summaryrefslogtreecommitdiff
path: root/fs/btrfs/extent-tree.c
AgeCommit message (Collapse)Author
2023-08-10btrfs: set cache_block_group_error if we find an errorJosef Bacik
We set cache_block_group_error if btrfs_cache_block_group() returns an error, this is because we could end up not finding space to allocate and mistakenly return -ENOSPC, and which could then abort the transaction with the incorrect errno, and in the case of ENOSPC result in a WARN_ON() that will trip up tests like generic/475. However there's the case where multiple threads can be racing, one thread gets the proper error, and the other thread doesn't actually call btrfs_cache_block_group(), it instead sees ->cached == BTRFS_CACHE_ERROR. Again the result is the same, we fail to allocate our space and return -ENOSPC. Instead we need to set cache_block_group_error to -EIO in this case to make sure that if we do not make our allocation we get the appropriate error returned back to the caller. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use bool type for delayed ref head fields that are used as booleansFilipe Manana
There's no point in have several fields defined as 1 bit unsigned int in struct btrfs_delayed_ref_head, we can instead use a bool type, it makes the code a bit more readable and it doesn't change the structure size. So switch them to proper booleans. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: remove pointless in_tree field from struct btrfs_delayed_ref_nodeFilipe Manana
The 'in_tree' field is really not needed in struct btrfs_delayed_ref_node, as we can check whether a reference is in the tree or not simply by checking its red black tree node member with RB_EMPTY_NODE(), as when we remove it from the tree we always call RB_CLEAR_NODE(). So remove that field and use RB_EMPTY_NODE(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: drop gfp from parameter extent state helpersDavid Sterba
Now that all extent state bit helpers effectively take the GFP_NOFS mask (and GFP_NOWAIT is encoded in the bits) we can remove the parameter. This reduces stack consumption in many functions and simplifies a lot of code. Net effect on module on a release build: text data bss dec hex filename 1250432 20985 16088 1287505 13a551 pre/btrfs.ko 1247074 20985 16088 1284147 139833 post/btrfs.ko DELTA: -3358 Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: drop NOFAIL from set_extent_bit allocation masksDavid Sterba
The __GFP_NOFAIL passed to set_extent_bit first appeared in 2010 (commit f0486c68e4bd9a ("Btrfs: Introduce contexts for metadata reservation")), without any explanation why it would be needed. Meanwhile we've updated the semantics of set_extent_bit to handle failed allocations and do unlock, sleep and retry if needed. The use of the NOFAIL flag is also an outlier, we never want any of the set/clear extent bit helpers to fail, they're used for many critical changes like extent locking, besides the extent state bit changes. Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code set_extent_bitsDavid Sterba
This helper calls set_extent_bit with two more parameters set to default values, but otherwise it's purpose is not clear. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code set_extent_dirtyDavid Sterba
The helper is used a few times, that it's setting the DIRTY extent bit is still clear. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code set_extent_newDavid Sterba
The helper is used only once. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: fix comment referring to no longer existing btrfs_clean_tree_block()Filipe Manana
There's a comment at btrfs_init_new_buffer() that refers to a function named btrfs_clean_tree_block(), however the function was renamed to btrfs_clear_buffer_dirty() in commit 190a83391bc4 ("btrfs: rename btrfs_clean_tree_block to btrfs_clear_buffer_dirty"). So update the comment to refer to the current name. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: remove level argument from btrfs_set_block_flagsJosef Bacik
We just pass in btrfs_header_level(eb) for the level, and we're passing in the eb already, so simply get the level from the eb inside of btrfs_set_block_flags. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use SECTOR_SHIFT to convert LBA to physical offsetAnand Jain
Using SECTOR_SHIFT to convert LBA to physical address makes it more readable. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use SECTOR_SHIFT to convert physical offset to LBAAnand Jain
Use SECTOR_SHIFT while converting a physical address to an LBA, makes it more readable. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: improve leaf dump and error handlingQu Wenruo
Improve the leaf dump behavior by: - Always dump the leaf first, then the error message - Output the slot number if possible Especially in __btrfs_free_extent() the leaf dump of extent tree can be pretty large. With an extra slot number it's much easier to locate the problem. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: print-tree: pass const extent buffer pointerQu Wenruo
Since print-tree infrastructure only prints the content of a tree block, we can make them to accept const extent buffer pointer. This removes a forced type convert in extent-tree, where we convert a const extent buffer pointer to regular one, just to avoid compiler warning. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: remove obsolete delayed ref throttling logic when truncating itemsFilipe Manana
