55fdae5ba upstream. The caller of sched_sliced() should pass se.cfs_rq and se as the arguments, however in sched_rr_get_interval() we gave it rq.cfs_rq and se, which made the following computation obviously wrong. The change was introduced by commit: 77034937dc45 sched: fix crash in sys_sched_rr_get_interval() ... 5 years ago, while it had been the correct 'cfs_rq_of' before the commit. The change seems to be irrelevant to the commit msg, which was to return a 0 timeslice for tasks that are on an idle runqueue. So I believe that was just a plain typo. Signed-off-by: Zhu Yanhai <gaoyang.zyh@taobao.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Turner <pjt@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1357621012-15039-1-git-send-email-gaoyang.zyh@taobao.com [ Since this is an ABI and an old bug, we'll test this via a slow upstream route, to hopefully discover any app breakage. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-04tracing: Fix irqs-off tag display in syscall tracingzhangwei(Jovi)
commit 11034ae9c20f4057a6127fc965906417978e69b2 upstream Initialization of variable irq_flags and pc was missed when backport 11034ae9c to linux-3.0.y and linux-3.4.y, my fault. Signed-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28hrtimers: Move SMP function call to thread contextThomas Gleixner
commit 5ec2481b7b47a4005bb446d176e5d0257400c77d upstream. smp_call_function_* must not be called from softirq context. But clock_was_set() which calls on_each_cpu() is called from softirq context to implement a delayed clock_was_set() for the timer interrupt handler. Though that almost never gets invoked. A recent change in the resume code uses the softirq based delayed clock_was_set to support Xens resume mechanism. linux-next contains a new warning which warns if smp_call_function_* is called from softirq context which gets triggered by that Xen change. Fix this by moving the delayed clock_was_set() call to a work context. Reported-and-tested-by: Artem Savkov <artem.savkov@gmail.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com>, Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: John Stultz <john.stultz@linaro.org> Cc: xen-devel@lists.xen.org Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28tracing: Fix irqs-off tag display in syscall tracingzhangwei(Jovi)
commit 11034ae9c20f4057a6127fc965906417978e69b2 upstream. All syscall tracing irqs-off tags are wrong, the syscall enter entry doesn't disable irqs. [root@jovi tracing]#echo "syscalls:sys_enter_open" > set_event [root@jovi tracing]# cat trace # tracer: nop # # entries-in-buffer/entries-written: 13/13 #P:2 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | irqbalance-513 [000] d... 56115.496766: sys_open(filename: 804e1a6, flags: 0, mode: 1b6) irqbalance-513 [000] d... 56115.497008: sys_open(filename: 804e1bb, flags: 0, mode: 1b6) sendmail-771 [000] d... 56115.827982: sys_open(filename: b770e6d1, flags: 0, mode: 1b6) The reason is syscall tracing doesn't record irq_flags into buffer. The proper display is: [root@jovi tracing]#echo "syscalls:sys_enter_open" > set_event [root@jovi tracing]# cat trace # tracer: nop # # entries-in-buffer/entries-written: 14/14 #P:2 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | irqbalance-514 [001] .... 46.213921: sys_open(filename: 804e1a6, flags: 0, mode: 1b6) irqbalance-514 [001] .... 46.214160: sys_open(filename: 804e1bb, flags: 0, mode: 1b6) <...>-920 [001] .... 47.307260: sys_open(filename: 4e82a0c5, flags: 80000, mode: 0) Link: http://lkml.kernel.org/r/1365564393-10972-3-git-send-email-jovi.zhangwei@huawei.com Cc: stable@vger.kernel.org # 2.6.35 Signed-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28perf: Fix perf_lock_task_context() vs RCUPeter Zijlstra
