Age | Commit message (Collapse) | Author |
|
commit cc2893b6af5265baa1d68b17b136cffca9e40cfa upstream.
If the firmware puts a device back into D0 state at resume time, we'll
update its state in resume_noirq and thus skip the platform resume code.
Calling that code twice should be safe and we ought to avoid getting to
that point anyway, so remove the check and also allow the platform pci
code to be called for D0.
Fixes USB not being powered after resume on recent Lenovo machines.
Acked-by: Alex Chiang <achiang@canonical.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit bd1f46deba615971a58193afd0202878cadf19a7 upstream.
The aer_inject module hangs in aer_inject() when checking the device's
error masks. The hang is due to a recursive use of the aer_inject lock.
The aer_inject() routine grabs the lock while processing the error and then
calls pci_read_config_dword to read the masks. The pci_read_config_dword
routine is earlier overridden by pci_read_aer, which among other things,
grabs the aer_inject lock.
Fixed by moving the pci_read_config_dword calls to read the masks to before
the lock is taken.
Acked-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: maximilian attems <max@stro.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit ded1d8f29b4d315a2093cafc3ee17ac870a87972 upstream.
When pci_register_set_vga_state() was made __init, the EXPORT_SYMBOL() was
retained, which now leaves us with a section mismatch.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: maximilian attems <max@stro.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 95a8b6efc5d07103583f706c8a5889437d537939 upstream.
Update pci_set_vga_state to call arch dependent functions to enable Legacy
VGA I/O transactions to be redirected to correct target.
[akpm@linux-foundation.org: make pci_register_set_vga_state() __init]
Signed-off-by: Mike Travis <travis@sgi.com>
LKML-Reference: <201002022238.o12McE1J018723@imap1.linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Robin Holt <holt@sgi.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: maximilian attems <max@stro.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit b49bfd32901625e4adcfee011d2b32a43b4db67d upstream.
The Correcteable/Uncorrectable Error Mask Registers are used by PCIe AER
driver which will controls the reporting of individual errors to PCIe RC
via PCIe error messages.
If hardware masks special error reporting to RC, the aer_inject driver
should not inject aer error.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Acked-by: Ying Huang <ying.huang@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: maximilian attems <max@stro.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 7c9e2b1c4784c6e574f69dbd904b2822f2e04d6e upstream.
pcix_get_mmrbc() returns the maximum memory read byte count (mmrbc), if
successful, or an appropriate error value, if not.
Distinguishing errors from correct values and understanding the meaning of an
error can be somewhat confusing in that:
correct values: 512, 1024, 2048, 4096
errors: -EINVAL -22
PCIBIOS_FUNC_NOT_SUPPORTED 0x81
PCIBIOS_BAD_VENDOR_ID 0x83
PCIBIOS_DEVICE_NOT_FOUND 0x86
PCIBIOS_BAD_REGISTER_NUMBER 0x87
PCIBIOS_SET_FAILED 0x88
PCIBIOS_BUFFER_TOO_SMALL 0x89
The PCIBIOS_ errors are returned from the PCI functions generated by the
PCI_OP_READ() and PCI_OP_WRITE() macros.
In a similar manner, pcix_set_mmrbc() also returns the PCIBIOS_ error values
returned from pci_read_config_[word|dword]() and pci_write_config_word().
Following pcix_get_max_mmrbc()'s example, the following patch simply returns
-EINVAL for all PCIBIOS_ errors encountered by pcix_get_mmrbc(), and -EINVAL
or -EIO for those encountered by pcix_set_mmrbc().
This simplification was chosen in light of the fact that none of the current
callers of these functions are interested in the specific type of error
encountered. In the future, should this change, one could simply create a
function that maps each PCIBIOS_ error to a corresponding unique errno value,
which could be called by pcix_get_max_mmrbc(), pcix_get_mmrbc(), and
pcix_set_mmrbc().
Additionally, this patch eliminates some unnecessary variables.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit bdc2bda7c4dd253026cc1fce45fc939304749029 upstream.
An e1000 driver on a system with a PCI-X bus was always being returned
a value of 135 from both pcix_get_mmrbc() and pcix_set_mmrbc(). This
value reflects an error return of PCIBIOS_BAD_REGISTER_NUMBER from
pci_bus_read_config_dword(,, cap + PCI_X_CMD,).
