summaryrefslogtreecommitdiff
path: root/arch
AgeCommit message (Collapse)Author
2016-08-22perf/x86: Fix undefined shift on 32-bit kernelsAndrey Ryabinin
[ Upstream commit 6d6f2833bfbf296101f9f085e10488aef2601ba5 ] Jim reported: UBSAN: Undefined behaviour in arch/x86/events/intel/core.c:3708:12 shift exponent 35 is too large for 32-bit type 'long unsigned int' The use of 'unsigned long' type obviously is not correct here, make it 'unsigned long long' instead. Reported-by: Jim Cromie <jim.cromie@gmail.com> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Imre Palik <imrep@amazon.de> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 2c33645d366d ("perf/x86: Honor the architectural performance monitoring version") Link: http://lkml.kernel.org/r/1462974711-10037-1-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22powerpc/pseries: Fix PCI config address for DDWGavin Shan
[ Upstream commit 8a934efe94347eee843aeea65bdec8077a79e259 ] In commit 8445a87f7092 "powerpc/iommu: Remove the dependency on EEH struct in DDW mechanism", the PE address was replaced with the PCI config address in order to remove dependency on EEH. According to PAPR spec, firmware (pHyp or QEMU) should accept "xxBBSSxx" format PCI config address, not "xxxxBBSS" provided by the patch. Note that "BB" is PCI bus number and "SS" is the combination of slot and function number. This fixes the PCI address passed to DDW RTAS calls. Fixes: 8445a87f7092 ("powerpc/iommu: Remove the dependency on EEH struct in DDW mechanism") Cc: stable@vger.kernel.org # v3.4+ Reported-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Tested-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22powerpc/iommu: Remove the dependency on EEH struct in DDW mechanismGuilherme G. Piccoli
[ Upstream commit 8445a87f7092bc8336ea1305be9306f26b846d93 ] Commit 39baadbf36ce ("powerpc/eeh: Remove eeh information from pci_dn") changed the pci_dn struct by removing its EEH-related members. As part of this clean-up, DDW mechanism was modified to read the device configuration address from eeh_dev struct. As a consequence, now if we disable EEH mechanism on kernel command-line for example, the DDW mechanism will fail, generating a kernel oops by dereferencing a NULL pointer (which turns to be the eeh_dev pointer). This patch just changes the configuration address calculation on DDW functions to a manual calculation based on pci_dn members instead of using eeh_dev-based address. No functional changes were made. This was tested on pSeries, both in PHyp and qemu guest. Fixes: 39baadbf36ce ("powerpc/eeh: Remove eeh information from pci_dn") Cc: stable@vger.kernel.org # v3.4+ Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22metag: Fix __cmpxchg_u32 asm constraint for CMPJames Hogan
[ Upstream commit 6154c187b97ee7513046bb4eb317a89f738f13ef ] The LNKGET based atomic sequence in __cmpxchg_u32 has slightly incorrect constraints for the return value which under certain circumstances can allow an address unit register to be used as the first operand of a CMP instruction. This isn't a valid instruction however as the encodings only allow a data unit to be specified. This would result in an assembler error like the following: Error: failed to assemble instruction: "CMP A0.2,D0Ar6" Fix by changing the constraint from "=&da" (assigned, early clobbered, data or address unit register) to "=&d" (data unit register only). The constraint for the second operand, "bd" (an op2 register where op1 is a data unit register and the instruction supports O2R) is already correct assuming the first operand is a data unit register. Other cases of CMP in inline asm have had their constraints checked, and appear to all be fine. Fixes: 6006c0d8ce94 ("metag: Atomics, locks and bitops") Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: linux-metag@vger.kernel.org Cc: <stable@vger.kernel.org> # 3.9.x- Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22x86/syscalls/64: Add compat_sys_keyctl for 32-bit userspaceSasha Levin
[ Upstream commit f7d665627e103e82d34306c7d3f6f46f387c0d8b ] x86_64 needs to use compat_sys_keyctl for 32-bit userspace rather than calling sys_keyctl(). The latter will work in a lot of cases, thereby hiding the issue. Reported-by: Stephan Mueller <smueller@chronox.de> Tested-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keyrings@vger.kernel.org Cc: linux-security-module@vger.kernel.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/146961615805.14395.5581949237156769439.stgit@warthog.procyon.org.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22ARC: mm: don't loose PTE_SPECIAL in pte_modify()Vineet Gupta
