Age | Commit message (Collapse) | Author |
|
afs_write_end() is missing page unlock and put if afs_fill_page() fails.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Repeating creation and deletion of a file on an afs mount will run the box
out of memory, e.g.:
dd if=/dev/zero of=/afs/scratch/m0 bs=$((1024*1024)) count=512
rm /afs/scratch/m0
The problem seems to be that it's not properly decrementing the nlink count
so that the inode can be scrapped.
Note that this doesn't fix local creation followed by remote deletion.
That's harder to handle and will require a separate patch as we're not told
that the file has been deleted - only that the directory has changed.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Smatch warns that:
fs/afs/rxrpc.c:922 afs_extract_data()
error: uninitialized symbol 'remote_abort'.
Smatch is right that "remote_abort" might be uninitialized when we pass
it to afs_set_call_complete(). I don't know if that function uses the
uninitialized variable. Anyway, the comment for rxrpc_kernel_recv_data(),
says that "*_abort should also be initialised to 0." and this patch does
that.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
When an AFS inode is allocated by afs_alloc_inode(), the allocated
afs_vnode struct isn't necessarily reset from the last time it was used as
an inode because the slab constructor is only invoked once when the memory
is obtained from the page allocator.
This means that information can leak from one inode to the next because
we're not calling kmem_cache_zalloc(). Some of the information isn't
reset, in particular the permit cache pointer.
Bring the clearances up to date.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
|
|
Fix four refcount bugs in afs_cache_permit():
(1) When checking the result of the kzalloc(), we can't just return, but
must put 'permits'.
(2) We shouldn't put permits immediately after hashing a new permit as we
need to keep the pointer stable so that we can check to see if
vnode->permit_cache has changed before we decide whether to assign to
it.
(3) 'permits' is being put twice.
(4) We need to put either the replacement or the thing replaced after the
assignment to vnode->permit_cache.
Without this, lots of the following are seen:
Kernel BUG at ffffffffa039857b [verbose debug info unavailable]
------------[ cut here ]------------
Kernel BUG at ffffffffa039858a [verbose debug info unavailable]
------------[ cut here ]------------
The addresses are in the .text..refcount section of the kafs.ko module.
Following the relocation records for the __ex_table section shows one to be
due to the decrement in afs_put_permits() and the other to be key_get() in
afs_cache_permit().
Occasionally, the following is seen:
refcount_t overflow at afs_cache_permit+0x57d/0x5c0 [kafs] in cc1[562], uid/euid: 0/0
WARNING: CPU: 0 PID: 562 at kernel/panic.c:657 refcount_error_report+0x9c/0xac
...
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
|
|
This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The assignment of dvnode to itself is redundant and can be removed.
Cleans up warning detected by cppcheck:
fs/afs/dir.c:975: (warning) Redundant assignment of 'dvnode' to itself.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Due to recent changes this piece of code is no longer needed.
Addresses-Coverity-ID: 1462033
Link: https://lkml.kernel.org/r/4923.1510957307@warthog.procyon.org.uk
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
afs_mkdir(), afs_create(), afs_link() and afs_symlink() all need to drop
the target dentry if a signal causes the operation to be killed immediately
before we try to contact the server.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix some of dentry handling in AFS directory ops:
(1) Do d_drop() on the new_dentry before assigning a new inode to it in
afs_vnode_new_inode(). It's fine to do this before calling afs_iget()
because the operation has taken place on the server.
(2) Replace d_instantiate()/d_rehash() with d_add().
(3) Don't d_drop() the new_dentry in afs_rename() on error.
Also fix afs_link() and afs_rename() to call key_put() on all error paths
where the key is taken.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make afs_write_begin() wait for a page that's marked PG_writeback because:
(1) We need to avoid interference with the data being stored so that the
data on the server ends up in a defined state.
(2) page->private is used to track the window of dirty data within a page,
but it's also used by the storage code to track what's being written,
being cleared by the completion notification. Ownership can't be
relinquished by the storage code until completion because it a store
fails, the data must be remarked dirty.