This is because for a dword, the following portion of the PCI_OP_READ()
macro:
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;
expands to:
if (pos & 3) return PCIBIOS_BAD_REGISTER_NUMBER;
And is always true for 'cap + PCI_X_CMD', which is 0xe4 + 2 = 0xe6. ('cap' is
the result of calling pci_find_capability(, PCI_CAP_ID_PCIX).)
The same problem exists for pci_bus_write_config_dword(,, cap + PCI_X_CMD,).
In both cases, instead of calling _dword(), _word() should be called.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 25daeb550b69e89aff59bc6a84218a12b5203531 upstream.
For the PCI_X_STATUS register, pcix_get_max_mmrbc() is returning an incorrect
value, which is based on:
(stat & PCI_X_STATUS_MAX_READ) >> 12
Valid return values are 512, 1024, 2048, 4096, which correspond to a 'stat'
(masked and right shifted by 21) of 0, 1, 2, 3, respectively.
A right shift by 11 would generate the correct return value when 'stat' (masked
and right shifted by 21) has a value of 1 or 2. But for a value of 0 or 3 it's
not possible to generate the correct return value by only right shifting.
Fix is based on pcix_get_mmrbc()'s similar dealings with the PCI_X_CMD register.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 7a0deb6bcda98c2a764cb87f1441eef920fd3663 upstream.
This patch adds support for the 82576NS Serdes adapter to the existing pci
quirk for 82576 parts.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 6cdfd995a65a52e05b99e3a72a9b979abe73b312 upstream.
The current implementation of pci_cleanup_aer_uncorrect_error_status
only clears either fatal or non-fatal error status bits depending
on the state of the I/O channel. This implementation will then often
leave some bits set after PCI error recovery completes. The uncleared bit
settings will then be falsely reported the next time an AER interrupt is
generated for that hierarchy. An easy way to illustrate this issue is to
use the aer-inject module to simultaneously inject both an uncorrectable
non-fatal and uncorrectable fatal error. One of the errors will not be
cleared.
This patch resolves this issue by unconditionally clearing all bits in
the AER uncorrectable status register. All settings and corrective action
strategies are saved and determined before
pci_cleanup_aer_uncorrect_error_status is called, so this change should not
affect errory handling functionality.
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Alex Chiang <achiang@hp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit ba02b242bbf8e4e1bc63d62e8ccec33b4e5ea132 upstream.
check ioremap() return value.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit b0fc889c4311835ae7d02f433154bc20cad9ee11 upstream.
ibmphp driver currently maps only 1KB of ebda memory area into kernel address
space during driver initialization. This causes kernel oops when the driver is
modprobe'd and it accesses memory beyond 1KB within ebda segment. The first
byte of ebda segment actually stores the length of the ebda region in
Kilobytes. Hence make use of the length parameter and map the entire ebda
region.
Signed-off-by: Chandru Siddalingappa <chandru@linux.vnet.ibm.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 46256f83d0d066f99ffde547f27473dfd2a78009 upstream.
If the BIOS does not export _OSC to allow OS take over the PCIe AER, the
pcie aer driver will not initialize the aer service. However, the
aer_inject driver does not check this scenario, which results in a kernel
oops when injecting an aer error into OS. For example:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000350
IP: [<ffffffff812e08f7>] _spin_lock_irqsave+0xc/0x23
PGD 155c41067 PUD 157fe0067 PMD 0
Oops: 0002 [#1] SMP
Pid: 5119, comm: aer-inject Not tainted 2.6.32-rc8-mce #2
RIP: 0010:[<ffffffff812e08f7>] [<ffffffff812e08f7>] _spin_lock_irqsave+0xc/0x23
RSP: 0018:ffff880157f81e28 EFLAGS: 00010096
RAX: 0000000000000296 RBX: 0000000000000000 RCX: 0000000000000100
RDX: 0000000000010000 RSI: 0000000000000246 RDI: 0000000000000350
RBP: ffff880157f81e28 R08: 0000000000000004 R09: ffff880157f81dac
R10: ffff88015a666f60 R11: ffff88015a666f40 R12: ffff88015758cc00
R13: 0000000000000350 R14: 0000000000000000 R15: 0000000000000100
FS: 00007f4d4a66e6f0(0000) GS:ffff8800282e0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000350 CR3: 000000015661a000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process aer-inject (pid: 5119, threadinfo ffff880157f80000, task ffff8801585f4340)
Stack:
ffff880157f81e78 ffffffff811b1615 ffff880157f81e78 ffffffff81222823
Call Trace:
[<ffffffff811b1615>] aer_irq+0x38/0x117
[<ffffffff81222823>] ? device_for_each_child+0x5f/0x6f
[<ffffffffa00967bf>] aer_inject_write+0x409/0x45e [aer_inject]
[<ffffffff810eb80e>] vfs_write+0xae/0x16a
[<ffffffff810eb98e>] sys_write+0x47/0x6e
[<ffffffff8100ba2b>] system_call_fastpath+0x16/0x1b
RIP [<ffffffff812e08f7>] _spin_lock_irqsave+0xc/0x23
RSP <ffff880157f81e28>
CR2: 0000000000000350
So check the _OSC before assuming that AER is available to the OS.
