Age | Commit message (Collapse) | Author |
|
When a device requires unencrypted memory and the context does not allow
blocking, memory must be returned from the atomic coherent pools.
This avoids the remap when CONFIG_DMA_DIRECT_REMAP is not enabled and the
config only requires CONFIG_DMA_COHERENT_POOL. This will be used for
CONFIG_AMD_MEM_ENCRYPT in a subsequent patch.
Keep all memory in these pools unencrypted. When set_memory_decrypted()
fails, this prohibits the memory from being added. If adding memory to
the genpool fails, and set_memory_encrypted() subsequently fails, there
is no alternative other than leaking the memory.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The single atomic pool is allocated from the lowest zone possible since
it is guaranteed to be applicable for any DMA allocation.
Devices may allocate through the DMA API but not have a strict reliance
on GFP_DMA memory. Since the atomic pool will be used for all
non-blockable allocations, returning all memory from ZONE_DMA may
unnecessarily deplete the zone.
Provision for multiple atomic pools that will map to the optimal gfp
mask of the device.
When allocating non-blockable memory, determine the optimal gfp mask of
the device and use the appropriate atomic pool.
The coherent DMA mask will remain the same between allocation and free
and, thus, memory will be freed to the same atomic pool it was allocated
from.
__dma_atomic_pool_init() will be changed to return struct gen_pool *
later once dynamic expansion is added.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The upper 32-bit physical address gets truncated inadvertently
when dma_direct_get_required_mask() invokes phys_to_dma_direct().
This results in dma_addressing_limited() return incorrect value
when used in platforms with LPAE enabled.
Fix it here by explicitly type casting 'max_pfn' to phys_addr_t
in order to prevent overflow of intermediate value while evaluating
'(max_pfn - 1) << PAGE_SHIFT'.
Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Pull dma-mapping updates from Christoph Hellwig:
- fix an integer overflow in the coherent pool (Kevin Grandemange)
- provide support for in-place uncached remapping and use that for
openrisc
- fix the arm coherent allocator to take the bus limit into account
* tag 'dma-mapping-5.7' of git://git.infradead.org/users/hch/dma-mapping:
ARM/dma-mapping: merge __dma_supported into arm_dma_supported
ARM/dma-mapping: take the bus limit into account in __dma_alloc
ARM/dma-mapping: remove get_coherent_dma_mask
openrisc: use the generic in-place uncached DMA allocator
dma-direct: provide a arch_dma_clear_uncached hook
dma-direct: make uncached_kernel_address more general
dma-direct: consolidate the error handling in dma_direct_alloc_pages
dma-direct: remove the cached_kernel_address hook
dma-coherent: fix integer overflow in the reserved-memory dma allocation
|
|
This allows the arch code to reset the page tables to cached access when
freeing a dma coherent allocation that was set to uncached using
arch_dma_set_uncached.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Rename the symbol to arch_dma_set_uncached, and pass a size to it as
well as allow an error return. That will allow reusing this hook for
in-place pagetable remapping.
As the in-place remap doesn't always require an explicit cache flush,
also detangle ARCH_HAS_DMA_PREP_COHERENT from ARCH_HAS_DMA_SET_UNCACHED.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Use a goto label to merge two error return cases.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Remove the unset dma_mask case as that won't get into mapping calls
anymore, and also report the other errors unconditonally and with a
slightly improved message. Remove the now pointless report_addr helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad@darnok.org>
|
|
Untangle the way how dma_direct_map_page calls into swiotlb to be able
to properly report errors where the swiotlb DMA address overflows the
mask separately from overflows in the !swiotlb case. This means that
siotlb_map now has to do a little more work that duplicates
dma_direct_map_page, but doing so greatly simplifies the calling
convention.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
dma_direct_supported tries to find the minimum addressable bitmask
based on the end pfn and optional magic that architectures can use
to communicate the size of the magic ZONE_DMA that can be used
for bounce buffering. But between the DMA offsets that can change
per device (or sometimes even region), the fact the ZONE_DMA isn't
even guaranteed to be the lowest addresses and failure of having
proper interfaces to the MM code this fails at least for one
arm subarchitecture.