Tracing shows something like the following (edited):
x86_64-linux-gn-15940 [1] afs_page_dirty: vn=ffff8800bef33800 9c75 begin 0-125
kworker/u8:3-114 [2] afs_page_dirty: vn=ffff8800bef33800 9c75 store+ 0-125
x86_64-linux-gn-15940 [1] afs_page_dirty: vn=ffff8800bef33800 9c75 begin 0-2052
kworker/u8:3-114 [2] afs_page_dirty: vn=ffff8800bef33800 9c75 clear 0-2052
kworker/u8:3-114 [2] afs_page_dirty: vn=ffff8800bef33800 9c75 store 0-0
kworker/u8:3-114 [2] afs_page_dirty: vn=ffff8800bef33800 9c75 WARN 0-0
The clear (completion) corresponding to the store+ (store continuation from
a previous page) happens between the second begin (afs_write_begin) and the
store corresponding to that. This results in the second store not seeing
any data to write back, leading to the following warning:
WARNING: CPU: 2 PID: 114 at ../fs/afs/write.c:403 afs_write_back_from_locked_page+0x19d/0x76c [kafs]
Modules linked in: kafs(E)
CPU: 2 PID: 114 Comm: kworker/u8:3 Tainted: G E 4.14.0-fscache+ #242
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: writeback wb_workfn (flush-afs-2)
task: ffff8800cad72600 task.stack: ffff8800cad44000
RIP: 0010:afs_write_back_from_locked_page+0x19d/0x76c [kafs]
RSP: 0018:ffff8800cad47aa0 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff8800bef33a20 RCX: 0000000000000000
RDX: 000000000000000f RSI: ffffffff81c5d0e0 RDI: ffff8800cad72e78
RBP: ffff8800d31ea1e8 R08: ffff8800c1358000 R09: ffff8800ca00e400
R10: ffff8800cad47a38 R11: ffff8800c5d9e400 R12: 0000000000000000
R13: ffffea0002d9df00 R14: ffffffffa0023c1c R15: 0000000000007fdf
FS: 0000000000000000(0000) GS:ffff8800ca700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f85ac6c4000 CR3: 0000000001c10001 CR4: 00000000001606e0
Call Trace:
? clear_page_dirty_for_io+0x23a/0x267
afs_writepages_region+0x1be/0x286 [kafs]
afs_writepages+0x60/0x127 [kafs]
do_writepages+0x36/0x70
__writeback_single_inode+0x12f/0x635
writeback_sb_inodes+0x2cc/0x452
__writeback_inodes_wb+0x68/0x9f
wb_writeback+0x208/0x470
? wb_workfn+0x22b/0x565
wb_workfn+0x22b/0x565
? worker_thread+0x230/0x2ac
process_one_work+0x2cc/0x517
? worker_thread+0x230/0x2ac
worker_thread+0x1d4/0x2ac
? rescuer_thread+0x29b/0x29b
kthread+0x15d/0x165
? kthread_create_on_node+0x3f/0x3f
? call_usermodehelper_exec_async+0x118/0x11f
ret_from_fork+0x24/0x30
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix the AFS file locking whereby the use of the big kernel lock (which
could be slept with) was replaced by a spinlock (which couldn't). The
problem is that the AFS code was doing stuff inside the critical section
that might call schedule(), so this is a broken transformation.
Fix this by the following means:
(1) Use a state machine with a proper state that can only be changed under
the spinlock rather than using a collection of bit flags.
(2) Cache the key used for the lock and the lock type in the afs_vnode
struct so that the manager work function doesn't have to refer to a
file_lock struct that's been dequeued. This makes signal handling
safer.
(4) Move the unlock from afs_do_unlk() to afs_fl_release_private() which
means that unlock is achieved in other circumstances too.
(5) Unlock the file on the server before taking the next conflicting lock.
Also change:
(1) Check the permits on a file before actually trying the lock.