Signed-off-by: Song Youquan <youquan.song@intel.com>
Acked-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 59353ea30e65ab3ae181d6175e3212e1361c3787 upstream.
Prior to 1f82de10 we always initialized the upper 32bits of the
prefetchable memory window, regardless of the address range used.
Now we only touch it for a >32bit address, which means the upper32
registers remain whatever the BIOS initialized them too.
It's valid for the BIOS to set the upper32 base/limit to
0xffffffff/0x00000000, which makes us program prefetchable ranges
like 0xffffffffabc00000 - 0x00000000abc00000
Revert the chunk of 1f82de10 that made this conditional so we always
write the upper32 registers and remove now unused pref_mem64 variable.
Signed-off-by: Alex Williamson <alex.williamson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Rafael J. Wysocki <rjw@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 2d1c861871d767153538a77c498752b36d4bb4b8 upstream
The cardbus code creates PCI devices without ever going through the
necessary fixup bits and pieces that normal PCI devices go through.
There's in fact a commented out call to pcibios_fixup_bus() in there,
it's commented because ... it doesn't work.
I could make pcibios_fixup_bus() do the right thing on powerpc easily
but I felt it cleaner instead to provide a specific hook pci_fixup_cardbus
for which a weak empty implementation is provided by the PCI core.
This fixes cardbus on powerbooks and probably all other PowerPC
platforms which was broken completely for ever on some platforms and
since 2.6.31 on others such as PowerBooks when we made the DMA ops
mandatory (since those are setup by the fixups).
Acked-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 1672af1164d3d50ba8908014fd34cc0b58afdc1e upstream.
We are seeing a bug when booting w/ iommu=pt with current upstream
(bisect blames 19943b0e30b05d42e494ae6fef78156ebc8c637e "intel-iommu:
Unify hardware and software passthrough support).
The issue is specific to this loop during identity map initialization
of each device:
domain_context_mapping_one(si_domain, ..., CONTEXT_TT_PASS_THROUGH)
...
/* Skip top levels of page tables for
* iommu which has less agaw than default.
*/
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
pgd = phys_to_virt(dma_pte_addr(pgd));
if (!dma_pte_present(pgd)) { <------ failing here
spin_unlock_irqrestore(&iommu->lock, flags);
return -ENOMEM;
}
This box has 2 iommu's in it. The catchall iommu has MGAW == 48, and
SAGAW == 4. The other iommu has MGAW == 39, SAGAW == 2.
The device that's failing the above pgd test is the only device connected
to the non-catchall iommu, which has a smaller address width than the
domain default. This test is not necessary since the context is in PT
mode and the ASR is ignored.
Thanks to Don Dutile for discovering and debugging this one.
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 44cd613c0e4cd93079ea2a93aa06649d8ca0830a upstream.
The hotplug notifier will call find_domain() to see if the device in
question has been assigned an IOMMU domain. However, this should never
be called for devices with a "dummy" domain, such as graphics devices
when intel_iommu=igfx_off is set and the corresponding IOMMU isn't even
initialised. If you do that, it'll oops as it dereferences the (-1)
pointer.
The notifier function should check iommu_no_mapping() for the
device before doing anything else.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 5595b528b49a702c0428c0762bab60999648254c upstream.
