Age | Commit message (Collapse) | Author |
|
This function is only used by online fsck, so let's move it there.
In the next patch, we'll fix it to work properly and to require that the
caller hold the AGI buffer locked. No major changes aside from
adjusting the signature a bit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Unlinked list recovery requires errors removing the inode the from
the unlinked list get fed back to the main recovery loop. Now that
we offload the unlinking to the inodegc work, we don't get errors
being fed back when we trip over a corruption that prevents the
inode from being removed from the unlinked list.
This means we never clear the corrupt unlinked list bucket,
resulting in runtime operations eventually tripping over it and
shutting down.
Fix this by collecting inodegc worker errors and feed them
back to the flush caller. This is largely best effort - the only
context that really cares is log recovery, and it only flushes a
single inode at a time so we don't need complex synchronised
handling. Essentially the inodegc workers will capture the first
error that occurs and the next flush will gather them and clear
them. The flush itself will only report the first gathered error.
In the cases where callers can return errors, propagate the
collected inodegc flush error up the error handling chain.
In the case of inode unlinked list recovery, there are several
superfluous calls to flush queued unlinked inodes -
xlog_recover_iunlink_bucket() guarantees that it has flushed the
inodegc and collected errors before it returns. Hence nothing in the
calling path needs to run a flush, even when an error is returned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
In commit d658e, we tried to improve the robustnes of xchk_get_inode in
the face of EINVAL returns from iget by calling xfs_imap to see if the
inobt itself thinks that the inode is allocated. Unfortunately, that
commit didn't consider the possibility that the inode gets allocated
after iget but before imap. In this case, the imap call will succeed,
but we turn that into a corruption error and tell userspace the inode is
corrupt.
Avoid this false corruption report by grabbing the AGI header and
retrying the iget before calling imap. If the iget succeeds, we can
proceed with the usual scrub-by-handle code. Fix all the incorrect
comments too, since unreadable/corrupt inodes no longer result in EINVAL
returns.
Fixes: d658e72b4a09 ("xfs: distinguish between corrupt inode and invalid inum in xfs_scrub_get_inode")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The current blocking mechanism for pushing the inodegc queue out to
disk can result in systems becoming unusable when there is a long
running inodegc operation. This is because the statfs()
implementation currently issues a blocking flush of the inodegc
queue and a significant number of common system utilities will call
statfs() to discover something about the underlying filesystem.
This can result in userspace operations getting stuck on inodegc
progress, and when trying to remove a heavily reflinked file on slow
storage with a full journal, this can result in delays measuring in
hours.
Avoid this problem by adding "push" function that expedites the
flushing of the inodegc queue, but doesn't wait for it to complete.
Convert xfs_fs_statfs() and xfs_qm_scall_getquota() to use this
mechanism so they don't block but still ensure that queued
operations are expedited.
Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Reported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: fix _getquota_next to use _inodegc_push too]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Now that we defer inode inactivation, we've decoupled the process of
unlinking or closing an inode from the process of inactivating it. In
theory this should lead to better throughput since we now inactivate the
queued inodes in batches instead of one at a time.
Unfortunately, one of the primary risks with this decoupling is the loss
of rate control feedback between the frontend and background threads.
In other words, a rm -rf /* thread can run the system out of memory if
it can queue inodes for inactivation and jump to a new CPU faster than
the background threads can actually clear the deferred work. The
workers can get scheduled off the CPU if they have to do IO, etc.
To solve this problem, we configure a shrinker so that it will activate
the /second/ time the shrinkers are called. The custom shrinker will
queue all percpu deferred inactivation workers immediately and set a
flag to force frontend callers who are releasing a vfs inode to wait for
the inactivation workers.
On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve
most of the OOMing problem when deleting 10 million inodes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we
call xfs_blockgc_free_space with a NULL icwalk structure to try to free
space. Each frontend thread that encounters this situation starts its
own walk of the inode cache to see if it can find anything, which is
wasteful since we don't have any additional selection criteria. For
this one common case, create a function that reschedules all pending
background work immediately and flushes the workqueue so that the scan
can run in parallel.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Move inode inactivation to background work contexts so that it no
longer runs in the context that releases the final reference to an
inode. This will allow process work that ends up blocking on
inactivation to continue doing work while the filesytem processes
the inactivation in the background.
A typical demonstration of this is unlinking an inode with lots of
extents. The extents are removed during inactivation, so this blocks
the process that unlinked the inode from the directory structure. By
moving the inactivation to the background process, the userspace
applicaiton can keep working (e.g. unlinking the next inode in the
directory) while the inactivation work on the previous inode is
done by a different CPU.