(2) fsync the file before effecting an explicit unlock operation. We
don't fsync if the lock is erased otherwise as we might not be in a
context where we can actually do that.
Further fixes:
(1) Fixed-fileserver address rotation is made to work. It's only used by
the locking functions, so couldn't be tested before.
Fixes: 72f98e72551f ("locks: turn lock_flocks into a spinlock")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: jlayton@redhat.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull AFS updates from David Howells:
"kAFS filesystem driver overhaul.
The major points of the overhaul are:
(1) Preliminary groundwork is laid for supporting network-namespacing
of kAFS. The remainder of the namespacing work requires some way
to pass namespace information to submounts triggered by an
automount. This requires something like the mount overhaul that's
in progress.
(2) sockaddr_rxrpc is used in preference to in_addr for holding
addresses internally and add support for talking to the YFS VL
server. With this, kAFS can do everything over IPv6 as well as
IPv4 if it's talking to servers that support it.
(3) Callback handling is overhauled to be generally passive rather
than active. 'Callbacks' are promises by the server to tell us
about data and metadata changes. Callbacks are now checked when
we next touch an inode rather than actively going and looking for
it where possible.
(4) File access permit caching is overhauled to store the caching
information per-inode rather than per-directory, shared over
subordinate files. Whilst older AFS servers only allow ACLs on
directories (shared to the files in that directory), newer AFS
servers break that restriction.
To improve memory usage and to make it easier to do mass-key
removal, permit combinations are cached and shared.
(5) Cell database management is overhauled to allow lighter locks to
be used and to make cell records autonomous state machines that
look after getting their own DNS records and cleaning themselves
up, in particular preventing races in acquiring and relinquishing
the fscache token for the cell.
(6) Volume caching is overhauled. The afs_vlocation record is got rid
of to simplify things and the superblock is now keyed on the cell
and the numeric volume ID only. The volume record is tied to a
superblock and normal superblock management is used to mediate
the lifetime of the volume fscache token.
(7) File server record caching is overhauled to make server records
independent of cells and volumes. A server can be in multiple
cells (in such a case, the administrator must make sure that the
VL services for all cells correctly reflect the volumes shared
between those cells).
Server records are now indexed using the UUID of the server
rather than the address since a server can have multiple
addresses.
(8) File server rotation is overhauled to handle VMOVED, VBUSY (and
similar), VOFFLINE and VNOVOL indications and to handle rotation
both of servers and addresses of those servers. The rotation will
also wait and retry if the server says it is busy.
(9) Data writeback is overhauled. Each inode no longer stores a list
of modified sections tagged with the key that authorised it in
favour of noting the modified region of a page in page->private
and storing a list of keys that made modifications in the inode.
This simplifies things and allows other keys to be used to
actually write to the server if a key that made a modification
becomes useless.
(10) Writable mmap() is implemented. This allows a kernel to be build
entirely on AFS.
Note that Pre AFS-3.4 servers are no longer supported, though this can
be added back if necessary (AFS-3.4 was released in 1998)"
* tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (35 commits)
afs: Protect call->state changes against signals
afs: Trace page dirty/clean
afs: Implement shared-writeable mmap
afs: Get rid of the afs_writeback record
afs: Introduce a file-private data record
afs: Use a dynamic port if 7001 is in use
afs: Fix directory read/modify race
afs: Trace the sending of pages
afs: Trace the initiation and completion of client calls
afs: Fix documentation on # vs % prefix in mount source specification
afs: Fix total-length calculation for multiple-page send
afs: Only progress call state at end of Tx phase from rxrpc callback
afs: Make use of the YFS service upgrade to fully support IPv6
afs: Overhaul volume and server record caching and fileserver rotation
afs: Move server rotation code into its own file
afs: Add an address list concept
afs: Overhaul cell database management
afs: Overhaul permit caching
afs: Overhaul the callback handling
afs: Rename struct afs_call server member to cm_server
...