Some HP BIOSes report an RMRR region (a region which needs a 1:1 mapping
in the IOMMU for a given device) which has an end address lower than its
start address. Detect that and warn, rather than triggering the
BUG() in dma_pte_clear_range().
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 6ecbf01c7ce4c0f4c3bdfa0e64ac6258328fda6c upstream.
The BIOS errors where an IOMMU is reported either at zero or a bogus
address are causing problems even when the IOMMU is disabled -- because
interrupt remapping uses the same hardware. Ensure that the checks get
applied for the interrupt remapping initialisation too.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 2c99220810c1c79322034628b993573b088ff2da upstream.
Many BIOSes will lie to us about the existence of an IOMMU, and claim
that there is one at an address which actually returns all 0xFF.
We need to detect this early, so that we know we don't have a viable
IOMMU and can set up swiotlb before it's too late.
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
<4GiB RAM.
Commit 86cf898e1d0fca245173980e3897580db38569a8 ("intel-iommu: Check for
'DMAR at zero' BIOS error earlier.") was supposed to work by pretending
not to detect an IOMMU if it was actually being reported by the BIOS at
physical address zero.
However, the intel_iommu_init() function is called unconditionally, as
are the corresponding functions for other IOMMU hardware.
So the patch only worked if you have RAM above the 4GiB boundary. It
caused swiotlb to be initialised when no IOMMU was detected during early
boot, and thus the later IOMMU init would refuse to run.
But if you have less RAM than that, swiotlb wouldn't get set up and the
IOMMU _would_ still end up being initialised, even though we never
claimed to detect it.
This patch also sets the dmar_disabled flag when the error is detected
during the initial detection phase -- so that the later call to
intel_iommu_init() will return without doing anything, regardless of
whether swiotlb is used or not.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* git://git.infradead.org/users/dwmw2/iommu-2.6.32:
intel-iommu: Support PCIe hot-plug
intel-iommu: Obey coherent_dma_mask for alloc_coherent on passthrough
intel-iommu: Check for 'DMAR at zero' BIOS error earlier.
|
|
To support PCIe hot plug in IOMMU, we register a notifier to respond to device
change action.
When the notifier gets BUS_NOTIFY_UNBOUND_DRIVER, it removes the device
from its DMAR domain.
A hot added device will be added into an IOMMU domain when it first does IOMMU
op. So there is no need to add more code for hot add.
Without the patch, after a hot-remove, a hot-added device on the same
slot will not work.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Tested-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
The model for IOMMU passthrough is that decent devices that can cope
with DMA to all of memory get passthrough; crappy devices with a limited
dma_mask don't -- they get to use the IOMMU anyway.
This is done on the basis that IOMMU passthrough is usually wanted for
performance reasons, and it's only the decent PCI devices that you
really care about performance for, while the crappy 32-bit ones like
your USB controller can just use the IOMMU and you won't really care.
Unfortunately, the check for this was only looking at dev->dma_mask, not
at dev->coherent_dma_mask. And some devices have a 32-bit
coherent_dma_mask even though they have a full 64-bit dma_mask.
Even more unfortunately, fixing that simple oversight would upset
certain broken HP devices. Not only do they have a 32-bit
coherent_dma_mask, but they also have a tendency to do stray DMA to
unmapped addresses. And then they die when they take the DMA fault they
so richly deserve.
So if we do the 'correct' fix, it'll mean that affected users have to
disable IOMMU support completely on "a large percentage of servers from
a major vendor."
Personally, I have little sympathy -- given that this is the _same_
'major vendor' who is shipping machines which claim to have IOMMU
support but have obviously never _once_ booted a VT-d capable OS to do
any form of QA. But strictly speaking, it _would_ be a regression even
though it only ever worked by fluke.
For 2.6.33, we'll come up with a quirk which gives swiotlb support
for this particular device, and other devices with an inadequate
coherent_dma_mask will just get normal IOMMU mapping.
The simplest fix for 2.6.32, though, is just to jump through some hoops
to try to allocate coherent DMA memory for such devices in a place that
they can reach. We'd use dma_generic_alloc_coherent() for this if it
existed on IA64.
Signed-off-by: Alex Williamson <alex.williamson@hp.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
Chris Wright has some patches which let us fall back to swiotlb nicely
if IOMMU initialisation fails. But those are a bit much for 2.6.32.