We have this logic encapsulated in btrfs_should_throttle_delayed_refs() where we try to estimate if running the current amount of delayed references we have will take more than half a second, and if so, the caller btrfs_should_throttle_delayed_refs() should do something to prevent more and more delayed refs from being accumulated. This logic was added in commit 0a2b2a844af6 ("Btrfs: throttle delayed refs better") and then further refined in commit a79b7d4b3e81 ("Btrfs: async delayed refs"). The idea back then was that the caller of btrfs_should_throttle_delayed_refs() would release its transaction handle (by calling btrfs_end_transaction()) when that function returned true, then btrfs_end_transaction() would trigger an async job to run delayed references in a workqueue, and later start/join a transaction again and do more work. However we don't run delayed references asynchronously anymore, that was removed in commit db2462a6ad3d ("btrfs: don't run delayed refs in the end transaction logic"). That makes the logic that tries to estimate how long we will take to run our current delayed references, at btrfs_should_throttle_delayed_refs(), pointless as we don't take any action to run delayed references anymore. We do have other type of throttling, which consists of checking the size and reserved space of the delayed and global block reserves, as well as if fluhsing delayed references for the current transaction was already started, etc - this is all done by btrfs_should_end_transaction(), and the only user of btrfs_should_throttle_delayed_refs() does periodically call btrfs_should_end_transaction(). So remove btrfs_should_throttle_delayed_refs() and the infrastructure that keeps track of the average time used for running delayed references, as well as adapting btrfs_truncate_inode_items() to call btrfs_check_space_for_delayed_refs() instead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: abort the transaction if we get an error during snapshot dropJosef Bacik
We were seeing weird errors when we were testing our btrfs backports before we had the incorrect level check fix. These errors appeared to be improper error handling, but error injection testing uncovered that the errors were a result of corruption that occurred from improper error handling during snapshot delete. With snapshot delete if we encounter any errors during walk_down or walk_up we'll simply return an error, we won't abort the transaction. This is problematic because we will be dropping references for nodes and leaves along the way, and if we fail in the middle we will leave the file system corrupt because we don't know where we left off in the drop. Fix this by making sure we abort if we hit any errors during the walk down or walk up operations, as we have no idea what operations could have been left half done at this point. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: handle errors in walk_down_tree properlyJosef Bacik
We can get errors in walk_down_proc as we try and lookup extent info for the snapshot dropping to act on. However if we get an error we simply return 1 which indicates we're done with walking down, which will lead us to improperly continue with the snapshot drop with the incorrect information. Instead break if we get any error from walk_down_proc or do_walk_down, and handle the case of ret == 1 by returning 0, otherwise return the ret value that we have. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: rename btrfs_clean_tree_block to btrfs_clear_buffer_dirtyJosef Bacik
btrfs_clean_tree_block is a misnomer, it's just clear_extent_buffer_dirty with some extra accounting around it. Rename this to btrfs_clear_buffer_dirty to make it more clear it belongs with it's setter, btrfs_mark_buffer_dirty. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: add trans argument to btrfs_clean_tree_blockJosef Bacik
We check the header generation in the extent buffer against the current running transaction id to see if it's safe to clear DIRTY on this buffer. Generally speaking if we're clearing the buffer dirty we're holding the transaction open, but in the case of cleaning up an aborted transaction we don't, so we have extra checks in that path to check the transid. To allow for a future cleanup go ahead and pass in the trans handle so we don't have to rely on ->running_transaction being set. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: always lock the block before calling btrfs_clean_tree_blockJosef Bacik
We want to clean up the dirty handling for extent buffers so it's a little more consistent, so skip the check for generation == transid and simply always lock the extent buffer before calling btrfs_clean_tree_block. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: remove duplicate include header in extent-tree.cye xingchen
extent-tree.h is included more than once, added in a0231804affe ("btrfs: move extent-tree helpers into their own header file"). Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: don't use size classes for zoned file systemsBoris Burkov
When a file system has ZNS devices which are constrained by a maximum number of active block groups, then not being able to use all the block groups for every allocation is not ideal, and could cause us to loop a ton with mixed size allocations. In general, since zoned doesn't write into gaps behind where block groups are writing, it is not susceptible to the same sort of fragmentation that size classes are designed to solve, so we can skip size classes for zoned file systems in general, even though there would probably be no harm for SMR devices. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: introduce size class to block group allocatorBoris Burkov
The aim of this patch is to reduce the fragmentation of block groups under certain unhappy workloads. It is particularly effective when the size of extents correlates with their lifetime, which is something we have observed causing fragmentation in the fleet at Meta. This patch categorizes extents into size classes: - x < 128KiB: "small" - 128KiB < x < 8MiB: "medium" - x > 8MiB: "large" and as much as possible reduces allocations of extents into block groups that don't match the size class. This takes advantage of any (possible) correlation between size and lifetime and also leaves behind predictable re-usable gaps when extents are freed; small writes don't gum up bigger holes. Size classes are implemented in the following way: - Mark each new block group with a size class of the first allocation that goes into it. - Add two new passes to ffe: "unset size class" and "wrong size class". First, try only matching block groups, then try unset ones, then allow allocation