summaryrefslogtreecommitdiff
path: root/include/asm-avr32/scatterlist.h
AgeCommit message (Collapse)Author
2007-10-22Add CONFIG_DEBUG_SG sg validationJens Axboe
Add a Kconfig entry which will toggle some sanity checks on the sg entry and tables. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-10-22Change table chaining layoutJens Axboe
Change the page member of the scatterlist structure to be an unsigned long, and encode more stuff in the lower bits: - Bits 0 and 1 zero: this is a normal sg entry. Next sg entry is located at sg + 1. - Bit 0 set: this is a chain entry, the next real entry is at ->page_link with the two low bits masked off. - Bit 1 set: this is the final entry in the sg entry. sg_next() will return NULL when passed such an entry. It's thus important that sg table users use the proper accessors to get and set the page member. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-05-02PCI: scatterlist.h needs types.hJean Delvare
Most architectures' scatterlist.h use the type dma_addr_t, but omit to include <asm/types.h> which defines it. This could lead to build failures, so let's add the missing includes. Signed-off-by: Jean Delvare <khali@linux-fr.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-09-26[PATCH] avr32 architectureHaavard Skinnemoen
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>