|
|
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2 updates
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (131 commits)
memory hotplug: fix comments when adding section
mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
mm: simplify nodemask printing
mm,oom_reaper: remove pointless kthread_run() error check
mm/page_ext.c: check if page_ext is not prepared
writeback: remove unused function parameter
mm: do not rely on preempt_count in print_vma_addr
mm, sparse: do not swamp log with huge vmemmap allocation failures
mm/hmm: remove redundant variable align_end
mm/list_lru.c: mark expected switch fall-through
mm/shmem.c: mark expected switch fall-through
mm/page_alloc.c: broken deferred calculation
mm: don't warn about allocations which stall for too long
fs: fuse: account fuse_inode slab memory as reclaimable
mm, page_alloc: fix potential false positive in __zone_watermark_ok
mm: mlock: remove lru_add_drain_all()
mm, sysctl: make NUMA stats configurable
shmem: convert shmem_init_inodecache() to void
Unify migrate_pages and move_pages access checks
mm, pagevec: rename pagevec drained field
...
|
|
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot. As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use find_get_pages_range_tag() in afs_writepages_region() as we are
interested only in pages from given range. Remove unnecessary code
after this conversion.
Link: http://lkml.kernel.org/r/20171009151359.31984-16-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Protect call->state changes against the call being prematurely terminated
due to a signal.
What can happen is that a signal causes afs_wait_for_call_to_complete() to
abort an afs_call because it's not yet complete whilst afs_deliver_to_call()
is delivering data to that call.
If the data delivery causes the state to change, this may overwrite the state
of the afs_call, making it not-yet-complete again - but no further
notifications will be forthcoming from AF_RXRPC as the rxrpc call has been
aborted and completed, so kAFS will just hang in various places waiting for
that call or on page bits that need clearing by that call.
A tracepoint to monitor call state changes is also provided.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add a trace event that logs the dirtying and cleaning of pages attached to
AFS inodes.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Implement shared-writeable mmap for AFS.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Get rid of the afs_writeback record that kAFS is using to match keys with
writes made by that key.
Instead, keep a list of keys that have a file open for writing and/or
sync'ing and iterate through those.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Introduce a file-private data record for kAFS and put the key into it
rather than storing the key in file->private_data.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
It is not required that the afs client operate on port 7001.
The port could be in use because another kernel or userspace
client has already bound to it.
If the port is in use, just fallback to using a dynamic port.
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Because parsing of the directory wasn't being done under any sort of lock,
the pages holding the directory content can get invalidated whilst the
parsing is ongoing.
Further, the directory page check function gets called outside of the page
lock, so if the page gets cleared or updated, this may return reports of
bad magic numbers in the directory page.
Also, the directory may change size whilst checking and parsing are
ongoing, so more care needs to be taken here.
Fix this by:
(1) Perform the page check from the page filling function before we set
PageUptodate and drop the page lock.
(2) Check for the file having shrunk and the page having been abandoned
before checking the page contents.
(3) Lock the page whilst parsing it for the directory iterator.
Whilst we're at it, add a tracepoint to report check failure.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add a pair of tracepoints to log the sending of pages for an FS.StoreData
or FS.StoreData64 operation.
Tracepoint afs_send_pages notes each set of pages added to the operation.
There may be several of these per operation as we get up at most 8
contiguous pages in one go because the bvec we're using is on the stack.
Tracepoint afs_sent_pages notes the end of adding data from a whole run of
pages to the operation and the completion of the request phase.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add tracepoints to trace the initiation and completion of client calls
within the kafs filesystem.
The afs_make_vl_call tracepoint watches calls to the volume location
database server.
The afs_make_fs_call tracepoint watches calls to the file server.
The afs_call_done tracepoint watches for call completion.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix the total-length calculation in afs_make_call() when the operation
being dispatched has data from a series of pages attached.
Despite the patched code looking like that it should reduce mathematically
to the current code, it doesn't because the 32-bit unsigned arithmetic
being used to calculate the page-offset-difference doesn't correctly extend
to a 64-bit value when the result is effectively negative.