[ Upstream commit 3925a16ae980c79d1a8fd182d7f9487da1edd4dc ] LTP madvise05 was generating mm splat | [ARCLinux]# /sd/ltp/testcases/bin/madvise05 | BUG: Bad page map in process madvise05 pte:80e08211 pmd:9f7d4000 | page:9fdcfc90 count:1 mapcount:-1 mapping: (null) index:0x0 flags: 0x404(referenced|reserved) | page dumped because: bad pte | addr:200b8000 vm_flags:00000070 anon_vma: (null) mapping: (null) index:1005c | file: (null) fault: (null) mmap: (null) readpage: (null) | CPU: 2 PID: 6707 Comm: madvise05 And for newer kernels, the system was rendered unusable afterwards. The problem was mprotect->pte_modify() clearing PTE_SPECIAL (which is set to identify the special zero page wired to the pte). When pte was finally unmapped, special casing for zero page was not done, and instead it was treated as a "normal" page, tripping on the map counts etc. This fixes ARC STAR 9001053308 Cc: <stable@vger.kernel.org> Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22KEYS: 64-bit MIPS needs to use compat_sys_keyctl for 32-bit userspaceDavid Howells
[ Upstream commit 20f06ed9f61a185c6dabd662c310bed6189470df ] MIPS64 needs to use compat_sys_keyctl for 32-bit userspace rather than calling sys_keyctl. The latter will work in a lot of cases, thereby hiding the issue. Reported-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: David Howells <dhowells@redhat.com> cc: stable@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Cc: linux-security-module@vger.kernel.org Cc: keyrings@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/13832/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22KVM: PPC: Book3S HV: Save/restore TM state in H_CEDEPaul Mackerras
[ Upstream commit 93d17397e4e2182fdaad503e2f9da46202c0f1c3 ] It turns out that if the guest does a H_CEDE while the CPU is in a transactional state, and the H_CEDE does a nap, and the nap loses the architected state of the CPU (which is is allowed to do), then we lose the checkpointed state of the virtual CPU. In addition, the transactional-memory state recorded in the MSR gets reset back to non-transactional, and when we try to return to the guest, we take a TM bad thing type of program interrupt because we are trying to transition from non-transactional to transactional with a hrfid instruction, which is not permitted. The result of the program interrupt occurring at that point is that the host CPU will hang in an infinite loop with interrupts disabled. Thus this is a denial of service vulnerability in the host which can be triggered by any guest (and depending on the guest kernel, it can potentially triggered by unprivileged userspace in the guest). This vulnerability has been assigned the ID CVE-2016-5412. To fix this, we save the TM state before napping and restore it on exit from the nap, when handling a H_CEDE in real mode. The case where H_CEDE exits to host virtual mode is already OK (as are other hcalls which exit to host virtual mode) because the exit path saves the TM state. Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22KVM: PPC: Book3S HV: Pull out TM state save/restore into separate proceduresPaul Mackerras
[ Upstream commit f024ee098476a3e620232e4a78cfac505f121245 ] This moves the transactional memory state save and restore sequences out of the guest entry/exit paths into separate procedures. This is so that these sequences can be used in going into and out of nap in a subsequent patch. The only code changes here are (a) saving and restore LR on the stack, since these new procedures get called with a bl instruction, (b) explicitly saving r1 into the PACA instead of assuming that HSTATE_HOST_R1(r13) is already set, and (c) removing an unnecessary and redundant setting of MSR[TM] that should have been removed by commit 9d4d0bdd9e0a ("KVM: PPC: Book3S HV: Add transactional memory support", 2013-09-24) but wasn't. Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22arm64: debug: unmask PSTATE.D earlierWill Deacon
[ Upstream commit 2ce39ad15182604beb6c8fa8bed5e46b59fd1082 ] Clearing PSTATE.D is one of the requirements for generating a debug exception. The arm64 booting protocol requires that PSTATE.D is set, since many of the debug registers (for example, the hw_breakpoint registers) are UNKNOWN out of reset and could potentially generate spurious, fatal debug exceptions in early boot code if PSTATE.D was clear. Once the debug registers have been safely initialised, PSTATE.D is cleared, however this is currently broken for two reasons: (1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall runs after SMP (and the scheduler) have been initialised, there is no guarantee that it is actually running on the boot CPU. In this case, the boot CPU is left with PSTATE.D set and is not capable of generating debug exceptions. (2) In a preemptible kernel, we may explicitly schedule on the IRQ return path to EL1. If an IRQ occurs with PSTATE.D set in the idle thread, then we may schedule the kthread_init thread, run the postcore_initcall to clear PSTATE.D and then context switch back to the idle thread before returning from the IRQ. The exception return path will then restore PSTATE.D from the stack, and set it again. This patch fixes the problem by moving the clearing