of new ones, and finally allow mismatched block groups. - Filtering is done just by skipping inappropriate ones, there is no special size class indexing. Other solutions I considered were: - A best fit allocator with an rb-tree. This worked well, as small writes didn't leak big holes from large freed extents, but led to regressions in ffe and write performance due to lock contention on the rb-tree with every allocation possibly updating it in parallel. Perhaps something clever could be done to do the updates in the background while being "right enough". - A fixed size "working set". This prevents freeing an extent drastically changing where writes currently land, and seems like a good option too. Doesn't take advantage of size in any way. - The same size class idea, but implemented with xarray marks. This turned out to be slower than looping the linked list and skipping wrong block groups, and is also less flexible since we must have only 3 size classes (max #marks). With the current approach we can have as many as we like. Performance testing was done via: https://github.com/josefbacik/fsperf Of particular relevance are the new fragmentation specific tests. A brief summary of the testing results: - Neutral results on existing tests. There are some minor regressions and improvements here and there, but nothing that truly stands out as notable. - Improvement on new tests where size class and extent lifetime are correlated. Fragmentation in these cases is completely eliminated and write performance is generally a little better. There is also significant improvement where extent sizes are just a bit larger than the size class boundaries. - Regression on one new tests: where the allocations are sized intentionally a hair under the borders of the size classes. Results are neutral on the test that intentionally attacks this new scheme by mixing extent size and lifetime. The full dump of the performance results can be found here: https://bur.io/fsperf/size-class-2022-11-15.txt (there are ANSI escape codes, so best to curl and view in terminal) Here is a snippet from the full results for a new test which mixes buffered writes appending to a long lived set of files and large short lived fallocates: bufferedappendvsfallocate results metric baseline current stdev diff ====================================================================================== avg_commit_ms 31.13 29.20 2.67 -6.22% bg_count 14 15.60 0 11.43% commits 11.10 12.20 0.32 9.91% elapsed 27.30 26.40 2.98 -3.30% end_state_mount_ns 11122551.90 10635118.90 851143.04 -4.38% end_state_umount_ns 1.36e+09 1.35e+09 12248056.65 -1.07% find_free_extent_calls 116244.30 114354.30 964.56 -1.63% find_free_extent_ns_max 599507.20 1047168.20 103337.08 74.67% find_free_extent_ns_mean 3607.19 3672.11 101.20 1.80% find_free_extent_ns_min 500 512 6.67 2.40% find_free_extent_ns_p50 2848 2876 37.65 0.98% find_free_extent_ns_p95 4916 5000 75.45 1.71% find_free_extent_ns_p99 20734.49 20920.48 1670.93 0.90% frag_pct_max 61.67 0 8.05 -100.00% frag_pct_mean 43.59 0 6.10 -100.00% frag_pct_min 25.91 0 16.60 -100.00% frag_pct_p50 42.53 0 7.25 -100.00% frag_pct_p95 61.67 0 8.05 -100.00% frag_pct_p99 61.67 0 8.05 -100.00% fragmented_bg_count 6.10 0 1.45 -100.00% max_commit_ms 49.80 46 5.37 -7.63% sys_cpu 2.59 2.62 0.29 1.39% write_bw_bytes 1.62e+08 1.68e+08 17975843.50 3.23% write_clat_ns_mean 57426.39 54475.95 2292.72 -5.14% write_clat_ns_p50 46950.40 42905.60 2101.35 -8.62% write_clat_ns_p99 148070.40 143769.60 2115.17 -2.90% write_io_kbytes 4194304 4194304 0 0.00% write_iops 2476.15 2556.10 274.29 3.23% write_lat_ns_max 2101667.60 2251129.50 370556.59 7.11% write_lat_ns_mean 59374.91 55682.00 2523.09 -6.22% write_lat_ns_min 17353.10 16250 1646.08 -6.36% There are some mixed improvements/regressions in most metrics along with an elimination of fragmentation in this workload. On the balance, the drastic 1->0 improvement in the happy cases seems worth the mix of regressions and improvements we do observe. Some considerations for future work: - Experimenting with more size classes - More hinting/search ordering work to approximate a best-fit allocator Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: add more find_free_extent tracepointsBoris Burkov
find_free_extent is a complicated function. It consists (at least) of: - a hint that jumps into the middle of a for loop macro - a middle loop trying every raid level - an outer loop ascending through ffe loop levels - complicated logic for skipping some of those ffe loop levels - multiple underlying in-bg allocators (zoned, cluster, no cluster) Which is all to say that more tracing is helpful for debugging its behavior. Add two new tracepoints: at the entrance to the block_groups loop (hit for every raid level and every ffe_ctl loop) and at the point we seriously consider a block_group for allocation. This way we can see the whole path through the algorithm, including hints, multiple loops, etc. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: pass find_free_extent_ctl to allocator tracepointsBoris Burkov
The allocator tracepoints currently have a pile of values from ffe_ctl. In modifying the allocator and adding more tracepoints, I found myself adding to the already long argument list of the tracepoints. It makes it a lot simpler to just send in the ffe_ctl itself. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: directly pass in fs_info to btrfs_merge_delayed_refsJohannes Thumshirn
Now that none of the functions called by btrfs_merge_delayed_refs() needs a btrfs_trans_handle, directly pass in a btrfs_fs_info to btrfs_merge_delayed_refs(). Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-03btrfs: always report error in run_one_delayed_ref()Qu Wenruo
Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but if end users hit such problem, there will be no chance that btrfs_debug() is enabled. This can lead to very little useful info for debugging. This patch will: - Add extra info for error reporting Including: * logical bytenr * num_bytes * type * action * ref_mod - Replace the btrfs_debug() with btrfs_err() - Move the error reporting into run_one_delayed_ref() This is to avoid use-after-free, the @node can be freed in the caller. This error should only be triggered at most once. As if run_one_delayed_ref() failed, we trigger the error message, then causing the call chain to error out: btrfs_run_delayed_refs() `- btrfs_run_delayed_refs() `- btrfs_run_delayed_refs_for_head() `- run_one_delayed_ref() And we will abort the current transaction in btrfs_run_delayed_refs(). If we have to run delayed refs for the abort transaction, run_one_delayed_ref() will just cleanup the refs and do nothing, thus no new error messages would be output. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: split the bio submission path into a separate fileChristoph Hellwig
The code used by btrfs_submit_bio only interacts with the rest of volumes.c through __btrfs_map_block (which itself is a more generic version of two exported helpers) and does not really have anything to do with volumes.c. Create a new bio.c file and a bio.h header going along with it for the btrfs_bio-based storage layer, which will grow even more going forward. Also update the file with my copyright notice given that a large part of the moved code was written or rewritten by me. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: use btrfs_dev_name() helper to handle missing devices betterQu Wenruo
[BUG] If dev-replace failed to re-construct its data/metadata, the kernel message would be incorrect for the missing device: BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev (efault) Note the above "dev (efault)" of the second line. While the first line is properly reporting "<missing disk>". [CAUSE] Although dev-replace is using btrfs_dev_name(), the heavy lifting work is still done by scrub (scrub is reused by both dev-replace and regular scrub). Unfortunately scrub code never uses btrfs_dev_name() helper, as it's only declared locally inside dev-replace.c. [FIX] Fix the output by: - Move the btrfs_dev_name() helper to volumes.h - Use btrfs_dev_name() to replace open-coded rcu_str_deref() calls Only zoned code is not touched, as I'm not familiar with degraded zoned code. - Constify return value and parameter Now the output looks pretty sane: BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev <missing disk> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: concentrate all tree block parentness check parameters into one structureQu Wenruo
There are several different tree block parentness check parameters used across several helpers: - level Mandatory - transid Under most cases it's mandatory, but there are several backref cases which skips this check. - owner_root - first_key Utilized by most top-down tree search routine. Otherwise can be skipped. Those four members are not always mandatory checks, and some of them are the same u64, which means if some arguments got swapped compiler will not catch it. Furthermore if we're going to further expand the parentness check, we need to modify quite some helpers just to add one more parameter. This patch will concentrate all these members into a structure called btrfs_tree_parent_check, and pass that structure for the following helpers: - btrfs_read_extent_buffer() - read_tree_block() Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move orphan prototypes into orphan.hJosef Bacik
Move these out of ctree.h into orphan.h to cut down on code in ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move file-item prototypes into their own headerJosef Bacik
Move these prototypes out of ctree.h and into file-item.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move root tree prototypes to their own headerJosef Bacik
Move all the root-tree.c prototypes to root-tree.h, and then update all the necessary files to include the new header. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move extent-tree helpers into their own header fileJosef Bacik
Move all the extent tree related prototypes to extent-tree.h out of ctree.h, and then go include it everywhere needed so everything compiles. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_account_ro_block_groups_free_space into space-info.cJosef Bacik
This was prototyped in ctree.h and the code existed in extent-tree.c, but it's space-info related so move it into space-info.c. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move accessor helpers into accessors.hJosef Bacik
This is a large patch, but because they're all macros it's impossible to split up. Simply copy all of the item accessors in ctree.h and paste them in accessors.h, and then update any files to include the header so everything compiles. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat comments, style fixups ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move fs wide helpers out of ctree.hJosef Bacik
We have several fs wide related helpers in ctree.h. The bulk of these are the incompat flag test helpers, but there are things such as btrfs_fs_closing() and the read only helpers that also aren't directly related to the ctree code. Move these into a fs.h header, which will serve as the location for file system wide related helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-24btrfs: fix tree mod log mishandling of reallocated nodesJosef Bacik