commit 058ebd0eba3aff16b144eabf4510ed9510e1416e upstream. Jiri managed to trigger this warning: [] ====================================================== [] [ INFO: possible circular locking dependency detected ] [] 3.10.0+ #228 Tainted: G W [] ------------------------------------------------------- [] p/6613 is trying to acquire lock: [] (rcu_node_0){..-...}, at: [<ffffffff810ca797>] rcu_read_unlock_special+0xa7/0x250 [] [] but task is already holding lock: [] (&ctx->lock){-.-...}, at: [<ffffffff810f2879>] perf_lock_task_context+0xd9/0x2c0 [] [] which lock already depends on the new lock. [] [] the existing dependency chain (in reverse order) is: [] [] -> #4 (&ctx->lock){-.-...}: [] -> #3 (&rq->lock){-.-.-.}: [] -> #2 (&p->pi_lock){-.-.-.}: [] -> #1 (&rnp->nocb_gp_wq[1]){......}: [] -> #0 (rcu_node_0){..-...}: Paul was quick to explain that due to preemptible RCU we cannot call rcu_read_unlock() while holding scheduler (or nested) locks when part of the read side critical section was preemptible. Therefore solve it by making the entire RCU read side non-preemptible. Also pull out the retry from under the non-preempt to play nice with RT. Reported-by: Jiri Olsa <jolsa@redhat.com> Helped-out-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28perf: Remove WARN_ON_ONCE() check in __perf_event_enable() for valid scenarioJiri Olsa
commit 06f417968beac6e6b614e17b37d347aa6a6b1d30 upstream. The '!ctx->is_active' check has a valid scenario, so there's no need for the warning. The reason is that there's a time window between the 'ctx->is_active' check in the perf_event_enable() function and the __perf_event_enable() function having: - IRQs on - ctx->lock unlocked where the task could be killed and 'ctx' deactivated by perf_event_exit_task(), ending up with the warning below. So remove the WARN_ON_ONCE() check and add comments to explain it all. This addresses the following warning reported by Vince Weaver: [ 324.983534] ------------[ cut here ]------------ [ 324.984420] WARNING: at kernel/events/core.c:1953 __perf_event_enable+0x187/0x190() [ 324.984420] Modules linked in: [ 324.984420] CPU: 19 PID: 2715 Comm: nmi_bug_snb Not tainted 3.10.0+ #246 [ 324.984420] Hardware name: Supermicro X8DTN/X8DTN, BIOS 4.6.3 01/08/2010 [ 324.984420] 0000000000000009 ffff88043fce3ec8 ffffffff8160ea0b ffff88043fce3f00 [ 324.984420] ffffffff81080ff0 ffff8802314fdc00 ffff880231a8f800 ffff88043fcf7860 [ 324.984420] 0000000000000286 ffff880231a8f800 ffff88043fce3f10 ffffffff8108103a [ 324.984420] Call Trace: [ 324.984420] <IRQ> [<ffffffff8160ea0b>] dump_stack+0x19/0x1b [ 324.984420] [<ffffffff81080ff0>] warn_slowpath_common+0x70/0xa0 [ 324.984420] [<ffffffff8108103a>] warn_slowpath_null+0x1a/0x20 [ 324.984420] [<ffffffff81134437>] __perf_event_enable+0x187/0x190 [ 324.984420] [<ffffffff81130030>] remote_function+0x40/0x50 [ 324.984420] [<ffffffff810e51de>] generic_smp_call_function_single_interrupt+0xbe/0x130 [ 324.984420] [<ffffffff81066a47>] smp_call_function_single_interrupt+0x27/0x40 [ 324.984420] [<ffffffff8161fd2f>] call_function_single_interrupt+0x6f/0x80 [ 324.984420] <EOI> [<ffffffff816161a1>] ? _raw_spin_unlock_irqrestore+0x41/0x70 [ 324.984420] [<ffffffff8113799d>] perf_event_exit_task+0x14d/0x210 [ 324.984420] [<ffffffff810acd04>] ? switch_task_namespaces+0x24/0x60 [ 324.984420] [<ffffffff81086946>] do_exit+0x2b6/0xa40 [ 324.984420] [<ffffffff8161615c>] ? _raw_spin_unlock_irq+0x2c/0x30 [ 324.984420] [<ffffffff81087279>] do_group_exit+0x49/0xc0 [ 324.984420] [<ffffffff81096854>] get_signal_to_deliver+0x254/0x620 [ 324.984420] [<ffffffff81043057>] do_signal+0x57/0x5a0 [ 324.984420] [<ffffffff8161a164>] ? __do_page_fault+0x2a4/0x4e0 [ 324.984420] [<ffffffff8161665c>] ? retint_restore_args+0xe/0xe [ 324.984420] [<ffffffff816166cd>] ? retint_signal+0x11/0x84 [ 324.984420] [<ffffffff81043605>] do_notify_resume+0x65/0x80 [ 324.984420] [<ffffffff81616702>] retint_signal+0x46/0x84 [ 324.984420] ---[ end trace 442ec2f04db3771a ]--- Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@redhat.com> Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1373384651-6109-2-git-send-email-jolsa@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28perf: Clone child context from parent context pmuJiri Olsa