of PSTATE.D earlier to proc.S. This has the desirable effect of clearing it in one place for all CPUs, long before we have to worry about the scheduler or any exception handling. We ensure that the previous reset of MDSCR_EL1 has completed before unmasking the exception, so that any spurious exceptions resulting from UNKNOWN debug registers are not generated. Without this patch applied, the kprobes selftests have been seen to fail under KVM, where we end up attempting to step the OOL instruction buffer with PSTATE.D set and therefore fail to complete the step. Cc: <stable@vger.kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reported-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22powerpc/tm: Fix stack pointer corruption in __tm_recheckpoint()Michael Neuling
[ Upstream commit 6bcb80143e792becfd2b9cc6a339ce523e4e2219 ] At the start of __tm_recheckpoint() we save the kernel stack pointer (r1) in SPRG SCRATCH0 (SPRG2) so that we can restore it after the trecheckpoint. Unfortunately, the same SPRG is used in the SLB miss handler. If an SLB miss is taken between the save and restore of r1 to the SPRG, the SPRG is changed and hence r1 is also corrupted. We can end up with the following crash when we start using r1 again after the restore from the SPRG: Oops: Bad kernel stack pointer, sig: 6 [#1] SMP NR_CPUS=2048 NUMA pSeries CPU: 658 PID: 143777 Comm: htm_demo Tainted: G EL X 4.4.13-0-default #1 task: c0000b56993a7810 ti: c00000000cfec000 task.ti: c0000b56993bc000 NIP: c00000000004f188 LR: 00000000100040b8 CTR: 0000000010002570 REGS: c00000000cfefd40 TRAP: 0300 Tainted: G EL X (4.4.13-0-default) MSR: 8000000300001033 <SF,ME,IR,DR,RI,LE> CR: 02000424 XER: 20000000 CFAR: c000000000008468 DAR: 00003ffd84e66880 DSISR: 40000000 SOFTE: 0 PACATMSCRATCH: 00003ffbc865e680 GPR00: fffffffcfabc4268 00003ffd84e667a0 00000000100d8c38 000000030544bb80 GPR04: 0000000000000002 00000000100cf200 0000000000000449 00000000100cf100 GPR08: 000000000000c350 0000000000002569 0000000000002569 00000000100d6c30 GPR12: 00000000100d6c28 c00000000e6a6b00 00003ffd84660000 0000000000000000 GPR16: 0000000000000003 0000000000000449 0000000010002570 0000010009684f20 GPR20: 0000000000800000 00003ffd84e5f110 00003ffd84e5f7a0 00000000100d0f40 GPR24: 0000000000000000 0000000000000000 0000000000000000 00003ffff0673f50 GPR28: 00003ffd84e5e960 00000000003d0f00 00003ffd84e667a0 00003ffd84e5e680 NIP [c00000000004f188] restore_gprs+0x110/0x17c LR [00000000100040b8] 0x100040b8 Call Trace: Instruction dump: f8a1fff0 e8e700a8 38a00000 7ca10164 e8a1fff8 e821fff0 7c0007dd 7c421378 7db142a6 7c3242a6 38800002 7c810164 <e9c100e0> e9e100e8 ea0100f0 ea2100f8 We hit this on large memory machines (> 2TB) but it can also be hit on smaller machines when 1TB segments are disabled. To hit this, you also need to be virtualised to ensure SLBs are periodically removed by the hypervisor. This patches moves the saving of r1 to the SPRG to the region where we are guaranteed not to take any further SLB misses. Fixes: 98ae22e15b43 ("powerpc: Add helper functions for transactional memory context switching") Cc: stable@vger.kernel.org # v3.9+ Signed-off-by: Michael Neuling <mikey@neuling.org> Acked-by: Cyril Bur <cyrilbur@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22powerpc/tm: Avoid SLB faults in treclaim/trecheckpoint when RI=0Michael Neuling
[ Upstream commit 190ce8693c23eae09ba5f303a83bf2fbeb6478b1 ] Currently we have 2 segments that are bolted for the kernel linear mapping (ie 0xc000... addresses). This is 0 to 1TB and also the kernel stacks. Anything accessed outside of these regions may need to be faulted in. (In practice machines with TM always have 1T segments) If a machine has < 2TB of memory we never fault on the kernel linear mapping as these two segments cover all physical memory. If a machine has > 2TB of memory, there may be structures outside of these two segments that need to be faulted in. This faulting can occur when running as a guest as the hypervisor may remove any SLB that's not bolted. When we treclaim and trecheckpoint we have a window where we need to run with the userspace GPRs. This means that we no longer have a valid stack pointer in r1. For this window we therefore clear MSR RI to indicate that any exceptions taken at this point won't be able to be handled. This means that we can't take segment misses in this RI=0 window. In this RI=0 region, we currently access the thread_struct for the process being context switched to or from. This thread_struct access may cause a segment fault since it's not guaranteed to be covered by the two bolted segment entries described above. We've seen this with a crash when running as a guest with > 2TB of memory on PowerVM: Unrecoverable exception 4100 at c00000000004f138 Oops: Unrecoverable exception, sig: 6 [#1] SMP NR_CPUS=2048 NUMA pSeries CPU: 1280 PID: 7755 Comm: kworker/1280:1 Tainted: G X 4.4.13-46-default #1 