Without this, some FS.StoreData operations that span multiple pages fail,
reporting too little or too much data.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Only progress the AFS call state at the end of Tx phase from the callback
passed to rxrpc_kernel_send_data() rather than setting it before the last
data send call.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
YFS VL servers offer an upgraded Volume Location service that can return
IPv6 addresses to fileservers and volume servers in addition to IPv4
addresses using the YFSVL.GetEndpoints operation which we should use if
it's available.
To this end:
(1) Make rxrpc_kernel_recv_data() return the call's current service ID so
that the caller can detect service upgrade and see what the service
was upgraded to.
(2) When we see a VL server address we haven't seen before, send a
VL.GetCapabilities operation to it with the service upgrade bit set.
If we get an upgrade to the YFS VL service, change the service ID in
the address list for that address to use the upgraded service and set
a flag to note that this appears to be a YFS-compatible server.
(3) If, when a server's addresses are being looked up, we note that we
previously detected a YFS-compatible server, then send the
YFSVL.GetEndpoints operation rather than VL.GetAddrsU.
(4) Build a fileserver address list from the reply of YFSVL.GetEndpoints,
including both IPv4 and IPv6 addresses. Volume server addresses are
discarded.
(5) The address list is sorted by address and port now, instead of just
address. This allows multiple servers on the same host sitting on
different ports.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Move server rotation code into its own file.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add an RCU replaceable address list structure to hold a list of server
addresses. The list also holds the
To this end:
(1) A cell's VL server address list can be loaded directly via insmod or
echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB
or SRV records.
(2) Anyone wanting to use a cell's VL server address must wait until the
cell record comes online and has tried to obtain some addresses.
(3) An FS server's address list, for the moment, has a single entry that
is the key to the server list. This will change in the future when a
server is instead keyed on its UUID and the VL.GetAddrsU operation is
used.
(4) An 'address cursor' concept is introduced to handle iteration through
the address list. This is passed to the afs_make_call() as, in the
future, stuff (such as abort code) that doesn't outlast the call will
be returned in it.
In the future, we might want to annotate the list with information about
how each address fares. We might then want to propagate such annotations
over address list replacement.
Whilst we're at it, we allow IPv6 addresses to be specified in
colon-delimited lists by enclosing them in square brackets.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Overhaul the way that the in-kernel AFS client keeps track of cells in the
following manner:
(1) Cells are now held in an rbtree to make walking them quicker and RCU
managed (though this is probably overkill).
(2) Cells now have a manager work item that:
(A) Looks after fetching and refreshing the VL server list.
(B) Manages cell record lifetime, including initialising and
destruction.
(B) Manages cell record caching whereby threads are kept around for a
certain time after last use and then destroyed.
(C) Manages the FS-Cache index cookie for a cell. It is not permitted
for a cookie to be in use twice, so we have to be careful to not
allow a new cell record to exist at the same time as an old record
of the same name.
(3) Each AFS network namespace is given a manager work item that manages
the cells within it, maintaining a single timer to prod cells into
updating their DNS records.
This uses the reduce_timer() facility to make the timer expire at the
soonest timed event that needs happening.
(4) When a module is being unloaded, cells and cell managers are now
counted out using dec_after_work() to make sure the module text is
pinned until after the data structures have been cleaned up.
(5) Each cell's VL server list is now protected by a seqlock rather than a
semaphore.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Overhaul permit caching in AFS by making it per-vnode and sharing permit
lists where possible.
When most of the fileserver operations are called, they return a status
structure indicating the (revised) details of the vnode or vnodes involved
in the operation. This includes the access mark derived from the ACL
(named CallerAccess in the protocol definition file). This is cacheable
and if the ACL changes, the server will tell us that it is breaking the
callback promise, at which point we can discard the currently cached
permits.
With this patch, the afs_permits structure has, at the end, an array of
{ key, CallerAccess } elements, sorted by key pointer. This is then cached
in a hash table so that it can be shared between vnodes with the same
access permits.