commit 734df5ab549ca44f40de0f07af1c8803856dfb18 upstream. Currently when the child context for inherited events is created, it's based on the pmu object of the first event of the parent context. This is wrong for the following scenario: - HW context having HW and SW event - HW event got removed (closed) - SW event stays in HW context as the only event and its pmu is used to clone the child context The issue starts when the cpu context object is touched based on the pmu context object (__get_cpu_context). In this case the HW context will work with SW cpu context ending up with following WARN below. Fixing this by using parent context pmu object to clone from child context. Addresses the following warning reported by Vince Weaver: [ 2716.472065] ------------[ cut here ]------------ [ 2716.476035] WARNING: at kernel/events/core.c:2122 task_ctx_sched_out+0x3c/0x) [ 2716.476035] Modules linked in: nfsd auth_rpcgss oid_registry nfs_acl nfs locn [ 2716.476035] CPU: 0 PID: 3164 Comm: perf_fuzzer Not tainted 3.10.0-rc4 #2 [ 2716.476035] Hardware name: AOpen DE7000/nMCP7ALPx-DE R1.06 Oct.19.2012, BI2 [ 2716.476035] 0000000000000000 ffffffff8102e215 0000000000000000 ffff88011fc18 [ 2716.476035] ffff8801175557f0 0000000000000000 ffff880119fda88c ffffffff810ad [ 2716.476035] ffff880119fda880 ffffffff810af02a 0000000000000009 ffff880117550 [ 2716.476035] Call Trace: [ 2716.476035] [<ffffffff8102e215>] ? warn_slowpath_common+0x5b/0x70 [ 2716.476035] [<ffffffff810ab2bd>] ? task_ctx_sched_out+0x3c/0x5f [ 2716.476035] [<ffffffff810af02a>] ? perf_event_exit_task+0xbf/0x194 [ 2716.476035] [<ffffffff81032a37>] ? do_exit+0x3e7/0x90c [ 2716.476035] [<ffffffff810cd5ab>] ? __do_fault+0x359/0x394 [ 2716.476035] [<ffffffff81032fe6>] ? do_group_exit+0x66/0x98 [ 2716.476035] [<ffffffff8103dbcd>] ? get_signal_to_deliver+0x479/0x4ad [ 2716.476035] [<ffffffff810ac05c>] ? __perf_event_task_sched_out+0x230/0x2d1 [ 2716.476035] [<ffffffff8100205d>] ? do_signal+0x3c/0x432 [ 2716.476035] [<ffffffff810abbf9>] ? ctx_sched_in+0x43/0x141 [ 2716.476035] [<ffffffff810ac2ca>] ? perf_event_context_sched_in+0x7a/0x90 [ 2716.476035] [<ffffffff810ac311>] ? __perf_event_task_sched_in+0x31/0x118 [ 2716.476035] [<ffffffff81050dd9>] ? mmdrop+0xd/0x1c [ 2716.476035] [<ffffffff81051a39>] ? finish_task_switch+0x7d/0xa6 [ 2716.476035] [<ffffffff81002473>] ? do_notify_resume+0x20/0x5d [ 2716.476035] [<ffffffff813654f5>] ? retint_signal+0x3d/0x78 [ 2716.476035] ---[ end trace 827178d8a5966c3d ]--- Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@redhat.com> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1373384651-6109-1-git-send-email-jolsa@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28tracing: Use current_uid() for critical time tracingSteven Rostedt (Red Hat)
commit f17a5194859a82afe4164e938b92035b86c55794 upstream. The irqsoff tracer records the max time that interrupts are disabled. There are hooks in the assembly code that calls back into the tracer when interrupts are disabled or enabled. When they are enabled, the tracer checks if the amount of time they were disabled is larger than the previous recorded max interrupts off time. If it is, it creates a snapshot of the currently running trace to store where the last largest interrupts off time was held and how it happened. During testing, this RCU lockdep dump appeared: [ 1257.829021] =============================== [ 1257.829021] [ INFO: suspicious RCU usage. ] [ 1257.829021] 3.10.0-rc1-test+ #171 Tainted: G W [ 1257.829021] ------------------------------- [ 1257.829021] /home/rostedt/work/git/linux-trace.git/include/linux/rcupdate.h:780 rcu_read_lock() used illegally while idle! [ 1257.829021] [ 1257.829021] other info that might help us debug this: [ 1257.829021] [ 1257.829021] [ 1257.829021] RCU used illegally from idle CPU! [ 1257.829021] rcu_scheduler_active = 1, debug_locks = 0 [ 1257.829021] RCU used illegally from extended quiescent state! [ 1257.829021] 2 locks held by trace-cmd/4831: [ 1257.829021] #0: (max_trace_lock){......}, at: [<ffffffff810e2b77>] stop_critical_timing+0x1a3/0x209 [ 1257.829021] #1: (rcu_read_lock){.+.+..