task: c000189001df4210 ti: c000189001d5c000 task.ti: c000189001d5c000 NIP: c00000000004f138 LR: 0000000010003a24 CTR: 0000000010001b20 REGS: c000189001d5f730 TRAP: 4100 Tainted: G X (4.4.13-46-default) MSR: 8000000100001031 <SF,ME,IR,DR,LE> CR: 24000048 XER: 00000000 CFAR: c00000000004ed18 SOFTE: 0 GPR00: ffffffffc58d7b60 c000189001d5f9b0 00000000100d7d00 000000003a738288 GPR04: 0000000000002781 0000000000000006 0000000000000000 c0000d1f4d889620 GPR08: 000000000000c350 00000000000008ab 00000000000008ab 00000000100d7af0 GPR12: 00000000100d7ae8 00003ffe787e67a0 0000000000000000 0000000000000211 GPR16: 0000000010001b20 0000000000000000 0000000000800000 00003ffe787df110 GPR20: 0000000000000001 00000000100d1e10 0000000000000000 00003ffe787df050 GPR24: 0000000000000003 0000000000010000 0000000000000000 00003fffe79e2e30 GPR28: 00003fffe79e2e68 00000000003d0f00 00003ffe787e67a0 00003ffe787de680 NIP [c00000000004f138] restore_gprs+0xd0/0x16c LR [0000000010003a24] 0x10003a24 Call Trace: [c000189001d5f9b0] [c000189001d5f9f0] 0xc000189001d5f9f0 (unreliable) [c000189001d5fb90] [c00000000001583c] tm_recheckpoint+0x6c/0xa0 [c000189001d5fbd0] [c000000000015c40] __switch_to+0x2c0/0x350 [c000189001d5fc30] [c0000000007e647c] __schedule+0x32c/0x9c0 [c000189001d5fcb0] [c0000000007e6b58] schedule+0x48/0xc0 [c000189001d5fce0] [c0000000000deabc] worker_thread+0x22c/0x5b0 [c000189001d5fd80] [c0000000000e7000] kthread+0x110/0x130 [c000189001d5fe30] [c000000000009538] ret_from_kernel_thread+0x5c/0xa4 Instruction dump: 7cb103a6 7cc0e3a6 7ca222a6 78a58402 38c00800 7cc62838 08860000 7cc000a6 38a00006 78c60022 7cc62838 0b060000 <e8c701a0> 7ccff120 e8270078 e8a70098 ---[ end trace 602126d0a1dedd54 ]--- This fixes this by copying the required data from the thread_struct to the stack before we clear MSR RI. Then once we clear RI, we only access the stack, guaranteeing there's no segment miss. We also tighten the region over which we set RI=0 on the treclaim() path. This may have a slight performance impact since we're adding an mtmsr instruction. Fixes: 090b9284d725 ("powerpc/tm: Clear MSR RI in non-recoverable TM code") Signed-off-by: Michael Neuling <mikey@neuling.org> Reviewed-by: Cyril Bur <cyrilbur@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22KVM: nVMX: Fix memory corruption when using VMCS shadowingJim Mattson
[ Upstream commit 2f1fe81123f59271bddda673b60116bde9660385 ] When freeing the nested resources of a vcpu, there is an assumption that the vcpu's vmcs01 is the current VMCS on the CPU that executes nested_release_vmcs12(). If this assumption is violated, the vcpu's vmcs01 may be made active on multiple CPUs at the same time, in violation of Intel's specification. Moreover, since the vcpu's vmcs01 is not VMCLEARed on every CPU on which it is active, it can linger in a CPU's VMCS cache after it has been freed and potentially repurposed. Subsequent eviction from the CPU's VMCS cache on a capacity miss can result in memory corruption. It is not sufficient for vmx_free_vcpu() to call vmx_load_vmcs01(). If the vcpu in question was last loaded on a different CPU, it must be migrated to the current CPU before calling vmx_load_vmcs01(). Signed-off-by: Jim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22s390/mm: fix gmap tlb flush issuesSasha Levin
[ Upstream commit f045402984404ddc11016358411e445192919047 ] __tlb_flush_asce() should never be used if multiple asce belong to a mm. As this function changes mm logic determining if local or global tlb flushes will be neded, we might end up flushing only the gmap asce on all CPUs and a follow up mm asce flushes will only flush on the local CPU, although that asce ran on multiple CPUs. The missing tlb flushes will provoke strange faults in user space and even low address protections in user space, crashing the kernel. Fixes: 1b948d6caec4 ("s390/mm,tlb: optimize TLB flushing for zEC12") Cc: stable@vger.kernel.org # 3.15+ Reported-by: Sascha Silbe <silbe@linux.vnet.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-22ARM: dts: sunxi: Add a startup delay for fixed regulator enabled physHans de Goede
[ Upstream commit fc51b632c7b047c25807023b76f3877aed19c770 ] It seems that recent kernels have a shorter timeout when scanning for ethernet phys causing us to hit a timeout on boards where the phy's regulator gets enabled just before scanning, which leads to non working ethernet. A 10ms startup delay seems to be enough to fix it, this commit adds a 20ms startup delay just to be safe. This has been tested on a sun4i-a10-a1000 and sun5i-a10s-wobo-i5 board, both of which have non-working ethernet on recent kernels without this fix. Cc: stable@vger.kernel.org Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-08x86/quirks: Reintroduce scanning of secondary busesLukas Wunner
[ Upstream commit 850c321027c2e31d0afc71588974719a4b565550 ] We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-08x86/quirks: Apply nvidia_bugs quirk only on root busLukas Wunner