Permit lists can only be shared if they contain the exact same set of
key->CallerAccess mappings.
Note that that table is global rather than being per-net_ns. If the keys
in a permit list cross net_ns boundaries, there is no problem sharing the
cached permits, since the permits are just integer masks.
Since permit lists pin keys, the permit cache also makes it easier for a
future patch to find all occurrences of a key and remove them by means of
setting the afs_permits::invalidated flag and then clearing the appropriate
key pointer. In such an event, memory barriers will need adding.
Lastly, the permit caching is skipped if the server has sent either a
vnode-specific or an entire-server callback since the start of the
operation.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Overhaul the AFS callback handling by the following means:
(1) Don't give up callback promises on vnodes that we are no longer using,
rather let them just expire on the server or let the server break
them. This is actually more efficient for the server as the callback
lookup is expensive if there are lots of extant callbacks.
(2) Only give up the callback promises we have from a server when the
server record is destroyed. Then we can just give up *all* the
callback promises on it in one go.
(3) Servers can end up being shared between cells if cells are aliased, so
don't add all the vnodes being backed by a particular server into a
big FID-indexed tree on that server as there may be duplicates.
Instead have each volume instance (~= superblock) register an interest
in a server as it starts to make use of it and use this to allow the
processor for callbacks from the server to find the superblock and
thence the inode corresponding to the FID being broken by means of
ilookup_nowait().
(4) Rather than iterating over the entire callback list when a mass-break
comes in from the server, maintain a counter of mass-breaks in
afs_server (cb_seq) and make afs_validate() check it against the copy
in afs_vnode.
It would be nice not to have to take a read_lock whilst doing this,
but that's tricky without using RCU.
(5) Save a ref on the fileserver we're using for a call in the afs_call
struct so that we can access its cb_s_break during call decoding.
(6) Write-lock around callback and status storage in a vnode and read-lock
around getattr so that we don't see the status mid-update.
This has the following consequences:
(1) Data invalidation isn't seen until someone calls afs_validate() on a
vnode. Unfortunately, we need to use a key to query the server, but
getting one from a background thread is tricky without caching loads
of keys all over the place.
(2) Mass invalidation isn't seen until someone calls afs_validate().
(3) Callback breaking is going to hit the inode_hash_lock quite a bit.
Could this be replaced with rcu_read_lock() since inodes are destroyed
under RCU conditions.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Rename the server member of struct afs_call to cm_server as we're only
going to be using it for incoming calls for the Cache Manager service.
This makes it easier to differentiate from the pointer to the target server
for the client, which will point to a different structure to allow for
callback handling.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In AFS's encoding of a UUID, the eight 'char' fields are all signed, so
represent them with __s8 rather than __u8. This makes the compiler
sign-extend them correctly when XDR-encoding them.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The handler for the CB.ProbeUuid operation in the cache manager is
implemented, but isn't listed in the switch-statement of operation
selection, so won't be used. Fix this by adding it.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
If call->ret_reply0 is set, return call->reply[0] on success. Change the
return type of afs_make_call() to long so that this can be passed back
without bit loss and then cast to a pointer if required.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Condense struct afs_call's reply anchor members - reply{,2,3,4} - into an
array.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The AFS abort code space is shared across all services, so there's no need
for separate abort_to_error translators for each service.
Consolidate them into a single function and remove the function pointers
for them.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Allow VL server specifications to be given IPv6 addresses as well as IPv4
addresses, for example as:
echo add foo.org 1111:2222:3333:0:4444:5555:6666:7777 >/proc/fs/afs/cells
Note that ':' is the expected separator for separating IPv4 addresses, but
if a ',' is detected or no '.' is detected in the string, the delimiter is
switched to ','.
This also works with DNS AFSDB or SRV record strings fetched by upcall from
userspace.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Keep and pass sockaddr_rxrpc addresses around rather than keeping and
passing in_addr addresses to allow for the use of IPv6 and non-standard
port numbers in future.