The implementation of the queue is relatively simple. We use a
per-cpu lockless linked list (llist) to queue inodes for
inactivation without requiring serialisation mechanisms, and a work
item to allow the queue to be processed by a CPU bound worker
thread. We also keep a count of the queue depth so that we can
trigger work after a number of deferred inactivations have been
queued.
The use of a bound workqueue with a single work depth allows the
workqueue to run one work item per CPU. We queue the work item on
the CPU we are currently running on, and so this essentially gives
us affine per-cpu worker threads for the per-cpu queues. THis
maintains the effective CPU affinity that occurs within XFS at the
AG level due to all objects in a directory being local to an AG.
Hence inactivation work tends to run on the same CPU that last
accessed all the objects that inactivation accesses and this
maintains hot CPU caches for unlink workloads.
A depth of 32 inodes was chosen to match the number of inodes in an
inode cluster buffer. This hopefully allows sequential
allocation/unlink behaviours to defering inactivation of all the
inodes in a single cluster buffer at a time, further helping
maintain hot CPU and buffer cache accesses while running
inactivations.
A hard per-cpu queue throttle of 256 inode has been set to avoid
runaway queuing when inodes that take a long to time inactivate are
being processed. For example, when unlinking inodes with large
numbers of extents that can take a lot of processing to free.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: tweak comments and tracepoints, convert opflags to state bits]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
xfs_dqrele_all_inodes is unused now, remove it and all supporting code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
It's currently unlikely that we will ever end up with more than 4
billion inodes waiting for reclamation, but the fs object code uses long
int for object counts and we're certainly capable of generating that
many. Instead of truncating the internal counters, widen them and
report the object counts correctly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The xfs_eofblocks structure is no longer well-named -- nowadays it
provides optional filtering criteria to any walk of the incore inode
cache. Only one of the cache walk goals has anything to do with
clearing of speculative post-EOF preallocations, so change the name to
be more appropriate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In preparation for renaming struct xfs_eofblocks to struct xfs_icwalk,
change the prefix of the existing XFS_EOF_FLAGS_* flags to
XFS_ICWALK_FLAG_ and convert all the existing users. This adds a degree
of interface separation between the ioctl definitions and the incore
parameters. Since FLAGS_UNION is only used in xfs_icache.c, move it
there as a private flag.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
|
|
In preparation for adding another incore inode tree tag, refactor the
code that sets and clears tags from the per-AG inode tree and the tree
of per-AG structures, and remove the open-coded versions used by the
blockgc code.
Note: For reclaim, we now rely on the radix tree tags instead of the
reclaimable inode count more heavily than we used to. The conversion
should be fine, but the logic isn't 100% identical.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Merge these two inode walk loops together, since they're pretty similar
now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The sole iter_flags is XFS_INODE_WALK_INEW_WAIT, and there are no users.
Remove the flag, and the parameter, and all the code that used it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
As part of removing the indirect calls and radix tag implementation
details from the incore inode walk loop, create an enum to represent the
goal of the inode iteration. More immediately, this separate removes
the need for the "ICI_NOTAG" define which makes little sense.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The only external caller of xfs_inode_walk* happens in quotaoff, when we
want to walk all the incore inodes to detach the dquots. Move this code
to xfs_icache.c so that we can hide xfs_inode_walk as the starting step
in more cleanups of inode walks.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Shorten the names of the two functions that start and stop block
preallocation garbage collection and move them up to the other blockgc
functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Remove the separate cowblocks work items and knob so that we can control
and run everything from a single blockgc work queue. Note that the
speculative_prealloc_lifetime sysfs knob retains its historical name
even though the functions move to prefix xfs_blockgc_*.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
The clearing of posteof blocks and cowblocks serve the same purpose:
removing speculative block preallocations from inactive files. We don't
need to burn two radix tree tags on this, so combine them into one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Change the one remaining caller of xfs_icache_free_cowblocks to use our
new combined blockgc scan function instead, since we will soon be
combining the two scans. This introduces a slight behavior change,
since a readonly remount now clears out post-EOF preallocations and not
just CoW staging extents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Change the one remaining caller of xfs_icache_free_eofblocks to use our
new combined blockgc scan function instead, since we will soon be
combining the two scans. This introduces a slight behavior change,
since the XFS_IOC_FREE_EOFBLOCKS now clears out speculative CoW
reservations in addition to post-eof blocks.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
In anticipation of more restructuring of the eof/cowblocks gc code,
refactor calling of those two functions into a single internal helper
function, then present a new standard interface to purge speculative
block preallocations and start shifting higher level code to use that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
If an inode creation is unable to reserve enough quota to handle the
modification, try clearing whatever space the filesystem might have been
hanging onto in the hopes of speeding up the filesystem. The flushing
behavior will become particularly important when we add deferred inode
inactivation because that will increase the amount of space that isn't
actively tied to user data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Change the signature of xfs_blockgc_free_quota in preparation for the
next few patches. Callers can now pass EOF_FLAGS into the function to
control scan parameters; and the function will now pass back any
corruption errors seen while scanning, though for our retry loops we'll
just try again unconditionally.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Move this function further down in the file so that later cleanups won't
have to declare static functions. Change the name because we're about
to rework all the code that performs garbage collection of speculatively
allocated file blocks. No functional changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
The functions to run an eof/cowblocks scan to try to reduce quota usage
are kind of a mess -- the logic repeatedly initializes an eofb structure
and there are logic bugs in the code that result in the cowblocks scan
never actually happening.