}, at: [<ffffffff810dae5a>] __update_max_tr+0x88/0x1ee [ 1257.829021] [ 1257.829021] stack backtrace: [ 1257.829021] CPU: 3 PID: 4831 Comm: trace-cmd Tainted: G W 3.10.0-rc1-test+ #171 [ 1257.829021] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007 [ 1257.829021] 0000000000000001 ffff880065f49da8 ffffffff8153dd2b ffff880065f49dd8 [ 1257.829021] ffffffff81092a00 ffff88006bd78680 ffff88007add7500 0000000000000003 [ 1257.829021] ffff88006bd78680 ffff880065f49e18 ffffffff810daebf ffffffff810dae5a [ 1257.829021] Call Trace: [ 1257.829021] [<ffffffff8153dd2b>] dump_stack+0x19/0x1b [ 1257.829021] [<ffffffff81092a00>] lockdep_rcu_suspicious+0x109/0x112 [ 1257.829021] [<ffffffff810daebf>] __update_max_tr+0xed/0x1ee [ 1257.829021] [<ffffffff810dae5a>] ? __update_max_tr+0x88/0x1ee [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810dbf85>] update_max_tr_single+0x11d/0x12d [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810e2b15>] stop_critical_timing+0x141/0x209 [ 1257.829021] [<ffffffff8109569a>] ? trace_hardirqs_on+0xd/0xf [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810e3057>] time_hardirqs_on+0x2a/0x2f [ 1257.829021] [<ffffffff811002b9>] ? user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff8109550c>] trace_hardirqs_on_caller+0x16/0x197 [ 1257.829021] [<ffffffff8109569a>] trace_hardirqs_on+0xd/0xf [ 1257.829021] [<ffffffff811002b9>] user_enter+0xfd/0x107 [ 1257.829021] [<ffffffff810029b4>] do_notify_resume+0x92/0x97 [ 1257.829021] [<ffffffff8154bdca>] int_signal+0x12/0x17 What happened was entering into the user code, the interrupts were enabled and a max interrupts off was recorded. The trace buffer was saved along with various information about the task: comm, pid, uid, priority, etc. The uid is recorded with task_uid(tsk). But this is a macro that uses rcu_read_lock() to retrieve the data, and this happened to happen where RCU is blind (user_enter). As only the preempt and irqs off tracers can have this happen, and they both only have the tsk == current, if tsk == current, use current_uid() instead of task_uid(), as current_uid() does not use RCU as only current can change its uid. This fixes the RCU suspicious splat. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-28tick: Prevent uncontrolled switch to oneshot modeThomas Gleixner
commit 1f73a9806bdd07a5106409bbcab3884078bd34fe upstream. When the system switches from periodic to oneshot mode, the broadcast logic causes a possibility that a CPU which has not yet switched to oneshot mode puts its own clock event device into oneshot mode without updating the state and the timer handler. CPU0 CPU1 per cpu tickdev is in periodic mode and switched to broadcast Switch to oneshot mode tick_broadcast_switch_to_oneshot() cpumask_copy(tick_oneshot_broacast_mask, tick_broadcast_mask); broadcast device mode = oneshot Timer interrupt irq_enter() tick_check_oneshot_broadcast() dev->set_mode(ONESHOT); tick_handle_periodic() if (dev->mode == ONESHOT) dev->next_event += period; FAIL. We fail, because dev->next_event contains KTIME_MAX, if the device was in periodic mode before the uncontrolled switch to oneshot happened. We must copy the broadcast bits over to the oneshot mask, because otherwise a CPU which relies on the broadcast would not been woken up anymore after the broadcast device switched to oneshot mode. So we need to verify in tick_check_oneshot_broadcast() whether the CPU has already switched to oneshot mode. If not, leave the device untouched and let the CPU switch controlled into oneshot mode. This is a long standing bug, which was never noticed, because the main user of the broadcast x86 cannot run into that scenario, AFAICT. The nonarchitected timer mess of ARM creates a gazillion of differently broken abominations which trigger the shortcomings of that broadcast code, which better had never been necessary in the first place. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-21timer: Fix jiffies wrap behavior of round_jiffies_common()Bart Van Assche
commit 9e04d3804d3ac97d8c03a41d78d0f0674b5d01e1 upstream. Direct compare of jiffies related values does not work in the wrap around case. Replace it with time_is_after_jiffies(). Signed-off-by: Bart Van Assche <bvanassche@acm.org> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Link: http://lkml.kernel.org/r/519BC066.5080600@acm.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-21genirq: Fix can_request_irq() for IRQs without an actionBen Hutchings