This also allows the port and service_id fields to be removed from the
afs_call struct.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Update the cache index structure in the following ways:
(1) Don't use the volume name followed by the volume type as levels in the
cache index. Volumes can be renamed. Use the volume ID instead.
(2) Don't store the VLDB data for a volume in the tree. If the volume
database should be cached locally, then it should be done in a separate
tree.
(3) Expand the volume ID stored in the cache to 64 bits.
(4) Expand the file/vnode ID stored in the cache to 96 bits.
(5) Increment the cache structure version number to 1.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add some protocol definitions, including max field lengths, flag defs, an
XDR-encoded UUID def, more VL operation IDs and more fileserver abort
codes.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Push the network namespace pointer to more places in AFS, including the
afs_server structure (which doesn't hold a ref on the netns).
In particular, afs_put_cell() now takes requires a net ns parameter so that
it can safely alter the netns after decrementing the cell usage count - the
cell will be deallocated by a background thread after being cached for a
period, which means that it's not safe to access it after reducing its
usage count.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Keep a reference to the cell in the superblock info structure in addition
to the volume and net pointers. This will make it easier to clean up in a
future patch in which afs_put_volume() will need the cell pointer.
Whilst we're at it, make the cell and volume getting functions return a
pointer to the object got to make the call sites look neater.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix server reaping and make sure it's all done before we start trying to
purge cells, given that servers currently pin cells.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Close the rxrpc socket only after we've purged the server records (and also
cell and volume records which might refer to servers) so that we can give
up the callbacks on each server.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Lay the groundwork for supporting network namespaces (netns) to the AFS
filesystem by moving various global features to a network-namespace struct
(afs_net) and providing an instance of this as a temporary global variable
that everything uses via accessor functions for the moment.
The following changes have been made:
(1) Store the netns in the superblock info. This will be obtained from
the mounter's nsproxy on a manual mount and inherited from the parent
superblock on an automount.
(2) The cell list is made per-netns. It can be viewed through
/proc/net/afs/cells and also be modified by writing commands to that
file.
(3) The local workstation cell is set per-ns in /proc/net/afs/rootcell.
This is unset by default.
(4) The 'rootcell' module parameter, which sets a cell and VL server list
modifies the init net namespace, thereby allowing an AFS root fs to be
theoretically used.
(5) The volume location lists and the file lock manager are made
per-netns.
(6) The AF_RXRPC socket and associated I/O bits are made per-ns.
The various workqueues remain global for the moment.
Changes still to be made:
(1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced
from the old name.
(2) A per-netns subsys needs to be registered for AFS into which it can
store its per-netns data.
(3) Rather than the AF_RXRPC socket being opened on module init, it needs
to be opened on the creation of a superblock in that netns.
(4) The socket needs to be closed when the last superblock using it is
destroyed and all outstanding client calls on it have been completed.
This prevents a reference loop on the namespace.
(5) It is possible that several namespaces will want to use AFS, in which
case each one will need its own UDP port. These can either be set
through /proc/net/afs/cm_port or the kernel can pick one at random.
The init_ns gets 7001 by default.
Other issues that need resolving:
(1) The DNS keyring needs net-namespacing.
(2) Where do upcalls go (eg. DNS request-key upcall)?
(3) Need something like open_socket_in_file_ns() syscall so that AFS
command line tools attempting to operate on an AFS file/volume have
their RPC calls go to the right place.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make wait_on_atomic_t() pass the TASK_* mode onto its action function as an
extra argument and make it 'unsigned int throughout.
Also, consolidate a bunch of identical action functions into a default
function that can do the appropriate thing for the mode.
Also, change the argument name in the bit_wait*() function declarations to
reflect the fact that it's the mode and not the bit number.
[Peter Z gives this a grudging ACK, but thinks that the whole atomic_t wait
should be done differently, though he's not immediately sure as to how]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
cc: Ingo Molnar <mingo@kernel.org>
|