Instead, let's shift the check for the biggest problem, the HP and Acer
BIOS bug which reports a DMAR at physical address zero. That one can
actually be checked much earlier -- before we even admit to having
detected an IOMMU in the first place. So the swiotlb init goes ahead as
we want.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
Fix the following BUG_ON() problem reported by Alex Chiang.
This problem happened when removing PCIe root port using PCI logical
hotplug operation.
The immediate cause of this problem is that the pointer to invalid
data structure is passed to pcie_update_aspm_capable() by
pcie_aspm_exit_link_state(). When pcie_aspm_exit_link_state() received
a pointer to root port link, it unconfigures the root port link and
frees its data structure at first. At this point, there are not links
to configure under the root port and the data structure for root port
link is already freed. So pcie_aspm_exit_link_state() must not call
pcie_update_aspm_capable() and pcie_config_aspm_path().
This patch fixes the problem by changing pcie_aspm_exit_link_state()
not to call pcie_update_aspm_capable() and pcie_config_aspm_path() if
the specified link is root port link.
------------[ cut here ]------------
kernel BUG at drivers/pci/pcie/aspm.c:606!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
last sysfs file: /sys/devices/pci0000:40/0000:40:13.0/remove
CPU 1
Modules linked in: shpchp
Pid: 9345, comm: sysfsd Not tainted 2.6.32-rc5 #98 ProLiant DL785 G6
RIP: 0010:[<ffffffff811df69b>] [<ffffffff811df69b>] pcie_update_aspm_capable+0x15/0xbe
RSP: 0018:ffff88082a2f5ca0 EFLAGS: 00010202
RAX: 0000000000000e77 RBX: ffff88182cc3e000 RCX: ffff88082a33d006
RDX: 0000000000000001 RSI: ffffffff811dff4a RDI: ffff88182cc3e000
RBP: ffff88082a2f5cc0 R08: ffff88182cc3e000 R09: 0000000000000000
R10: ffff88182fc00180 R11: ffff88182fc00198 R12: ffff88182cc3e000
R13: 0000000000000000 R14: ffff88182cc3e000 R15: ffff88082a2f5e20
FS: 00007f259a64b6f0(0000) GS:ffff880864600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
CR2: 00007feb53f73da0 CR3: 000000102cc94000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process sysfsd (pid: 9345, threadinfo ffff88082a2f4000, task ffff88082a33cf00)
Stack:
ffff88182cc3e000 ffff88182cc3e000 0000000000000000 ffff88082a33cf00
<0> ffff88082a2f5cf0 ffffffff811dff52 ffff88082a2f5cf0 ffff88082c525168
<0> ffff88402c9fd2f8 ffff88402c9fd2f8 ffff88082a2f5d20 ffffffff811d7db2
Call Trace:
[<ffffffff811dff52>] pcie_aspm_exit_link_state+0xf5/0x11e
[<ffffffff811d7db2>] pci_stop_bus_device+0x76/0x7e
[<ffffffff811d7d67>] pci_stop_bus_device+0x2b/0x7e
[<ffffffff811d7e4f>] pci_remove_bus_device+0x15/0xb9
[<ffffffff811dcb8c>] remove_callback+0x29/0x3a
[<ffffffff81135aeb>] sysfs_schedule_callback_work+0x15/0x6d
[<ffffffff81072790>] worker_thread+0x19d/0x298
[<ffffffff8107273b>] ? worker_thread+0x148/0x298
[<ffffffff81135ad6>] ? sysfs_schedule_callback_work+0x0/0x6d
[<ffffffff810765c0>] ? autoremove_wake_function+0x0/0x38
[<ffffffff810725f3>] ? worker_thread+0x0/0x298
[<ffffffff8107629e>] kthread+0x7d/0x85
[<ffffffff8102eafa>] child_rip+0xa/0x20
[<ffffffff8102e4bc>] ? restore_args+0x0/0x30
[<ffffffff81076221>] ? kthread+0x0/0x85
[<ffffffff8102eaf0>] ? child_rip+0x0/0x20
Code: 89 e5 8a 50 48 31 c0 c0 ea 03 83 e2 07 e8 b2 de fe ff c9 48 98 c3 55 48 89 e5 41 56 49 89 fe 41 55 41 54 53 48 83 7f 10 00 74 04 <0f> 0b eb fe 48 8b 05 da 7d 63 00 4c 8d 60 e8 4c 89 e1 eb 24 4c
RIP [<ffffffff811df69b>] pcie_update_aspm_capable+0x15/0xbe
RSP <ffff88082a2f5ca0>
---[ end trace 6ae0f65bdeab8555 ]---
Reported-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Tested-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
This reverts commit 308cf8e13f42f476dfd6552aeff58fdc0788e566. This
patch had trouble with transparent bridges, among other things. A more
readable and correct version should land in 2.6.33.