commit 2779db8d37d4b542d9ca2575f5f178dbeaca6c86 upstream. Commit 02725e7471b8 ('genirq: Use irq_get/put functions'), inadvertently changed can_request_irq() to return 0 for IRQs that have no action. This causes pcibios_lookup_irq() to select only IRQs that already have an action with IRQF_SHARED set, or to fail if there are none. Change can_request_irq() to return 1 for IRQs that have no action (if the first two conditions are met). Reported-by: Bjarni Ingi Gislason <bjarniig@rhi.hi.is> Tested-by: Bjarni Ingi Gislason <bjarniig@rhi.hi.is> (against 3.2) Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Cc: 709647@bugs.debian.org Link: http://bugs.debian.org/709647 Link: http://lkml.kernel.org/r/1372383630.23847.40.camel@deadeye.wl.decadent.org.uk Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-13Revert "sched: Add missing call to calc_load_exit_idle()"Greg Kroah-Hartman
This reverts commit 48f0f14ffb6ff4852922994d11fbda418d40100e which was commit 749c8814f08f12baa4a9c2812a7c6ede7d69507d upstream. It seems to be misapplied, and not needed for 3.4-stable Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Charles Wang <muming.wq@taobao.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-03perf: Fix mmap() accounting holePeter Zijlstra
commit 9bb5d40cd93c9dd4be74834b1dcb1ba03629716b upstream. Vince's fuzzer once again found holes. This time it spotted a leak in the locked page accounting. When an event had redirected output and its close() was the last reference to the buffer we didn't have a vm context to undo accounting. Change the code to destroy the buffer on the last munmap() and detach all redirected events at that time. This provides us the right context to undo the vm accounting. [Backporting for 3.4-stable. VM_RESERVED flag was replaced with pair 'VM_DONTEXPAND | VM_DONTDUMP' in 314e51b9 since 3.7.0-rc1, and 314e51b9 comes from a big patchset, we didn't backport the patchset, so I restored 'VM_DNOTEXPAND | VM_DONTDUMP' as before: - vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; + vma->vm_flags |= VM_DONTCOPY | VM_RESERVED; -- zliu] Reported-and-tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130604084421.GI8923@twins.programming.kicks-ass.net Cc: <stable@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Zhouping Liu <zliu@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-07-03perf: Fix perf mmap bugsPeter Zijlstra
commit 26cb63ad11e04047a64309362674bcbbd6a6f246 upstream. Vince reported a problem found by his perf specific trinity fuzzer. Al noticed 2 problems with perf's mmap(): - it has issues against fork() since we use vma->vm_mm for accounting. - it has an rb refcount leak on double mmap(). We fix the issues against fork() by using VM_DONTCOPY; I don't think there's code out there that uses this; we didn't hear about weird accounting problems/crashes. If we do need this to work, the previously proposed VM_PINNED could make this work. Aside from the rb reference leak spotted by Al, Vince's example prog was indeed doing a double mmap() through the use of perf_event_set_output(). This exposes another problem, since we now have 2 events with one buffer, the accounting gets screwy because we account per event. Fix this by making the buffer responsible for its own accounting. [Backporting for 3.4-stable. VM_RESERVED flag was replaced with pair 'VM_DONTEXPAND | VM_DONTDUMP' in 314e51b9 since 3.7.0-rc1, and 314e51b9 comes from a big patchset, we didn't backport the patchset, so I restored 'VM_DNOTEXPAND | VM_DONTDUMP' as before: - vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; + vma->vm_flags |= VM_DONTCOPY | VM_RESERVED; -- zliu] Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Link: http://lkml.kernel.org/r/20130528085548.GA12193@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Zhouping Liu <zliu@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>