Replace all three functions with a single function that fills out an
eofb and runs both eof and cowblocks scans.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
These two definitions are unused now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
|
|
Clean up xfs_reclaim_inodes() callers. Most callers want blocking
behaviour, so just make the existing SYNC_WAIT behaviour the
default.
For the xfs_reclaim_worker(), just call xfs_reclaim_inodes_ag()
directly because we just want optimistic clean inode reclaim to be
done in the background.
For xfs_quiesce_attr() we can just remove the inode reclaim calls as
they are a historic relic that was required to flush dirty inodes
that contained unlogged changes. We now log all changes to the
inodes, so the sync AIL push from xfs_log_quiesce() called by
xfs_quiesce_attr() will do all the required inode writeback for
freeze.
Seeing as we now want to loop until all reclaimable inodes have been
reclaimed, make xfs_reclaim_inodes() loop on the XFS_ICI_RECLAIM_TAG
tag rather than having xfs_reclaim_inodes_ag() tell it that inodes
were skipped. This is much more reliable and will always loop until
all reclaimable inodes are reclaimed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
We're not very consistent about function names for the incore inode
iteration function. Turn them all into xfs_inode_walk* variants.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
The incore inode walk code passes a flags argument and a pointer from
the xfs_inode_ag_iterator caller all the way to the iteration function.
We can reduce the function complexity by passing flags through the
private pointer.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Combine xfs_inode_ag_iterator_flags and xfs_inode_ag_iterator_tag into a
single wrapper function since there's only one caller of the _flags
variant.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Not used by anyone, so get rid of it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Move xfs_fs_eofblocks_from_user into the only file that actually uses
it, so that we don't have this function cluttering up the header file.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
"reclaim" is used throughout the icache code to mean reclamation of
incore inode structures. It's also used for two helper functions that
toggle background deletion of speculative preallocations. Separate
the second of the two uses to make things less confusing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Rebuilding the reverse-mapping tree requires us to quiesce all inodes in
the filesystem, so we must stop background reclamation of post-EOF and
CoW prealloc blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
When we're remounting the filesystem readonly, remove all CoW
preallocations prior to going ro. If the fs goes down after the ro
remount, we never clean up the staging extents, which means xfs_check
will trip over them on a subsequent run. Practically speaking, the next
mount will clean them up too, so this is unlikely to be seen. Since we
shut down the cowblocks cleaner on remount-ro, we also have to make sure
we start it back up if/when we remount-rw.
Found by adding clonerange to fsstress and running xfs/017.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Check the inode cache for a particular inode number. If it's in the
cache, check that it's not currently being reclaimed. If it's not being
reclaimed, return zero if the inode is allocated. This function will be
used by various scrubbers to decide if the cache is more up to date
than the disk in terms of checking if an inode is allocated.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
The AG inode iterator currently skips new inodes as such inodes are
inserted into the inode radix tree before they are fully
constructed. Certain contexts require the ability to wait on the
construction of new inodes, however. The fs-wide dquot release from
the quotaoff sequence is an example of this.
Update the AG inode iterator to support the ability to wait on
inodes flagged with XFS_INEW upon request. Create a new
xfs_inode_ag_iterator_flags() interface and support a set of
iteration flags to modify the iteration behavior. When the
XFS_AGITER_INEW_WAIT flag is set, include XFS_INEW flags in the
radix tree inode lookup and wait on them before the callback is
executed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The xfs_eofblocks.eof_scan_owner field is an internal field to
facilitate invoking eofb scans from the kernel while under the iolock.