[ Upstream commit 447d29d1d3aed839e74c2401ef63387780ac51ed ] Since the following commit: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") ... early quirks are only applied to devices on the root bus. The motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to reintroduce scanning of secondary buses for a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs. To prevent regressions, open code the requirement to apply nvidia_bugs only on the root bus. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/4d5477c1d76b2f0387a780f2142bbcdd9fee869b.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-07x86/quirks: Add early quirk to reset Apple AirPort cardLukas Wunner
[ Upstream commit abb2bafd295fe962bbadc329dbfb2146457283ac ] The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-07ARM: mvebu: fix HW I/O coherency related deadlocksThomas Petazzoni
[ Upstream commit c5379ba8fccd99d5f99632c789f0393d84a57805 ] Until now, our understanding for HW I/O coherency to work on the Cortex-A9 based Marvell SoC was that only the PCIe regions should be mapped strongly-ordered. However, we were still encountering some deadlocks, especially when testing the CESA crypto engine. After checking with the HW designers, it was concluded that all the MMIO registers should be mapped as strongly ordered for the HW I/O coherency mechanism to work properly. This fixes some easy to reproduce deadlocks with the CESA crypto engine driver (dmcrypt on a sufficiently large disk partition). Tested-by: Terry Stockert <stockert@inkblotadmirer.me> Tested-by: Romain Perier <romain.perier@free-electrons.com> Cc: Terry Stockert <stockert@inkblotadmirer.me> Cc: Romain Perier <romain.perier@free-electrons.com> Cc: <stable@vger.kernel.org> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-01Revert "sparc64: Fix numa node distance initialization"Sasha Levin
This reverts commit 0396a871c4e3fbbaabb4f2632c1d388a04b68c84. Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-01Revert "MIPS: Reserve nosave data for hibernation"Sasha Levin
This reverts commit 1dd0964204277108e3e06e7df4c1f06a79d55093. Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-20powerpc: Fix build break due to missing PPC_FEATURE2_HTM_NOSCMichael Ellerman
The backport of 4705e02498d6 ("powerpc: Update TM user feature bits in scan_features()") (f49eb503f0f9), missed the fact that 4.1 doesn't include the commit that added PPC_FEATURE2_HTM_NOSC. The correct fix is simply to omit PPC_FEATURE2_HTM_NOSC. Fixes: f49eb503f0f9 ("powerpc: Update TM user feature bits in scan_features()") Reported-by: Christian Zigotzky <chzigotzky@bayern-mail.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-20MIPS: Fix page table corruption on THP permission changes.David Daney
[ Upstream commit 88d02a2ba6c52350f9a73ff1b01a5be839c3ca17 ] When the core THP code is modifying the permissions of a huge page it calls pmd_modify(), which unfortunately was clearing the _PAGE_HUGE bit of the page table entry. The result can be kernel messages like: mm/memory.c:397: bad pmd 000000040080004d. mm/memory.c:397: bad pmd 00000003ff00004d. mm/memory.c:397: bad pmd 000000040100004d. or: ------------[ cut here ]------------ WARNING: at mm/mmap.c:3200 exit_mmap+0x150/0x158() Modules linked in: ipv6 at24 octeon3_ethernet octeon_srio_nexus m25p80 CPU: 12 PID: 1295 Comm: pmderr Not tainted 3.10.87-rt80-Cavium-Octeon #4 Stack : 0000000040808000 0000000014009ce1 0000000000400004 ffffffff81076ba0 0000000000000000 0000000000000000 ffffffff85110000 0000000000000119 0000000000000004 0000000000000000 0000000000000119 43617669756d2d4f 0000000000000000 ffffffff850fda40 ffffffff85110000 0000000000000000 0000000000000000 0000000000000009 ffffffff809207a0 0000000000000c80 ffffffff80f1bf20 0000000000000001 000000ffeca36828 0000000000000001 0000000000000000 0000000000000001 000000ffeca7e700 ffffffff80886924 80000003fd7a0000 80000003fd7a39b0 80000003fdea8000 ffffffff80885780 80000003fdea8000 ffffffff80f12218 000000000000000c 000000000000050f 0000000000000000 ffffffff80865c4c 0000000000000000 0000000000000000 ... Call Trace: [<ffffffff80865c4c>] show_stack+0x6c/0xf8 [<ffffffff80885780>] warn_slowpath_common+0x78/0xa8 [<ffffffff809207a0>] exit_mmap+0x150/0x158 [<ffffffff80882d44>] mmput+0x5c/0x110 [<ffffffff8088b450>] do_exit+0x230/0xa68 [<ffffffff8088be34>] do_group_exit+0x54/0x1d0 [<ffffffff8088bfc0>] __wake_up_parent+0x0/0x18 ---[ end trace c7b38293191c57dc ]--- BUG: Bad rss-counter state mm:80000003fa168000 idx:1 val:1536 Fix by not clearing _PAGE_HUGE bit. Signed-off-by: David Daney <david.daney@cavium.com> Tested-by: Aaro Koskinen <aaro.koskinen@nokia.com> Cc: stable@vger.kernel.org Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13687/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-19x86/amd_nb: Fix boot crash on non-AMD systemsBorislav Petkov