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
This patch renames the code name SB900 into Hudson-2
Signed-off-by: Shane Huang <shane.huang@amd.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
|
|
Commit d43c36dc6b357fa1806800f18aa30123c747a6d1 ("headers: remove
sched.h from interrupt.h") left some build errors in some configurations
due to drivers having depended on getting header files "accidentally".
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[ Combined several one-liners from Ingo into one single patch - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* git://git.infradead.org/~dwmw2/iommu-2.6.32:
x86: Move pci_iommu_init to rootfs_initcall()
Run pci_apply_final_quirks() sooner.
Mark pci_apply_final_quirks() __init rather than __devinit
Rename pci_init() to pci_apply_final_quirks(), move it to quirks.c
intel-iommu: Yet another BIOS workaround: Isoch DMAR unit with no TLB space
intel-iommu: Decode (and ignore) RHSA entries
intel-iommu: Make "Unknown DMAR structure" message more informative
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6:
PCI: Prevent AER driver from being loaded on non-root port PCIE devices
PCI: get larger bridge ranges when space is available
PCI: pci.c: fix kernel-doc notation
PCI quirk: TI XIO200a erroneously reports support for fast b2b transfers
PCI PM: Read device power state from register after updating it
PCI: remove pci_assign_resource_fixed()
PCI: PCIe portdrv: remove "-driver" from driver name
|
|
Having this as a device_initcall() means that some real device drivers
can actually initialise _before_ the quirks are run, which is wrong.
We want it to run _before_ device_initcall(), but _after_ fs_initcall(),
since some arch-specific PCI initialisation like pcibios_assign_resources()
is done at fs_initcall().
We could use rootfs_initcall() but I actually want to use that for the
IOMMU initialisation, which has to come after the quirks, but still
before the real devices. So use fs_initcall_sync() instead -- since this
is entirely synchronous, it doesn't hurt that it'll escape the
synchronisation.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
It doesn't get invoked on hotplug; it can be thrown away after init.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
This function may have done more in the past, but all it does now is
apply the PCI_FIXUP_FINAL quirks. So name it sensibly and put it where
it belongs.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
After m68k's task_thread_info() doesn't refer to current,
it's possible to remove sched.h from interrupt.h and not break m68k!
Many thanks to Heiko Carstens for allowing this.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
|
|
A bug was seen on boards using a PLX 8518 switch device which advertises
AER on each of it's transparent bridges. The AER driver was loaded for
each bridge and this driver tried to access the AER source ID register
whenever an interrupt occured on the shared PCI INTX lines. The source
ID register does not exist on non root port PCIE device's which
advertise AER and trying to access this register causes a unsupported
request error on the bridge. Thus, when the next interrupt occurs,
another error is found and the non existent source ID register is
accessed again, and so it goes on.
The result is a spammed dmesg with unsupported request PCI express
errors on the bridge device that the AER driver is loaded against.
