summaryrefslogtreecommitdiff
path: root/include/rxrpc
AgeCommit message (Collapse)Author
2017-06-05rxrpc: Implement service upgradeDavid Howells
Implement AuriStor's service upgrade facility. There are three problems that this is meant to deal with: (1) Various of the standard AFS RPC calls have IPv4 addresses in their requests and/or replies - but there's no room for including IPv6 addresses. (2) Definition of IPv6-specific RPC operations in the standard operation sets has not yet been achieved. (3) One could envision the creation a new service on the same port that as the original service. The new service could implement improved operations - and the client could try this first, falling back to the original service if it's not there. Unfortunately, certain servers ignore packets addressed to a service they don't implement and don't respond in any way - not even with an ABORT. This means that the client must then wait for the call timeout to occur. What service upgrade does is to see if the connection is marked as being 'upgradeable' and if so, change the service ID in the server and thus the request and reply formats. Note that the upgrade isn't mandatory - a server that supports only the original call set will ignore the upgrade request. In the protocol, the procedure is then as follows: (1) To request an upgrade, the first DATA packet in a new connection must have the userStatus set to 1 (this is normally 0). The userStatus value is normally ignored by the server. (2) If the server doesn't support upgrading, the reply packets will contain the same service ID as for the first request packet. (3) If the server does support upgrading, all future reply packets on that connection will contain the new service ID and the new service ID will be applied to *all* further calls on that connection as well. (4) The RPC op used to probe the upgrade must take the same request data as the shadow call in the upgrade set (but may return a different reply). GetCapability RPC ops were added to all standard sets for just this purpose. Ops where the request formats differ cannot be used for probing. (5) The client must wait for completion of the probe before sending any further RPC ops to the same destination. It should then use the service ID that recvmsg() reported back in all future calls. (6) The shadow service must have call definitions for all the operation IDs defined by the original service. To support service upgrading, a server should: (1) Call bind() twice on its AF_RXRPC socket before calling listen(). Each bind() should supply a different service ID, but the transport addresses must be the same. This allows the server to receive requests with either service ID. (2) Enable automatic upgrading by calling setsockopt(), specifying RXRPC_UPGRADEABLE_SERVICE and passing in a two-member array of unsigned shorts as the argument: unsigned short optval[2]; This specifies a pair of service IDs. They must be different and must match the service IDs bound to the socket. Member 0 is the service ID to upgrade from and member 1 is the service ID to upgrade to. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23rxrpc: Add tracepoint for ACK proposalDavid Howells
Add a tracepoint to log proposed ACKs, including whether the proposal is used to update a pending ACK or is discarded in favour of an easlier, higher priority ACK. Whilst we're at it, get rid of the rxrpc_acks() function and access the name array directly. We do, however, need to validate the ACK reason number given to trace_rxrpc_rx_ack() to make sure we don't overrun the array. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08rxrpc: Rewrite the data and ack handling codeDavid Howells
Rewrite the data and ack handling code such that: (1) Parsing of received ACK and ABORT packets and the distribution and the filing of DATA packets happens entirely within the data_ready context called from the UDP socket. This allows us to process and discard ACK and ABORT packets much more quickly (they're no longer stashed on a queue for a background thread to process). (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead keep track of the offset and length of the content of each packet in the sk_buff metadata. This means we don't do any allocation in the receive path. (3) Jumbo DATA packet parsing is now done in data_ready context. Rather than cloning the packet once for each subpacket and pulling/trimming it, we file the packet multiple times with an annotation for each indicating which subpacket is there. From that we can directly calculate the offset and length. (4) A call's receive queue can be accessed without taking locks (memory barriers do have to be used, though). (5) Incoming calls are set up from preallocated resources and immediately made live. They can than have packets queued upon them and ACKs generated. If insufficient resources exist, DATA packet #1 is given a BUSY reply and other DATA packets are discarded). (6) sk_buffs no longer take a ref on their parent call. To make this work, the following changes are made: (1) Each call's receive buffer is now a circular buffer of sk_buff pointers (rxtx_buffer) rather than a number of sk_buff_heads spread between the call and the socket. This permits each sk_buff to be in the buffer multiple times. The receive buffer is reused for the transmit buffer. (2) A circular buffer of annotations (rxtx_annotations) is kept parallel to the data buffer. Transmission phase annotations indicate whether a buffered packet has been ACK'd or not and whether