[ Upstream commit 1ead852dd88779eda12cb09cc894a03d9abfe1ec ] Fix boot crash that triggers if this driver is built into a kernel and run on non-AMD systems. AMD northbridges users call amd_cache_northbridges() and it returns a negative value to signal that we weren't able to cache/detect any northbridges on the system. At least, it should do so as all its callers expect it to do so. But it does return a negative value only when kmalloc() fails. Fix it to return -ENODEV if there are no NBs cached as otherwise, amd_nb users like amd64_edac, for example, which relies on it to know whether it should load or not, gets loaded on systems like Intel Xeons where it shouldn't. Reported-and-tested-by: Tony Battersby <tonyb@cybernetics.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1466097230-5333-2-git-send-email-bp@alien8.de Link: https://lkml.kernel.org/r/5761BEB0.9000807@cybernetics.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-12MIPS: Fix 64k page support for 32 bit kernels.Ralf Baechle
[ Upstream commit d7de413475f443957a0c1d256e405d19b3a2cb22 ] TASK_SIZE was defined as 0x7fff8000UL which for 64k pages is not a multiple of the page size. Somewhere further down the math fails such that executing an ELF binary fails. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Joshua Henderson <joshua.henderson@microchip.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix return from trap window fill crashes.David S. Miller
[ Upstream commit 7cafc0b8bf130f038b0ec2dcdd6a9de6dc59b65a ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc: Harden signal return frame checks.David S. Miller
[ Upstream commit d11c2a0de2824395656cf8ed15811580c9dd38aa ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Take ctx_alloc_lock properly in hugetlb_setup().David S. Miller
[ Upstream commit 9ea46abe22550e3366ff7cee2f8391b35b12f730 ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc/PCI: Fix for panic while enabling SR-IOVBabu Moger
[ Upstream commit d0c31e02005764dae0aab130a57e9794d06b824d ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix sparc64_set_context stack handling.David S. Miller
[ Upstream commit 397d1533b6cce0ccb5379542e2e6d079f6936c46 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix numa node distance initializationNitin Gupta
[ Upstream commit 36beca6571c941b28b0798667608239731f9bc3a ] Orabug: 22495713 Currently, NUMA node distance matrix is initialized only when a machine descriptor (MD) exists. However, sun4u machines (e.g. Sun Blade 2500) do not have an MD and thus distance values were left uninitialized. The initialization is now moved such that it happens on both sun4u and sun4v. Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix bootup regressions on some Kconfig combinations.David S. Miller
[ Upstream commit 49fa5230462f9f2c4e97c81356473a6bdf06c422 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b95374f6 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc: Fix system call tracing register handling.Mike Frysinger
[ Upstream commit 1a40b95374f680625318ab61d81958e949e0afe3 ] A system call trace trigger on entry allows the tracing process to inspect and potentially change the traced process's registers. Account for that by reloading the %g1 (syscall number) and %i0-%i5 (syscall argument) values. We need to be careful to revalidate the range of %g1, and reload the system call table entry it corresponds to into %l7. Reported-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net> Tested-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12MIPS: Reserve nosave data for hibernationHuacai Chen
[ Upstream commit a95d069204e178f18476f5499abab0d0d9cbc32c ] After commit 92923ca3aacef63c92d ("mm: meminit: only set page reserved in the memblock region"), the MIPS hibernation is broken. Because pages in nosave data section should be "reserved", but currently they aren't set to "reserved" at initialization. This patch makes hibernation work again. Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Steven J . Hill <sjhill@realitydiluted.com> Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Cc: linux-mips@linux-mips.org Cc: stable@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/12888/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12ARM: OMAP3: Add cpuidle parameters table for omap3430Pali Rohár
[ Upstream commit 98f42221501353067251fbf11e732707dbb68ce3 ] Based on CPU type choose generic omap3 or omap3430 specific cpuidle parameters. Parameters for omap3430 were measured on Nokia N900 device and added by commit 5a1b1d3a9efa ("OMAP3: RX-51: Pass cpu idle parameters") which were later removed by commit 231900afba52 ("ARM: OMAP3: cpuidle - remove rx51 cpuidle parameters table") due to huge code complexity. This patch brings cpuidle parameters for omap3430 devices again, but uses simple condition based on CPU type. Fixes: 231900afba52 ("ARM: OMAP3: cpuidle - remove rx51 cpuidle parameters table") Signed-off-by: Pali Rohár <pali.rohar@gmail.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12x86/mm/kmmio: Fix mmiotrace for hugepagesKarol Herbst