Reported-by: Malcolm Crossley <malcolm.crossley2@gefanuc.com>
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Tested-by: Malcolm Crossley <malcolm.crossley2@gefanuc.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
Found one system:
[ 71.120590] pci 0000:40:05.0: scanning behind bridge, config 4f4a40, pass 0
[ 71.138283] PCI: Scanning bus 0000:4a
[ 71.140341] pci 0000:4a:00.0: found [15b3:6278] class 000c06 header type 00
[ 71.157173] pci 0000:4a:00.0: reg 10 64bit mmio: [0x000000-0x0fffff]
[ 71.161697] pci 0000:4a:00.0: reg 18 64bit mmio pref: [0x000000-0x7fffff]
[ 71.179403] pci 0000:4a:00.0: reg 20 64bit mmio pref: [0x000000-0xfffffff]
[ 71.185366] pci 0000:4a:00.0: calling quirk_resource_alignment+0x0/0x1dd
[ 71.200846] pci 0000:4a:00.0: disabling ASPM on pre-1.1 PCIe device. You can enable it with 'pcie_aspm=force'
[ 71.219623] PCI: Fixups for bus 0000:4a
[ 71.222194] pci 0000:40:05.0: bridge 32bit mmio: [0xcf000000-0xcf0fffff]
[ 71.238662] pci 0000:40:05.0: bridge 64bit mmio pref: [0xcd800000-0xcdffffff]
[ 71.255793] PCI: Bus scan for 0000:4a returning with max=4a
Device needs a big pref mmio, but BIOS doesn't allocate mmio to it aside
from a small MMIO range. Later, the kernel will not allocate resources to
that to the device:
[ 99.574030] pci 0000:4a:00.0: BAR 4: can't allocate mem resource [0xd0000000-0xcdffffff]
[ 99.580102] pci 0000:4a:00.0: BAR 2: got res [0xcd800000-0xcdffffff] bus [0xcd800000-0xcdffffff] flags 0x12120c
[ 99.602307] pci 0000:4a:00.0: BAR 2: moved to bus [0xcd800000-0xcdffffff] flags 0x12120c
[ 99.615991] pci 0000:4a:00.0: BAR 0: got res [0xcf000000-0xcf0fffff] bus [0xcf000000-0xcf0fffff] flags 0x120204
[ 99.634499] pci 0000:4a:00.0: BAR 0: moved to bus [0xcf000000-0xcf0fffff] flags 0x120204
[ 99.654318] pci 0000:40:05.0: PCI bridge, secondary bus 0000:4a
[ 99.658766] pci 0000:40:05.0: IO window: disabled
[ 99.675478] pci 0000:40:05.0: MEM window: 0xcf000000-0xcf0fffff
[ 99.681663] pci 0000:40:05.0: PREFETCH window: 0x000000cd800000-0x000000cdffffff
So try to get a big range in the pci bridge if there is no child using
that range. With the patch we get:
[ 99.104525] pci 0000:4a:00.0: BAR 4: got res [0xfc080000000-0xfc08fffffff] bus [0xfc080000000-0xfc08fffffff] flags 0x12120c
[ 99.123624] pci 0000:4a:00.0: BAR 4: moved to bus [0xfc080000000-0xfc08fffffff] flags 0x12120c
[ 99.131977] pci 0000:4a:00.0: BAR 2: got res [0xfc090000000-0xfc0907fffff] bus [0xfc090000000-0xfc0907fffff] flags 0x12120c
[ 99.149788] pci 0000:4a:00.0: BAR 2: moved to bus [0xfc090000000-0xfc0907fffff] flags 0x12120c
[ 99.169248] pci 0000:4a:00.0: BAR 0: got res [0xc0200000-0xc02fffff] bus [0xc0200000-0xc02fffff] flags 0x120204
[ 99.189508] pci 0000:4a:00.0: BAR 0: moved to bus [0xc0200000-0xc02fffff] flags 0x120204
[ 99.206402] pci 0000:40:05.0: PCI bridge, secondary bus 0000:4a
[ 99.210637] pci 0000:40:05.0: IO window: disabled
[ 99.224856] pci 0000:40:05.0: MEM window: 0xc0200000-0xc03fffff
[ 99.230019] pci 0000:40:05.0: PREFETCH window: 0x000fc080000000-0x000fc097ffffff
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
Fix kernel-doc notation (& warnings) in pci/pci.c.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
This quirk will disable fast back to back transfer on the secondary bus
segment of the TI Bridge.
Signed-off-by: Gabe Black <gabe.black@ni.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
After attempting to change the power state of a PCI device
pci_raw_set_power_state() doesn't check if the value it wrote into
the device's PCI_PM_CTRL register has been stored in there, but
unconditionally modifies the device's current_state field to reflect
the change. This may cause problems to happen if the power state of
the device hasn't been changed in fact, because it will make the PCI
PM core make a wrong assumption.
To prevent such situations from happening modify
pci_raw_set_power_state() so that it reads the device's PCI_PM_CTRL
register after writing into it and uses the value read from the
register to update the device's current_state field. Also make it
print a message saying that the device refused to change its power
state as requested (returning an error code in such cases would cause
suspend regressions to appear on some systems, where device drivers'
suspend routines return error codes if pci_set_power_state() fails).