As all the legacy DMA implementations have supported 32-bit DMA
masks, and 32-bit masks are guranteed to always work by the API
contract (using bounce buffers if needed), we can short cut the
complicated check and always return true without breaking existing
assumptions. Hopefully we can properly clean up the interaction
with the arch defined zones and the bootmem allocator eventually.
Fixes: ad3c7b18c5b3 ("arm: use swiotlb for bounce buffering on LPAE configs")
Reported-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
|
|
Using a mask to represent bus DMA constraints has a set of limitations.
The biggest one being it can only hold a power of two (minus one). The
DMA mapping code is already aware of this and treats dev->bus_dma_mask
as a limit. This quirk is already used by some architectures although
still rare.
With the introduction of the Raspberry Pi 4 we've found a new contender
for the use of bus DMA limits, as its PCIe bus can only address the
lower 3GB of memory (of a total of 4GB). This is impossible to represent
with a mask. To make things worse the device-tree code rounds non power
of two bus DMA limits to the next power of two, which is unacceptable in
this case.
In the light of this, rename dev->bus_dma_mask to dev->bus_dma_limit all
over the tree and treat it as such. Note that dev->bus_dma_limit should
contain the higher accessible DMA address.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux into dma-mapping-for-next
Pull in a stable branch from the arm64 tree that adds the zone_dma_bits
variable to avoid creating hard to resolve conflicts with that addition.
|
|
The valid memory address check in dma_capable only makes sense when mapping
normal memory, not when using dma_map_resource to map a device resource.
Add a new boolean argument to dma_capable to exclude that check for the
dma_map_resource case.
Fixes: b12d66278dd6 ("dma-direct: check for overflows on 32 bit DMA addresses")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
When mapping resources we can't just use swiotlb ram for bounce
buffering. Switch to a direct dma_capable check instead.
Fixes: cfced786969c ("dma-mapping: remove the default map_resource implementation")
Reported-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
These are pure cache maintainance routines, so drop the unused
struct device argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Suggested-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
Integrate the generic dma remapping implementation into the main flow.
This prepares for architectures like xtensa that use an uncached
segment for pages in the kernel mapping, but can also remap highmem
from CMA. To simplify that implementation we now always deduct the
page from the physical address via the DMA address instead of the
virtual address.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
For dma-direct we know that the DMA address is an encoding of the
physical address that we can trivially decode. Use that fact to
provide implementations that do not need the arch_dma_coherent_to_pfn
architecture hook. Note that we still can only support mmap of
non-coherent memory only if the architecture provides a way to set an
uncached bit in the page tables. This must be true for architectures
that use the generic remap helpers, but other architectures can also
manually select it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
The argument isn't used anywhere, so stop passing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
We can just call dma_free_contiguous directly instead of wrapping it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
Some architectures, notably ARM, are interested in tweaking this
depending on their runtime DMA addressing limitations.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
'arm/qcom', 'arm/renesas', 'x86/amd', 'x86/vt-d' and 'core' into next
|
|
This splits the size parameter to swiotlb_tbl_map_single() and
swiotlb_tbl_unmap_single() into an alloc_size and a mapping_size
parameter, where the latter one is rounded up to the iommu page
size.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
The new dma_alloc_contiguous hides if we allocate CMA or regular
pages, and thus fails to retry a ZONE_NORMAL allocation if the CMA
allocation succeeds but isn't addressable. That means we either fail
outright or dip into a small zone that might not succeed either.
Thanks to Hillf Danton for debugging this issue.
Fixes: b1d2dc009dec ("dma-contiguous: add dma_{alloc,free}_contiguous() helpers")
Reported-by: Tobias Klausmann <tobias.johannes.klausmann@mni.thm.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Tobias Klausmann <tobias.johannes.klausmann@mni.thm.de>
|
|
The dma required_mask needs to reflect the actual addressing capabilities
needed to handle the whole system RAM. When truncated down to the bus
addressing capabilities dma_addressing_limited() will incorrectly signal
no limitations for devices which are restricted by the bus_dma_mask.