[ Upstream commit cfa52c0cfa4d727aa3e457bf29aeff296c528a08 ] Because Linux might use bigger pages than the 4K pages to handle those mmio ioremaps, the kmmio code shouldn't rely on the pade id as it currently does. Using the memory address instead of the page id lets us look up how big the page is and what its base address is, so that we won't get a page fault within the same page twice anymore. Tested-by: Pierre Moreau <pierre.morrow@free.fr> Signed-off-by: Karol Herbst <nouveau@karolherbst.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-mm@kvack.org Cc: linux-x86_64@vger.kernel.org Cc: nouveau@lists.freedesktop.org Cc: pq@iki.fi Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/1456966991-6861-1-git-send-email-nouveau@karolherbst.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12powerpc: Update TM user feature bits in scan_features()Anton Blanchard
[ Upstream commit 4705e02498d6d5a7ab98dfee9595cd5e91db2017 ] We need to update the user TM feature bits (PPC_FEATURE2_HTM and PPC_FEATURE2_HTM) to mirror what we do with the kernel TM feature bit. At the moment, if firmware reports TM is not available we turn off the kernel TM feature bit but leave the userspace ones on. Userspace thinks it can execute TM instructions and it dies trying. This (together with a QEMU patch) fixes PR KVM, which doesn't currently support TM. Signed-off-by: Anton Blanchard <anton@samba.org> Cc: stable@vger.kernel.org Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12ASoC: samsung: pass DMA channels as pointersArnd Bergmann
[ Upstream commit b9a1a743818ea3265abf98f9431623afa8c50c86 ] ARM64 allmodconfig produces a bunch of warnings when building the samsung ASoC code: sound/soc/samsung/dmaengine.c: In function 'samsung_asoc_init_dma_data': sound/soc/samsung/dmaengine.c:53:32: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast] playback_data->filter_data = (void *)playback->channel; sound/soc/samsung/dmaengine.c:60:31: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast] capture_data->filter_data = (void *)capture->channel; We could easily shut up the warning by adding an intermediate cast, but there is a bigger underlying problem: The use of IORESOURCE_DMA to pass data from platform code to device drivers is dubious to start with, as what we really want is a pointer that can be passed into a filter function. Note that on s3c64xx, the pl08x DMA data is already a pointer, but gets cast to resource_size_t so we can pass it as a resource, and it then gets converted back to a pointer. In contrast, the data we pass for s3c24xx is an index into a device specific table, and we artificially convert that into a pointer for the filter function. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12PCI: Move domain assignment from arm64 to generic codeLorenzo Pieralisi
[ Upstream commit 7c674700098c87b305b99652e3c694c4ef195866 ] The current logic in arm64 pci_bus_assign_domain_nr() is flawed in that depending on the host controller configuration for a platform and the initialization sequence, core code may end up allocating PCI domain numbers from both DT and the generic domain counter, which would result in PCI domain allocation aliases/errors. Fix the logic behind the PCI domain number assignment and move the resulting code to the PCI core so the same domain allocation logic is used on all platforms that select CONFIG_PCI_DOMAINS_GENERIC. [bhelgaas: tidy changelog] Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Liviu Dudau <Liviu.Dudau@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> CC: Rob Herring <robh+dt@kernel.org> CC: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12Revert "s390/kdump: Clear subchannel ID to signal non-CCW/SCSI IPL"Michael Holzheu
[ Upstream commit 5419447e2142d6ed68c9f5c1a28630b3a290a845 ] This reverts commit 852ffd0f4e23248b47531058e531066a988434b5. There are use cases where an intermediate boot kernel (1) uses kexec to boot the final production kernel (2). For this scenario we should provide the original boot information to the production kernel (2). Therefore clearing the boot information during kexec() should not be done. Cc: stable@vger.kernel.org # v3.17+ Reported-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12arc: unwind: warn only once if DW2_UNWIND is disabledAlexey Brodkin
[ Upstream commit 9bd54517ee86cb164c734f72ea95aeba4804f10b ] If CONFIG_ARC_DW2_UNWIND is disabled every time arc_unwind_core() gets called following message gets printed in debug console: ----------------->8--------------- CONFIG_ARC_DW2_UNWIND needs to be enabled ----------------->8--------------- That message makes sense if user indeed wants to see a backtrace or get nice function call-graphs in perf but what if user disabled unwinder for the purpose? Why pollute his debug console? So instead we'll warn user about possibly missing feature once and let him decide if that was what he or she really wanted. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com> Cc: stable@vger.kernel.org Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12ARC: unwind: ensure that .debug_frame is generated (vs. .eh_frame)Vineet Gupta