it needs retransmission. Receive phase annotations indicate whether a slot holds a whole packet or a jumbo subpacket and, if the latter, which subpacket. They also note whether the packet has been decrypted in place. (3) DATA packet window tracking is much simplified. Each phase has just two numbers representing the window (rx_hard_ack/rx_top and tx_hard_ack/tx_top). The hard_ack number is the sequence number before base of the window, representing the last packet the other side says it has consumed. hard_ack starts from 0 and the first packet is sequence number 1. The top number is the sequence number of the highest-numbered packet residing in the buffer. Packets between hard_ack+1 and top are soft-ACK'd to indicate they've been received, but not yet consumed. Four macros, before(), before_eq(), after() and after_eq() are added to compare sequence numbers within the window. This allows for the top of the window to wrap when the hard-ack sequence number gets close to the limit. Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also to indicate when rx_top and tx_top point at the packets with the LAST_PACKET bit set, indicating the end of the phase. (4) Calls are queued on the socket 'receive queue' rather than packets. This means that we don't need have to invent dummy packets to queue to indicate abnormal/terminal states and we don't have to keep metadata packets (such as ABORTs) around (5) The offset and length of a (sub)packet's content are now passed to the verify_packet security op. This is currently expected to decrypt the packet in place and validate it. However, there's now nowhere to store the revised offset and length of the actual data within the decrypted blob (there may be a header and padding to skip) because an sk_buff may represent multiple packets, so a locate_data security op is added to retrieve these details from the sk_buff content when needed. (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is individually secured and needs to be individually decrypted. The code to do this is broken out into rxrpc_recvmsg_data() and shared with the kernel API. It now iterates over the call's receive buffer rather than walking the socket receive queue. Additional changes: (1) The timers are condensed to a single timer that is set for the soonest of three timeouts (delayed ACK generation, DATA retransmission and call lifespan). (2) Transmission of ACK and ABORT packets is effected immediately from process-context socket ops/kernel API calls that cause them instead of them being punted off to a background work item. The data_ready handler still has to defer to the background, though. (3) A shutdown op is added to the AF_RXRPC socket so that the AFS filesystem can shut down the socket and flush its own work items before closing the socket to deal with any in-progress service calls. Future additional changes that will need to be considered: (1) Make sure that a call doesn't hog the front of the queue by receiving data from the network as fast as userspace is consuming it to the exclusion of other calls. (2) Transmit delayed ACKs from within recvmsg() when we've consumed sufficiently more packets to avoid the background work item needing to run. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08rxrpc: Update protocol definitions slightlyDavid Howells
Update the protocol definitions in include/rxrpc/packet.h slightly: (1) Get rid of RXRPC_PROCESS_MAXCALLS as it's redundant (same as RXRPC_MAXCALLS). (2) In struct rxrpc_jumbo_header, put _rsvd in a union with a field called cksum to match struct rxrpc_wire_header. (3) Provide RXRPC_JUMBO_SUBPKTLEN which is the total of the amount of data in a non-terminal subpacket plus the following secondary header for the next packet included in the jumbo packet. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04rxrpc: Randomise epoch and starting client conn ID valuesDavid Howells
Create a random epoch value rather than a time-based one on startup and set the top bit to indicate that this is the case. Also create a random starting client connection ID value. This will be incremented from here as new client connections are created. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-11rxrpc: Static arrays of strings should be const char *const[]David Howells
Static arrays of strings should be const char *const[]. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-04rxrpc: Be more selective about the types of received packets we acceptDavid Howells
Currently, received RxRPC packets outside the range 1-13 are rejected. There are, however, holes in the range that should also be rejected - plus at least one type we don't yet support - so reject these also. Signed-off-by: David Howells <dhowells@redhat.com>
2016-03-04rxrpc: Keep the skb private record of the Rx header in host byte orderDavid Howells
Currently, a copy of the Rx packet header is copied into the the sk_buff private data so that we can advance the pointer into the buffer, potentially discarding the original. At the moment, this copy is held in network byte order, but this means we're doing a lot of unnecessary translations. The reasons it was done this way are that we need the values in network byte order occasionally and we can use the copy, slightly modified, as part of an iov array when sending an ack or an abort packet. However, it seems more reasonable on review that it would be better kept in host byte order and that we make up a new header when we want to send another packet. To this end, rename the original header struct to rxrpc_wire_header (with BE fields) and institute a variant called rxrpc_host_header that has host order fields. Change the struct in the sk_buff private data into an rxrpc_host_header and translate the values when filling it in. This further allows us to keep values kept in various structures in host byte order rather than network byte order and allows removal of some fields that are byteswapped duplicates. Signed-off-by: David Howells <dhowells@redhat.com>