Reviewed-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
Adrian commented out this function in 2baad5f96b49, but I don't think
it's even worth cluttering the file with the unused code.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
No need to include "-driver" in the driver name.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
CC: Tom Long Nguyen <tom.l.nguyen@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
Asus decided to ship a BIOS which configures sound DMA to go via the
dedicated IOMMU unit, but assigns precisely zero TLB entries to that
unit. Which causes the whole thing to deadlock, including the DMA
traffic on the _other_ IOMMU units. Nice one.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
Commit 15b8dd53f5ffa changed info->hardware_id from a static array to
a pointer. If hardware_id is non-NULL, it points to a NULL-terminated
string, so we don't need to terminate it explicitly. However, it may
be NULL; in that case, we *can't* add a NULL terminator.
This causes a NULL pointer dereference oops for devices without _HID.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Bob Moore <robert.moore@intel.com>
CC: Gary Hade <garyhade@us.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
|
|
I recently got a system where the DMAR table included a couple of RHSA
(remapping hardware static affinity) entries. Rather than printing a
message about an "Unknown DMAR structure," it would probably be more
useful to dump the RHSA structure (as other DMAR structures are dumped).
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6
* 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: make 32 bit NUMA node array int, not unsigned char
x86/PCI: default pcibus cpumask to all cpus if it lacks affinity
MAINTAINTERS: remove hotplug driver entries
PCI: pciehp: remove slot capabilities definitions
PCI: pciehp: remove error message definitions
PCI: pciehp: remove number field
PCI: pciehp: remove hpc_ops
PCI: pciehp: remove pci_dev field
PCI: pciehp: remove crit_sect mutex
PCI: pciehp: remove slot_bus field
PCI: pciehp: remove first_slot field
PCI: pciehp: remove slot_device_offset field
PCI: pciehp: remove hp_slot field
PCI: pciehp: remove device field
PCI: pciehp: remove bus field
PCI: pciehp: remove slot_num_inc field
PCI: pciehp: remove num_slots field
PCI: pciehp: remove slot_list field
PCI: fix VGA arbiter header file
PCI: Disable AER with pci=nomsi
...
Fixed up trivial conflicts in MAINTAINERS
|
|
We might as well print the type of the DMAR structure we don't know how
to handle when skipping it. Then someone getting this message has a
chance of telling whether the structure is just bogus, or if there
really is something valid that the kernel doesn't know how to handle.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
* git://git.infradead.org/iommu-2.6: (23 commits)
intel-iommu: Disable PMRs after we enable translation, not before
intel-iommu: Kill DMAR_BROKEN_GFX_WA option.
intel-iommu: Fix integer wrap on 32 bit kernels
intel-iommu: Fix integer overflow in dma_pte_{clear_range,free_pagetable}()
intel-iommu: Limit DOMAIN_MAX_PFN to fit in an 'unsigned long'
intel-iommu: Fix kernel hang if interrupt remapping disabled in BIOS
intel-iommu: Disallow interrupt remapping if not all ioapics covered
intel-iommu: include linux/dmi.h to use dmi_ routines
pci/dmar: correct off-by-one error in dmar_fault()
intel-iommu: Cope with yet another BIOS screwup causing crashes
intel-iommu: iommu init error path bug fixes
intel-iommu: Mark functions with __init
USB: Work around BIOS bugs by quiescing USB controllers earlier
ia64: IOMMU passthrough mode shouldn't trigger swiotlb init
intel-iommu: make domain_add_dev_info() call domain_context_mapping()
intel-iommu: Unify hardware and software passthrough support
intel-iommu: Cope with broken HP DC7900 BIOS
iommu=pt is a valid early param
intel-iommu: double kfree()
intel-iommu: Kill pointless intel_unmap_single() function
...
Fixed up trivial include lines conflict in drivers/pci/intel-iommu.c
|
|
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
The following 64 bit promotions are necessary to handle memory above the
4GiB boundary correctly.
[dwmw2: Fix the second part not to need 64-bit arithmetic at all]
Signed-off-by: Benjamin LaHaise <ben.lahaise@neterion.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
|