This is necessary because the eofb scan acquires the iolock of each
inode. Synchronous scans are invoked on certain buffered write failures
while under iolock. In such cases, the scan owner indicates that the
context for the scan already owns the particular iolock and prevents a
double lock deadlock.
eofblocks scans while under iolock are still livelock prone in the event
of multiple parallel scans, however. If multiple buffered writes to
different inodes fail and invoke eofblocks scans at the same time, each
scan avoids a deadlock with its own inode by virtue of the
eof_scan_owner field, but will never be able to acquire the iolock of
the inode from the parallel scan. Because the low free space scans are
invoked with SYNC_WAIT, the scan will not return until it has processed
every tagged inode and thus both scans will spin indefinitely on the
iolock being held across the opposite scan. This problem can be
reproduced reliably by generic/224 on systems with higher cpu counts
(x16).
To avoid this problem, simplify the semantics of eofblocks scans to
never invoke a scan while under iolock. This means that the buffered
write context must drop the iolock before the scan. It must reacquire
the lock before the write retry and also repeat the initial write
checks, as the original state might no longer be valid once the iolock
was dropped.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Trim CoW reservations made on behalf of a cowextsz hint if they get too
old or we run low on quota, so long as we don't have dirty data awaiting
writeback or directio operations in progress.
Garbage collection of the cowextsize extents are kept separate from
prealloc extent reaping because setting the CoW prealloc lifetime to a
(much) higher value than the regular prealloc extent lifetime has been
useful for combatting CoW fragmentation on VM hosts where the VMs
experience bursty write behaviors and we can keep the utilization ratios
low enough that we don't start to run out of space. IOWs, it benefits
us to keep the CoW fork reservations around for as long as we can unless
we run out of blocks or hit inode reclaim.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
The filesystem quiesce sequence performs the operations necessary to
drain all background work, push pending transactions through the log
infrastructure and wait on I/O resulting from the final AIL push. We
have had reports of remount,ro hangs in xfs_log_quiesce() ->
xfs_wait_buftarg(), however, and some instrumentation code to detect
transaction commits at this point in the quiesce sequence has inculpated
the eofblocks background scanner as a cause.
While higher level remount code generally prevents user modifications by
the time the filesystem has made it to xfs_log_quiesce(), the background
scanner may still be alive and can perform pending work at any time. If
this occurs between the xfs_log_force() and xfs_wait_buftarg() calls
within xfs_log_quiesce(), this can lead to an indefinite lockup in
xfs_wait_buftarg().
To prevent this problem, cancel the background eofblocks scan worker
during the remount read-only quiesce sequence. This suspends background
trimming when a filesystem is remounted read-only. This is only done in
the remount path because the freeze codepath has already locked out new
transactions by the time the filesystem attempts to quiesce (and thus
waiting on an active work item could deadlock). Kick the eofblocks
worker to pick up where it left off once an fs is remounted back to
read-write.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
From: Brian Foster <bfoster@redhat.com>
Speculative preallocation and and the associated throttling metrics
assume we're working with large files on large filesystems. Users have
reported inefficiencies in these mechanisms when we happen to be dealing
with large files on smaller filesystems. This can occur because while
prealloc throttling is aggressive under low free space conditions, it is
not active until we reach 5% free space or less.
For example, a 40GB filesystem has enough space for several files large
enough to have multi-GB preallocations at any given time. If those files
are slow growing, they might reserve preallocation for long periods of
time as well as avoid the background scanner due to frequent
modification. If a new file is written under these conditions, said file
has no access to this already reserved space and premature ENOSPC is
imminent.
To handle this scenario, modify the buffered write ENOSPC handling and
retry sequence to invoke an eofblocks scan. In the smaller filesystem
scenario, the eofblocks scan resets the usage of preallocation such that
when the 5% free space threshold is met, throttling effectively takes
over to provide fair and efficient preallocation until legitimate
ENOSPC.
The eofblocks scan is selective based on the nature of the failure. For
example, an EDQUOT failure in a particular quota will use a filtered
scan for that quota. Because we don't know which quota might have caused
an allocation failure at any given time, we include each applicable
quota determined to be under low free space conditions in the scan.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
From: Brian Foster <bfoster@redhat.com>
The scan owner field represents an optional inode number that is
responsible for the current scan. The purpose is to identify that an
inode is under iolock and as such, the iolock shouldn't be attempted
when trimming eofblocks. This is an internal only field.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Pull xfs update #2 from Ben Myers:
"Here we have defrag support for v5 superblock, a number of bugfixes
and a cleanup or two.