We have been seeing the following panic in production kernel BUG at fs/btrfs/tree-mod-log.c:677! invalid opcode: 0000 [#1] SMP RIP: 0010:tree_mod_log_rewind+0x1b4/0x200 RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293 RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000 RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00 RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001 R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00 FS: 00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: btrfs_get_old_root+0x12b/0x420 btrfs_search_old_slot+0x64/0x2f0 ? tree_mod_log_oldest_root+0x3d/0xf0 resolve_indirect_ref+0xfd/0x660 ? ulist_alloc+0x31/0x60 ? kmem_cache_alloc_trace+0x114/0x2c0 find_parent_nodes+0x97a/0x17e0 ? ulist_alloc+0x30/0x60 btrfs_find_all_roots_safe+0x97/0x150 iterate_extent_inodes+0x154/0x370 ? btrfs_search_path_in_tree+0x240/0x240 iterate_inodes_from_logical+0x98/0xd0 ? btrfs_search_path_in_tree+0x240/0x240 btrfs_ioctl_logical_to_ino+0xd9/0x180 btrfs_ioctl+0xe2/0x2ec0 ? __mod_memcg_lruvec_state+0x3d/0x280 ? do_sys_openat2+0x6d/0x140 ? kretprobe_dispatcher+0x47/0x70 ? kretprobe_rethook_handler+0x38/0x50 ? rethook_trampoline_handler+0x82/0x140 ? arch_rethook_trampoline_callback+0x3b/0x50 ? kmem_cache_free+0xfb/0x270 ? do_sys_openat2+0xd5/0x140 __x64_sys_ioctl+0x71/0xb0 do_syscall_64+0x2d/0x40 Which is this code in tree_mod_log_rewind() switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); This occurs because we replay the nodes in order that they happened, and when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot, starting at 0. 'n' here is the number of items in this block, which in this case was 1, but we had 2 REMOVE_WHILE_FREEING operations. The actual root cause of this was that we were replaying operations for a block that shouldn't have been replayed. Consider the following sequence of events 1. We have an already modified root, and we do a btrfs_get_tree_mod_seq(). 2. We begin removing items from this root, triggering KEY_REPLACE for it's child slots. 3. We remove one of the 2 children this root node points to, thus triggering the root node promotion of the remaining child, and freeing this node. 4. We modify a new root, and re-allocate the above node to the root node of this other root. The tree mod log looks something like this logical 0 op KEY_REPLACE (slot 1) seq 2 logical 0 op KEY_REMOVE (slot 1) seq 3 logical 0 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 4 logical 4096 op LOG_ROOT_REPLACE (old logical 0) seq 5 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 1) seq 6 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 7 logical 0 op LOG_ROOT_REPLACE (old logical 8192) seq 8 >From here the bug is triggered by the following steps 1. Call btrfs_get_old_root() on the new_root. 2. We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is currently logical 0. 3. tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which gives us the KEY_REPLACE seq 2, and since that's not a LOG_ROOT_REPLACE we incorrectly believe that we don't have an old root, because we expect that the most recent change should be a LOG_ROOT_REPLACE. 4. Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE, so we don't set old_root, we simply use our existing extent buffer. 5. Since we're using our existing extent buffer (logical 0) we call tree_mod_log_search(0) in order to get the newest change to start the rewind from, which ends up being the LOG_ROOT_REPLACE at seq 8. 6. Again since we didn't find an old_root we simply clone logical 0 at it's current state. 7. We call tree_mod_log_rewind() with the cloned extent buffer. 8. Set n = btrfs_header_nritems(logical 0), which would be whatever the original nritems was when we COWed the original root, say for this example it's 2. 9. We start from the newest operation and work our way forward, so we see LOG_ROOT_REPLACE which we ignore. 10. Next we see KEY_REMOVE_WHILE_FREEING for slot 0, which triggers the BUG_ON(tm->slot < n), because it expects if we've done this we have a completely empty extent buffer to replay completely. The correct thing would be to find the first LOG_ROOT_REPLACE, and then get the old_root set to logical 8192. In fact making that change fixes this particular problem. However consider the much more complicated case. We have a child node in this tree and the above situation. In the above case we freed one of the child blocks at the seq 3 operation. If this block was also re-allocated and got new tree mod log operations we would have a different problem. btrfs_search_old_slot(orig root) would get down to the logical 0 root that still pointed at that node. However in btrfs_search_old_slot() we call tree_mod_log_rewind(buf) directly. This is not context aware enough to know which operations we should be replaying. If the block was re-allocated multiple times we may only want to replay a range of operations, and determining what that range is isn't possible to determine. We could maybe solve this by keeping track of which root the node belonged to at every tree mod log operation, and then passing this around to make sure we're only replaying operations that relate to the root we're trying to rewind. However there's a simpler way to solve this problem, simply disallow reallocations if we have currently running tree mod log users. We already do this for leaf's, so we're simply expanding this to nodes as well. This is a relatively uncommon occurrence, and the problem is complicated enough I'm worried that we will still have corner cases in the reallocation case. So fix this in the most straightforward way possible. Fixes: bd989ba359f2 ("Btrfs: add tree modification log functions") CC: stable@vger.kernel.org # 3.3+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: set generation before calling btrfs_clean_tree_block in ↵Tetsuo Handa
btrfs_init_new_buffer syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block(). Link: https://syzkaller.appspot.com/bug?extid=fba8e2116a12609b6c59 [1] Reported-by: syzbot <syzbot+fba8e2116a12609b6c59@syzkaller.appspotmail.com> Fixes: bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: make can_nocow_extent nowait compatibleJosef Bacik
If we have NOWAIT specified on our IOCB and we're writing into a PREALLOC or NOCOW extent then we need to be able to tell can_nocow_extent that we don't want to wait on any locks or metadata IO. Fix can_nocow_extent to allow for NOWAIT. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Stefan Roesch <shr@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: speedup checking for extent sharedness during fiemapFilipe Manana