2015-04-01RxRPC: Handle VERSION Rx protocol packetsDavid Howells
Handle VERSION Rx protocol packets. We should respond to a VERSION packet with a string indicating the Rx version. This is a maximum of 64 characters and is padded out to 65 chars with NUL bytes. Note that other AFS clients use the version request as a NAT keepalive so we need to handle it rather than returning an abort. The standard formulation seems to be: <project> <version> built <yyyy>-<mm>-<dd> for example: " OpenAFS 1.6.2 built 2013-05-07 " (note the three extra spaces) as obtained with: rxdebug grand.mit.edu -version from the openafs package. Signed-off-by: David Howells <dhowells@redhat.com>
2014-08-29include/rxrpc/types.h: Remove unused headerRasmus Villemoes
The header file include/rxrpc/types.h does not seem to be used anywhere. It was orphaned by 63b6be55 "[AF_RXRPC]: Delete the old RxRPC code.". Remove it. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-26atomic: use <linux/atomic.h>Arun Sharma
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-31Fix common misspellingsLucas De Marchi
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2010-06-03net: use __packed annotationEric Dumazet
cleanup patch. Use new __packed annotation in net/ and include/ (except netfilter) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26[AF_RXRPC]: Delete the old RxRPC code.David Howells
Delete the old RxRPC code as it's now no longer used. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem ↵David Howells
to use Add an interface to the AF_RXRPC module so that the AFS filesystem module can more easily make use of the services available. AFS still opens a socket but then uses the action functions in lieu of sendmsg() and registers an intercept functions to grab messages before they're queued on the socket Rx queue. This permits AFS (or whatever) to: (1) Avoid the overhead of using the recvmsg() call. (2) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (3) Avoid calling request_key() at the point of issue of a call or opening of a socket. This is done instead by AFS at the point of open(), unlink() or other VFS operation and the key handed through. (4) Request the use of something other than GFP_KERNEL to allocate memory. Furthermore: (*) The socket buffer markings used by RxRPC are made available for AFS so that it can interpret the cooked RxRPC messages itself. (*) rxgen (un)marshalling abort codes are made available. The following documentation for the kernel interface is added to Documentation/networking/rxrpc.txt: ========================= AF_RXRPC KERNEL INTERFACE ========================= The AF_RXRPC module also provides an interface for use by in-kernel utilities such as the AFS filesystem. This permits such a utility to: (1) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (2) Avoid having RxRPC call request_key() at the point of issue of a call or opening of a socket. Instead the utility is responsible for requesting a key at the appropriate point. AFS, for instance, would do this during VFS operations such as open() or unlink(). The key is then handed through when the call is initiated. (3) Request the use of something other than GFP_KERNEL to allocate memory. (4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be intercepted before they get put into the socket Rx queue and the socket buffers manipulated directly. To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket, bind an addess as appropriate and listen if it's to be a server socket, but then it passes this to the kernel interface functions. The kernel interface functions are as follows: (*) Begin a new client call. struct rxrpc_call * rxrpc_kernel_begin_call(struct socket *sock, struct sockaddr_rxrpc *srx, struct key *key, unsigned long user_call_ID, gfp_t gfp); This allocates the infrastructure to make a new RxRPC call and assigns call and connection numbers. The call will be made on the UDP port that the socket is bound to. The call will go to the destination address of a connected client socket unless an alternative is supplied (srx is non-NULL). If a key is supplied then this will be used to secure the call instead of the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls secured in this way will still share connections if at all possible. The user_call_ID is equivalent to that supplied to sendmsg() in the control data buffer. It is entirely feasible to use this to point to a kernel data structure. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) End a client call. void rxrpc_kernel_end_call(struct rxrpc_call *call); This is used to end a previously begun call. The user_call_ID is expunged from AF_RXRPC's knowledge and will not be seen again in association with the specified call. (*) Send data through a call. int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg, size_t len); This is used to supply either the request part of a client call or the reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the data buffers to be used. msg_iov may not be NULL and must point exclusively to in-kernel virtual addresses. msg.msg_flags may be given MSG_MORE if there will be subsequent data sends for this call. The msg must not specify a destination address, control data or any flags other than MSG_MORE. len is the total amount of data to transmit. (*) Abort a call. void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code); This is used to abort a call if it's still in an abortable state. The abort code specified will be placed in the ABORT message sent. (*) Intercept received RxRPC messages. typedef void (*rxrpc_interceptor_t)(struct sock *sk, unsigned long user_call_ID, struct sk_buff *skb); void rxrpc_kernel_intercept_rx_messages(struct socket *sock, rxrpc_interceptor_t interceptor); This installs an interceptor function on the specified AF_RXRPC socket. All messages that would otherwise wind up in the socket's Rx queue are then diverted to this function. Note that care must be taken to process the messages in the right order to maintain DATA message sequentiality. The interceptor function itself is provided with the address of the socket and handling the incoming message, the ID assigned by the kernel utility to the call and the socket buffer containing the message. The skb->mark field indicates the type of message: MARK MEANING =============================== ======================================= RXRPC_SKB_MARK_DATA Data message RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call RXRPC_SKB_MARK_BUSY Client call rejected as server busy RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer RXRPC_SKB_MARK_NET_ERROR Network error detected RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance The remote abort message can be probed with rxrpc_kernel_get_abort_code(). The two error messages can be probed with rxrpc_kernel_get_error_number(). A new call can be accepted with rxrpc_kernel_accept_call(). Data messages can have their contents extracted with the usual bunch of socket buffer manipulation functions. A data message can be determined to be the last one in a sequence with rxrpc_kernel_is_data_last(). When a data message has been used up, rxrpc_kernel_data_delivered() should be called on it.. Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose of. It is possible to get extra refs on all types of message for later freeing, but this may pin the state of a call until the message is finally freed. (*) Accept an incoming call. struct rxrpc_call * rxrpc_kernel_accept_call(struct socket *sock, unsigned long user_call_ID); This is used to accept an incoming call and to assign it a call ID. This function is similar to rxrpc_kernel_begin_call() and calls accepted must be ended in the same way. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) Reject an incoming call. int rxrpc_kernel_reject_call(struct socket *sock); This is used to reject the first incoming call on the socket's queue with a BUSY message. -ENODATA is returned if there were no incoming calls. Other errors may be returned if the call had been aborted (-ECONNABORTED) or had timed out (-ETIME). (*) Record the delivery of a data message and free it. void rxrpc_kernel_data_delivered(struct sk_buff *skb); This is used to record a data message as having been delivered and to update the ACK state for the call. The socket buffer will be freed. (*) Free a message. void rxrpc_kernel_free_skb(struct sk_buff *skb); This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC socket. (*) Determine if a data message is the last one on a call. bool rxrpc_kernel_is_data_last(struct sk_buff *skb); This is used to determine if a socket buffer holds the last data message to be received for a call (true will be returned if it does, false if not). The data message will be part of the reply on a client call and the request on an incoming call. In the latter case there will be more messages, but in the former case there will not. (*) Get the abort code from an abort message. u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb); This is used to extract the abort code from a remote abort message. (*) Get the error number from a local or network error message. int rxrpc_kernel_get_error_number(struct sk_buff *skb); This is used to extract the error number from a message indicating either a local error occurred or a network error occurred. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel bothDavid Howells
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve answers to AFS clients. KerberosIV security is fully supported. The patches and some example test programs can be found in: http://people.redhat.com/~dhowells/rxrpc/ This will eventually replace the old implementation of kernel-only RxRPC currently resident in net/rxrpc/. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-10-08[PATCH] gfp flags annotations - part 1Al Viro
- added typedef unsigned int __nocast gfp_t; - replaced __nocast uses for gfp flags with gfp_t - it gives exactly the same warnings as far as sparse is concerned, doesn't change generated code (from gcc point of view we replaced unsigned int with typedef) and documents what's going on far better. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-04[RPC]: fix sparse gfp nocast warningsRandy Dunlap
Fix nocast sparse warnings: net/rxrpc/call.c:2013:25: warning: implicit cast to nocast type net/rxrpc/connection.c:538:46: warning: implicit cast to nocast type net/sunrpc/sched.c:730:36: warning: implicit cast to nocast type net/sunrpc/sched.c:734:56: warning: implicit cast to nocast type Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!