- defrag support for CRC filesystems
- fix endian worning in xlog_recover_get_buf_lsn
- fixes for sparse warnings
- fix for assert in xfs_dir3_leaf_hdr_from_disk
- fix for log recovery of remote symlinks
- fix for log recovery of btree root splits
- fixes formemory allocation failures with ACLs
- fix for assert in xfs_buf_item_relse
- fix for assert in xfs_inode_buf_verify
- fix an assignment in an assert that should be a test in
xfs_bmbt_change_owner
- remove dead code in xlog_recover_inode_pass2"
* tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs:
xfs: remove dead code from xlog_recover_inode_pass2
xfs: = vs == typo in ASSERT()
xfs: don't assert fail on bad inode numbers
xfs: aborted buf items can be in the AIL.
xfs: factor all the kmalloc-or-vmalloc fallback allocations
xfs: fix memory allocation failures with ACLs
xfs: ensure we copy buffer type in da btree root splits
xfs: set remote symlink buffer type for recovery
xfs: recovery of swap extents operations for CRC filesystems
xfs: swap extents operations for CRC filesystems
xfs: check magic numbers in dir3 leaf verifier first
xfs: fix some minor sparse warnings
xfs: fix endian warning in xlog_recover_get_buf_lsn()
|
|
Convert superblock shrinker to use the new count/scan API, and propagate
the API changes through to the filesystem callouts. The filesystem
callouts already use a count/scan API, so it's just changing counters to
longs to match the VM API.
This requires the dentry and inode shrinker callouts to be converted to
the count/scan API. This is mainly a mechanical change.
[glommer@openvz.org: use mult_frac for fractional proportions, build fixes]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This is the recovery side of the btree block owner change operation
performed by swapext on CRC enabled filesystems. We detect that an
owner change is needed by the flag that has been placed on the inode
log format flag field. Because the inode recovery is being replayed
after the buffers that make up the BMBT in the given checkpoint, we
can walk all the buffers and directly modify them when we see the
flag set on an inode.
Because the inode can be relogged and hence present in multiple
chekpoints with the "change owner" flag set, we could do multiple
passes across the inode to do this change. While this isn't optimal,
we can't directly ignore the flag as there may be multiple
independent swap extent operations being replayed on the same inode
in different checkpoints so we can't ignore them.
Further, because the owner change operation uses ordered buffers, we
might have buffers that are newer on disk than the current
checkpoint and so already have the owner changed in them. Hence we
cannot just peek at a buffer in the tree and check that it has the
correct owner and assume that the change was completed.
So, for the moment just brute force the owner change every time we
see an inode with the flag set. Note that we have to be careful here
because the owner of the buffers may point to either the old owner
or the new owner. Currently the verifier can't verify the owner
directly, so there is no failure case here right now. If we verify
the owner exactly in future, then we'll have to take this into
account.
This was tested in terms of normal operation via xfstests - all of
the fsr tests now pass without failure. however, we really need to
modify xfs/227 to stress v3 inodes correctly to ensure we fully
cover this case for v5 filesystems.
In terms of recovery testing, I used a hacked version of xfs_fsr
that held the temp inode open for a few seconds before exiting so
that the filesystem could be shut down with an open owner change
recovery flags set on at least the temp inode. fsr leaves the temp
inode unlinked and in btree format, so this was necessary for the
owner change to be reliably replayed.
logprint confirmed the tmp inode in the log had the correct flag set:
INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88
INODE: #regs:3 ino:0x44 flags:0x209 dsize:88
^^^^^
0x200 is set, indicating a data fork owner change needed to be
replayed on inode 0x44. A printk in the revoery code confirmed that
the inode change was recovered:
XFS (vdc): Mounting Filesystem
XFS (vdc): Starting recovery (logdev: internal)
recovering owner change ino 0x44
XFS (vdc): Version 5 superblock detected. This kernel L support enabled!
Use of these features in this kernel is at your own risk!
XFS (vdc): Ending recovery (logdev: internal)
The script used to test this was:
$ cat ./recovery-fsr.sh
#!/bin/bash
dev=/dev/vdc
mntpt=/mnt/scratch
testfile=$mntpt/testfile
umount $mntpt
mkfs.xfs -f -m crc=1 $dev
mount $dev $mntpt
chmod 777 $mntpt
for i in `seq 10000 -1 0`; do
xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1
done
xfs_bmap -vp $testfile |head -20
xfs_fsr -d -v $testfile &
sleep 10
/home/dave/src/xfstests-dev/src/godown -f $mntpt
wait
umount $mntpt
xfs_logprint -t $dev |tail -20
time mount $dev $mntpt
xfs_bmap -vp $testfile
umount $mntpt
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|