Fixes: b4ebe6063204 (dma-direct: implement complete bus_dma_mask handling)
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Tested-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The new DMA_ATTR_NO_KERNEL_MAPPING needs to actually assign
a dma_addr to work. Also skip it if the architecture needs
forced decryption handling, as that needs a kernel virtual
address.
Fixes: d98849aff879 (dma-direct: handle DMA_ATTR_NO_KERNEL_MAPPING in common code)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lucas Stach <l.stach@pengutronix.de>
|
|
dma_map_sg() may use swiotlb buffer when the kernel command line includes
"swiotlb=force" or the dma_addr is out of dev->dma_mask range. After
DMA complete the memory moving from device to memory, then user call
dma_sync_sg_for_cpu() to sync with DMA buffer, and copy the original
virtual buffer to other space.
So dma_direct_sync_sg_for_cpu() should use swiotlb physical addr, not
the original physical addr from sg_phys(sg).
dma_direct_sync_sg_for_device() also has the same issue, correct it as
well.
Fixes: 55897af63091("dma-direct: merge swiotlb_dma_ops into the dma_direct code")
Signed-off-by: Fugang Duan <fugang.duan@nxp.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Don't just check for a swiotlb buffer, but also if buffering might
be required for this particular device.
Fixes: 133d624b1cee ("dma: Introduce dma_max_mapping_size()")
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
If a device doesn't support DMA to a physical address that includes the
encryption bit (currently bit 47, so 48-bit DMA), then the DMA must
occur to unencrypted memory. SWIOTLB is used to satisfy that requirement
if an IOMMU is not active (enabled or configured in passthrough mode).
However, commit fafadcd16595 ("swiotlb: don't dip into swiotlb pool for
coherent allocations") modified the coherent allocation support in
SWIOTLB to use the DMA direct coherent allocation support. When an IOMMU
is not active, this resulted in dma_alloc_coherent() failing for devices
that didn't support DMA addresses that included the encryption bit.
Addressing this requires changes to the force_dma_unencrypted() function
in kernel/dma/direct.c. Since the function is now non-trivial and
SME/SEV specific, update the DMA direct support to add an arch override
for the force_dma_unencrypted() function. The arch override is selected
when CONFIG_AMD_MEM_ENCRYPT is set. The arch override function resides in
the arch/x86/mm/mem_encrypt.c file and forces unencrypted DMA when either
SEV is active or SME is active and the device does not support DMA to
physical addresses that include the encryption bit.
Fixes: fafadcd16595 ("swiotlb: don't dip into swiotlb pool for coherent allocations")
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
[hch: moved the force_dma_unencrypted declaration to dma-mapping.h,
fold the s390 fix from Halil Pasic]
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
DMA_ATTR_NO_KERNEL_MAPPING is generally implemented by allocating
normal cacheable pages or CMA memory, and then returning the page
pointer as the opaque handle. Lift that code from the xtensa and
generic dma remapping implementations into the generic dma-direct
code so that we don't even call arch_dma_alloc for these allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Only call into arch_dma_alloc if we require an uncached mapping,
and remove the parisc code manually doing normal cached
DMA_ATTR_NON_CONSISTENT allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Helge Deller <deller@gmx.de> # parisc
|
|
Check if we need to allocate uncached memory for a device given the
allocation flags. Switch over the uncached segment check to this helper
to deal with architectures that do not support the dma_cache_sync
operation and thus should not returned cacheable memory for
DMA_ATTR_NON_CONSISTENT allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
A few architectures support uncached kernel segments. In that case we get
an uncached mapping for a given physica address by using an offset in the
uncached segement. Implement support for this scheme in the generic
dma-direct code instead of duplicating it in arch hooks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Both dma_alloc_from_contiguous() and dma_release_from_contiguous() are
very simply implemented, but requiring callers to pass certain
parameters like count and align, and taking a boolean parameter to check
__GFP_NOWARN in the allocation flags. So every function call duplicates
similar work:
unsigned long order = get_order(size);
size_t count = size >> PAGE_SHIFT;
page = dma_alloc_from_contiguous(dev, count, order,
gfp & __GFP_NOWARN);
[...]
dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
Additionally, as CMA can be used only in the context which permits
sleeping, most of callers do a gfpflags_allow_blocking() check and a
corresponding fallback allocation of normal pages upon any false result:
if (gfpflags_allow_blocking(flag))
page = dma_alloc_from_contiguous();
if (!page)
page = alloc_pages();
[...]
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
So this patch simplifies those function calls by abstracting these
operations into the two new functions: dma_{alloc,free}_contiguous.
As some callers of dma_{alloc,release}_from_contiguous() might be
complicated, this patch just implements these two new functions to
kernel/dma/direct.c only as an initial step.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolin Chen <nicoleotsuka@gmail.com>
Tested-by: dann frazier <dann.frazier@canonical.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Most dma_map_ops implementations already had some issues with a NULL
device, or did simply crash if one was fed to them. Now that we have
cleaned up all the obvious offenders we can stop to pretend we
support this mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Pull virtio updates from Michael Tsirkin:
"Several fixes, most notably fix for virtio on swiotlb systems"
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost:
vhost: silence an unused-variable warning
virtio: hint if callbacks surprisingly might sleep
virtio-ccw: wire up ->bus_name callback
s390/virtio: handle find on invalid queue gracefully
virtio-ccw: diag 500 may return a negative cookie
virtio_balloon: remove the unnecessary 0-initialization
virtio-balloon: improve update_balloon_size_func
virtio-blk: Consider virtio_max_dma_size() for maximum segment size
virtio: Introduce virtio_max_dma_size()
dma: Introduce dma_max_mapping_size()
swiotlb: Add is_swiotlb_active() function
swiotlb: Introduce swiotlb_max_mapping_size()
|
|
Pull DMA mapping updates from Christoph Hellwig:
- add debugfs support for dumping dma-debug information (Corentin
Labbe)
- Kconfig cleanups (Andy Shevchenko and me)
- debugfs cleanups (Greg Kroah-Hartman)
- improve dma_map_resource and use it in the media code
- arch_setup_dma_ops / arch_teardown_dma_ops cleanups
- various small cleanups and improvements for the per-device coherent
allocator
- make the DMA mask an upper bound and don't fail "too large" dma mask
in the remaning two architectures - this will allow big driver
cleanups in the following merge windows
* tag 'dma-mapping-5.1' of git://git.infradead.org/users/hch/dma-mapping: (21 commits)
Documentation/DMA-API-HOWTO: update dma_mask sections
sparc64/pci_sun4v: allow large DMA masks
sparc64/iommu: allow large DMA masks
sparc64: refactor the ali DMA quirk
ccio: allow large DMA masks
dma-mapping: remove the DMA_MEMORY_EXCLUSIVE flag
dma-mapping: remove dma_mark_declared_memory_occupied
dma-mapping: move CONFIG_DMA_CMA to kernel/dma/Kconfig
dma-mapping: improve selection of dma_declare_coherent availability
dma-mapping: remove an incorrect __iommem annotation
of: select OF_RESERVED_MEM automatically
device.h: dma_mem is only needed for HAVE_GENERIC_DMA_COHERENT
mfd/sm501: depend on HAS_DMA
dma-mapping: add a kconfig symbol for arch_teardown_dma_ops availability
dma-mapping: add a kconfig symbol for arch_setup_dma_ops availability
dma-mapping: move debug configuration options to kernel/dma
dma-debug: add dumping facility via debugfs
dma: debug: no need to check return value of debugfs_create functions
videobuf2: replace a layering violation with dma_map_resource
dma-mapping: don't BUG when calling dma_map_resource on RAM
...
|
|
The function returns the maximum size that can be mapped
using DMA-API functions. The patch also adds the
implementation for direct DMA and a new dma_map_ops pointer
so that other implementations can expose their limit.