One of the most expensive tasks performed during fiemap is to check if an extent is shared. This task has two major steps: 1) Check if the data extent is shared. This implies checking the extent item in the extent tree, checking delayed references, etc. If we find the data extent is directly shared, we terminate immediately; 2) If the data extent is not directly shared (its extent item has a refcount of 1), then it may be shared if we have snapshots that share subtrees of the inode's subvolume b+tree. So we check if the leaf containing the file extent item is shared, then its parent node, then the parent node of the parent node, etc, until we reach the root node or we find one of them is shared - in which case we stop immediately. During fiemap we process the extents of a file from left to right, from file offset 0 to EOF. This means that we iterate b+tree leaves from left to right, and has the implication that we keep repeating that second step above several times for the same b+tree path of the inode's subvolume b+tree. For example, if we have two file extent items in leaf X, and the path to leaf X is A -> B -> C -> X, then when we try to determine if the data extent referenced by the first extent item is shared, we check if the data extent is shared - if it's not, then we check if leaf X is shared, if not, then we check if node C is shared, if not, then check if node B is shared, if not than check if node A is shared. When we move to the next file extent item, after determining the data extent is not shared, we repeat the checks for X, C, B and A - doing all the expensive searches in the extent tree, delayed refs, etc. If we have thousands of tile extents, then we keep repeating the sharedness checks for the same paths over and over. On a file that has no shared extents or only a small portion, it's easy to see that this scales terribly with the number of extents in the file and the sizes of the extent and subvolume b+trees. This change eliminates the repeated sharedness check on extent buffers by caching the results of the last path used. The results can be used as long as no snapshots were created since they were cached (for not shared extent buffers) or no roots were dropped since they were cached (for shared extent buffers). This greatly reduces the time spent by fiemap for files with thousands of extents and/or large extent and subvolume b+trees. Example performance test: $ cat fiemap-perf-test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount -o compress=lzo $DEV $MNT # 40G gives 327680 128K file extents (due to compression). xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT Before this patch: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 3597 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 2107 milliseconds (metadata cached) After this patch: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1646 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 698 milliseconds (metadata cached) That's about 2.2x faster when no metadata is cached, and about 3x faster when all metadata is cached. On a real filesystem with many other files, data, directories, etc, the b+trees will be 2 or 3 levels higher, therefore this optimization will have a higher impact. Several reports of a slow fiemap show up often, the two Link tags below refer to two recent reports of such slowness. This patch, together with the next ones in the series, is meant to address that. Link: https://lore.kernel.org/linux-btrfs/21dd32c6-f1f9-f44a-466a-e18fdc6788a7@virtuozzo.com/ Link: https://lore.kernel.org/linux-btrfs/Ysace25wh5BbLd5f@atmark-techno.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: get rid of block group caching progress logicOmar Sandoval
struct btrfs_caching_ctl::progress and struct btrfs_block_group::last_byte_to_unpin were previously needed to ensure that unpin_extent_range() didn't return a range to the free space cache before the caching thread had a chance to cache that range. However, the commit "btrfs: fix space cache corruption and potential double allocations" made it so that we always synchronously cache the block group at the time that we pin the extent, so this machinery is no longer necessary. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: convert block group bit field to use bit helpersJosef Bacik
We use a bit field in the btrfs_block_group for different flags, however this is awkward because we have to hold the block_group->lock for any modification of any of these fields, and makes the code clunky for a few of these flags. Convert these to a properly flags setup so we can utilize the bit helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-23btrfs: fix space cache corruption and potential double allocationsOmar Sandoval
When testing space_cache v2 on a large set of machines, we encountered a few symptoms: 1. "unable to add free space :-17" (EEXIST) errors. 2. Missing free space info items, sometimes caught with a "missing free space info for X" error. 3. Double-accounted space: ranges that were allocated in the extent tree and also marked as free in the free space tree, ranges that were marked as allocated twice in the extent tree, or ranges that were marked as free twice in the free space tree. If the latter made it onto disk, the next reboot would hit the BUG_ON() in add_new_free_space(). 4. On some hosts with no on-disk corruption or error messages, the in-memory space cache (dumped with drgn) disagreed with the free space tree. All of these symptoms have the same underlying cause: a race between caching the free space for a block group and returning free space to the in-memory space cache for pinned extents causes us to double-add a free range to the space cache. This race exists when free space is cached from the free space tree (space_cache=v2) or the extent tree (nospace_cache, or space_cache=v1 if the cache needs to be regenerated). struct btrfs_block_group::last_byte_to_unpin and struct btrfs_block_group::progress are supposed to protect against this race, but commit d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit") subtly broke this by allowing multiple transactions to be unpinning extents at the same time. Specifically, the race is as follows: 1. An extent is deleted from an uncached block group in transaction A. 2. btrfs_commit_transaction() is called for transaction A. 3. btrfs_run_delayed_refs() -> __btrfs_free_extent() runs the delayed ref for the deleted extent. 4. __btrfs_free_extent() -> do_free_extent_accounting() -> add_to_free_space_tree() adds the deleted extent back to the free space tree. 5. do_free_extent_accounting() -> btrfs_update_block_group() -> btrfs_cache_block_group() queues up the block group to get cached. block_group->progress is set to block_group->start. 6. btrfs_commit_transaction() for transaction A calls switch_commit_roots(). It sets block_group->last_byte_to_unpin to block_group->progress, which is block_group->start because the block group hasn't been cached yet. 7. The caching thread gets to our block group. Since the commit roots were already switched, load_free_space_tree() sees the deleted extent as free and adds it to the space cache. It finishes caching and sets block_group->progress to U64_MAX. 8. btrfs_commit_transaction() advances transaction A to TRANS_STATE_SUPER_COMMITTED. 9. fsync calls btrfs_commit_transaction() for transaction B. Since transaction A is already in TRANS_STATE_SUPER_COMMITTED and the commit is for fsync, it advances. 10. btrfs_commit_transaction() for transaction B calls switch_commit_roots(). This time, the block group has already been cached, so it sets block_group->last_byte_to_unpin to U64_MAX. 11. btrfs_commit_transaction() for transaction A calls btrfs_finish_extent_commit(), which calls unpin_extent_range() for the deleted extent. It sees last_byte_to_unpin set to U64_MAX (by transaction B!), so it adds the deleted extent to the space cache again! This explains all of our symptoms above: * If the sequence of events is exactly as described above, when the free space is re-added in step 11, it will fail with EEXIST. * If another thread reallocates the deleted extent in between steps 7 and 11, then step 11 will silently re-add that space to the space cache as free even though it is actually allocated. Then, if that space is allocated *again*, the free space tree will be corrupted (namely, the wrong item will be deleted). * If we don't catch this free space tree corruption, it will continue to get worse as extents are deleted and reallocated. The v1 space_cache is synchronously loaded when an extent is deleted (btrfs_update_block_group() with alloc=0 calls btrfs_cache_block_group() with load_cache_only=1), so it is not normally affected by this bug. However, as noted above, if we fail to load the space cache, we will fall back to caching from the extent tree and may hit this bug. The easiest fix for this race is to also make caching from the free space tree or extent tree synchronous. Josef tested this and found no performance regressions. A few extra changes fall out of this change. Namely, this fix does the following, with step 2 being the crucial fix: 1. Factor btrfs_caching_ctl_wait_done() out of btrfs_wait_block_group_cache_done() to allow waiting on a caching_ctl that we already hold a reference to. 2. Change the call in btrfs_cache_block_group() of btrfs_wait_space_cache_v1_finished() to btrfs_caching_ctl_wait_done(), which makes us wait regardless of the space_cache option. 3. Delete the now unused btrfs_wait_space_cache_v1_finished() and space_cache_v1_done(). 4. Change btrfs_cache_block_group()'s `int load_cache_only` parameter to `bool wait` to more accurately describe its new meaning. 5. Change a few callers which had a separate call to btrfs_wait_block_group_cache_done() to use wait = true instead. 6. Make btrfs_wait_block_group_cache_done() static now that it's not used outside of block-group.c anymore. Fixes: d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit") CC: stable@vger.kernel.org # 5.12+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-17btrfs: fix lockdep splat with reloc root extent buffersJosef Bacik
We have been hitting the following lockdep splat with btrfs/187 recently WARNING: possible circular locking dependency detected 5.19.0-rc8+ #775 Not tainted ------------------------------------------------------ btrfs/752500 is trying to acquire lock: ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 but task is already holding lock: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-01/1){+.+.}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_init_new_buffer+0x7d/0x2c0 btrfs_alloc_tree_block+0x120/0x3b0 __btrfs_cow_block+0x136/0x600 btrfs_cow_block+0x10b/0x230 btrfs_search_slot+0x53b/0xb70 btrfs_lookup_inode+0x2a/0xa0 __btrfs_update_delayed_inode+0x5f/0x280 btrfs_async_run_delayed_root+0x24c/0x290 btrfs_work_helper+0xf2/0x3e0 process_one_work+0x271/0x590 worker_thread+0x52/0x3b0 kthread+0xf0/0x120 ret_from_fork+0x1f/0x30 -> #1 (btrfs-tree-01){++++}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_search_slot+0x3c3/0xb70 do_relocation+0x10c/0x6b0 relocate_tree_blocks+0x317/0x6d0 relocate_block_group+0x1f1/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (btrfs-treloc-02#2){+.+.}-{3:3}: __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Chain exists of: btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-01/1); lock(btrfs-tree-01); lock(btrfs-tree-01/1); lock(btrfs-treloc-02#2); *** DEADLOCK *** 7 locks held by btrfs/752500: #0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90 #1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40 #2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400 #3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610 #4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 stack backtrace: CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x56/0x73 check_noncircular+0xd6/0x100 ? lock_is_held_type+0xe2/0x140 __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 ? __btrfs_tree_lock+0x24/0x110 down_write_nested+0x41/0x80 ? __btrfs_tree_lock+0x24/0x110 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 ? lock_release+0x137/0x2d0 ? _raw_spin_unlock+0x29/0x50 ? release_extent_buffer+0x128/0x180 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 ? lock_is_held_type+0xe2/0x140 ? lock_is_held_type+0xe2/0x140 ? __x64_sys_ioctl+0x88/0xc0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd This isn't necessarily new, it's just tricky to hit in practice. There are two competing things going on here. With relocation we create a snapshot of every fs tree with a reloc tree. Any extent buffers that get initialized here are initialized with the reloc root lockdep key. However since it is a snapshot, any blocks that are currently in cache that originally belonged to the fs tree will have the normal tree lockdep key set. This creates the lock dependency of reloc tree -> normal tree for the extent buffer locking during the first phase of the relocation as we walk down the reloc root to relocate blocks. However this is problematic because the final phase of the relocation is merging the reloc root into the original fs root. This involves searching down to any keys that exist in the original fs root and then swapping the relocated block and the original fs root block. We have to search down to the fs root first, and then go search the reloc root for the block we need to replace. This creates the dependency of normal tree -> reloc tree which is why lockdep complains. Additionally even if we were to fix this particular mismatch with a different nesting for the merge case, we're still slotting in a block that has a owner of the reloc root objectid into a normal tree, so that block will have its lockdep key set to the tree reloc root, and create a lockdep splat later on when we wander into that block from the fs root. Unfortunately the only solution here is to make sure we do not set the lockdep key to the reloc tree lockdep key normally, and then reset any blocks we wander into from the reloc root when we're doing the merged. This solves the problem of having mixed tree reloc keys intermixed with normal tree keys, and then allows us to make sure in the merge case we maintain the lock order of normal tree -> reloc tree We handle this by setting a bit on the reloc root when we do the search for the block we want to relocate, and any block we search into or COW at that point gets set to the reloc tree key. This works correctly because we only ever COW down to the parent node, so we aren't resetting the key for the block we're linking into the fs root. With this patch we no longer have the lockdep splat in btrfs/187. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: zoned: write out partially allocated regionNaohiro Aota
cow_file_range() works in an all-or-nothing way: if it fails to allocate an extent for a part of the given region, it gives up all the region including the successfully allocated parts. On cow_file_range(), run_delalloc_zoned() writes data for the region only when it successfully allocate all the region. This all-or-nothing allocation and write-out are problematic when available space in all the block groups are get tight with the active zone restriction. btrfs_reserve_extent() try hard to utilize the left space in the active block groups and gives up finally and fails with -ENOSPC. However, if we send IOs for the successfully allocated region, we can finish a zone and can continue on the rest of the allocation on a newly allocated block group. This patch implements the partial write-out for run_delalloc_zoned(). With this patch applied, cow_file_range() returns -EAGAIN to tell the caller to do something to progress the further allocation, and tells the successfully allocated region with done_offset. Furthermore, the zoned extent allocator returns -EAGAIN to tell cow_file_range() going back to the caller side. Actually, we still need to wait for an IO to complete to continue the allocation. The next patch implements that part. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: zoned: finish least available block group on data bg allocationNaohiro Aota
When we run out of active zones and no sufficient space is left in any block groups, we need to finish one block group to make room to activate a new block group. However, we cannot do this for metadata block groups because we can cause a deadlock by waiting for a running transaction commit. So, do that only for a data block group. Furthermore, the block group to be finished has two requirements. First, the block group must not have reserved bytes left. Having reserved bytes means we have an allocated region but did not yet send bios for it. If that region is allocated by the thread calling btrfs_zone_finish(), it results in a deadlock. Second, the block group to be finished must not be a SYSTEM block group. Finishing a SYSTEM block group easily breaks further chunk allocation by nullifying the SYSTEM free space. In a certain case, we cannot find any zone finish candidate or btrfs_zone_finish() may fail. In that case, we fall back to split the allocation bytes and fill the last spaces left in the block groups. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: let can_allocate_chunk return errorNaohiro Aota
For the later patch, convert the return type from bool to int and return errors. No functional changes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: use named constant for reserved device spaceQu Wenruo
There's a reserved space on each device of size 1MiB that can be used by bootloaders or to avoid accidental overwrite. Use a symbolic constant with the explaining comment instead of hard coding the value and multiple comments. Note: since btrfs-progs v4.1, mkfs.btrfs will reserve the first 1MiB for the primary super block (at offset 64KiB), until then the range could have been used by mistake. Kernel has been always respecting the 1MiB range for writes. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: split discard handling out of btrfs_map_blockChristoph Hellwig
Mapping block for discard doesn't really share any code with the regular block mapping case. Split it out into an entirely separate helper that just returns an array of btrfs_discard_stripe structures and the number of stripes. This removes the need for the length field in the btrfs_io_context structure, so remove tht. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>