Cc: stable@vger.kernel.org
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
If there is no ZONE_DMA32 we might need GFP_DMA to be able to
allocate memory that satisfies a 32-bit DMA mask.
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Instead provide a proper implementation in the direct mapping code, and
also wire it up for arm and powerpc, leaving an error return for all the
IOMMU or virtual mapping instances for which we'd have to wire up an
actual implementation
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
Pull DMA mapping updates from Christoph Hellwig:
"A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for
architectures that have devices that perform DMA that is not cache
coherent. Based on the existing arm64 implementation and also used
for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel
data leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script"
* tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping: (73 commits)
dma-mapping: fix inverted logic in dma_supported
dma-mapping: deprecate dma_zalloc_coherent
dma-mapping: zero memory returned from dma_alloc_*
sparc/iommu: fix ->map_sg return value
sparc/io-unit: fix ->map_sg return value
arm64: default to the direct mapping in get_arch_dma_ops
PCI: Remove unused attr variable in pci_dma_configure
ia64: only select ARCH_HAS_DMA_COHERENT_TO_PFN if swiotlb is enabled
dma-mapping: bypass indirect calls for dma-direct
vmd: use the proper dma_* APIs instead of direct methods calls
dma-direct: merge swiotlb_dma_ops into the dma_direct code
dma-direct: use dma_direct_map_page to implement dma_direct_map_sg
dma-direct: improve addressability error reporting
swiotlb: remove dma_mark_clean
swiotlb: remove SWIOTLB_MAP_ERROR
ACPI / scan: Refactor _CCA enforcement
dma-mapping: factor out dummy DMA ops
dma-mapping: always build the direct mapping code
dma-mapping: move dma_cache_sync out of line
dma-mapping: move various slow path functions out of line
...
|
|
The dma_direct_supported() function intends to check the DMA mask against
specific values. However, the phys_to_dma() function includes the SME
encryption mask, which defeats the intended purpose of the check. This
results in drivers that support less than 48-bit DMA (SME encryption mask
is bit 47) from being able to set the DMA mask successfully when SME is
active, which results in the driver failing to initialize.
Change the function used to check the mask from phys_to_dma() to
__phys_to_dma() so that the SME encryption mask is not part of the check.
Fixes: c1d0af1a1d5d ("kernel/dma/direct: take DMA offset into account in dma_direct_supported")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Avoid expensive indirect calls in the fast path DMA mapping
operations by directly calling the dma_direct_* ops if we are using
the directly mapped DMA operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
While the dma-direct code is (relatively) clean and simple we actually
have to use the swiotlb ops for the mapping on many architectures due
to devices with addressing limits. Instead of keeping two
implementations around this commit allows the dma-direct
implementation to call the swiotlb bounce buffering functions and
thus share the guts of the mapping implementation. This also
simplified the dma-mapping setup on a few architectures where we
don't have to differenciate which implementation to use.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
No need to duplicate the mapping logic.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
Only report report a DMA addressability report once to avoid spewing the
kernel log with repeated message. Also provide a stack trace to make it
easy to find the actual caller that caused the problem.
Last but not least move the actual check into the fast path and only
leave the error reporting in a helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
The dma-direct code already returns (~(dma_addr_t)0x0) on mapping
failures, so we can switch over to returning DMA_MAPPING_ERROR and let
the core dma-mapping code handle the rest.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
dma_alloc_from_contiguous can return highmem pages depending on the
setup, which a plain non-remapping DMA allocator can't handle. Detect
this case and fail the allocation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Some architectures support remapping highmem into DMA coherent
allocations. To use the common code for them we need variants of
dma_direct_{alloc,free}_pages that do not use kernel virtual addresses.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Like all other dma mapping drivers just return an error code instead
of an actual memory buffer. The reason for the overflow buffer was
that at the time swiotlb was invented there was no way to check for
dma mapping errors, but this has long been fixed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|