[ Upstream commit f52e126cc7476196f44f3c313b7d9f0699a881fc ] With recent binutils update to support dwarf CFI pseudo-ops in gas, we now get .eh_frame vs. .debug_frame. Although the call frame info is exactly the same in both, the CIE differs, which the current kernel unwinder can't cope with. This broke both the kernel unwinder as well as loadable modules (latter because of a new unhandled relo R_ARC_32_PCREL from .rela.eh_frame in the module loader) The ideal solution would be to switch unwinder to .eh_frame. For now however we can make do by just ensureing .debug_frame is generated by removing -fasynchronous-unwind-tables .eh_frame generated with -gdwarf-2 -fasynchronous-unwind-tables .debug_frame generated with -gdwarf-2 Fixes STAR 9001058196 Cc: stable@vger.kernel.org Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12KVM: arm/arm64: Stop leaking vcpu pid referencesJames Morse
[ Upstream commit 591d215afcc2f94e8e2c69a63c924c044677eb31 ] kvm provides kvm_vcpu_uninit(), which amongst other things, releases the last reference to the struct pid of the task that was last running the vcpu. On arm64 built with CONFIG_DEBUG_KMEMLEAK, starting a guest with kvmtool, then killing it with SIGKILL results (after some considerable time) in: > cat /sys/kernel/debug/kmemleak > unreferenced object 0xffff80007d5ea080 (size 128): > comm "lkvm", pid 2025, jiffies 4294942645 (age 1107.776s) > hex dump (first 32 bytes): > 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ > 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ > backtrace: > [<ffff8000001b30ec>] create_object+0xfc/0x278 > [<ffff80000071da34>] kmemleak_alloc+0x34/0x70 > [<ffff80000019fa2c>] kmem_cache_alloc+0x16c/0x1d8 > [<ffff8000000d0474>] alloc_pid+0x34/0x4d0 > [<ffff8000000b5674>] copy_process.isra.6+0x79c/0x1338 > [<ffff8000000b633c>] _do_fork+0x74/0x320 > [<ffff8000000b66b0>] SyS_clone+0x18/0x20 > [<ffff800000085cb0>] el0_svc_naked+0x24/0x28 > [<ffffffffffffffff>] 0xffffffffffffffff On x86 kvm_vcpu_uninit() is called on the path from kvm_arch_destroy_vm(), on arm no equivalent call is made. Add the call to kvm_arch_vcpu_free(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 749cf76c5a36 ("KVM: ARM: Initial skeleton to compile KVM support") Cc: <stable@vger.kernel.org> # 3.10+ Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12powerpc/tm: Always reclaim in start_thread() for exec() class syscallsCyril Bur
[ Upstream commit 8e96a87c5431c256feb65bcfc5aec92d9f7839b6 ] Userspace can quite legitimately perform an exec() syscall with a suspended transaction. exec() does not return to the old process, rather it load a new one and starts that, the expectation therefore is that the new process starts not in a transaction. Currently exec() is not treated any differently to any other syscall which creates problems. Firstly it could allow a new process to start with a suspended transaction for a binary that no longer exists. This means that the checkpointed state won't be valid and if the suspended transaction were ever to be resumed and subsequently aborted (a possibility which is exceedingly likely as exec()ing will likely doom the transaction) the new process will jump to invalid state. Secondly the incorrect attempt to keep the transactional state while still zeroing state for the new process creates at least two TM Bad Things. The first triggers on the rfid to return to userspace as start_thread() has given the new process a 'clean' MSR but the suspend will still be set in the hardware MSR. The second TM Bad Thing triggers in __switch_to() as the processor is still transactionally suspended but __switch_to() wants to zero the TM sprs for the new process. This is an example of the outcome of calling exec() with a suspended transaction. Note the first 700 is likely the first TM bad thing decsribed earlier only the kernel can't report it as we've loaded userspace registers. c000000000009980 is the rfid in fast_exception_return() Bad kernel stack pointer 3fffcfa1a370 at c000000000009980 Oops: Bad kernel stack pointer, sig: 6 [#1] CPU: 0 PID: 2006 Comm: tm-execed Not tainted NIP: c000000000009980 LR: 0000000000000000 CTR: 0000000000000000 REGS: c00000003ffefd40 TRAP: 0700 Not tainted MSR: 8000000300201031 <SF,ME,IR,DR,LE,TM[SE]> CR: 00000000 XER: 00000000 CFAR: c0000000000098b4 SOFTE: 0 PACATMSCRATCH: b00000010000d033 GPR00: 0000000000000000 00003fffcfa1a370 0000000000000000 0000000000000000 GPR04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR12: 00003fff966611c0 0000000000000000 0000000000000000 0000000000000000 NIP [c000000000009980] fast_exception_return+0xb0/0xb8 LR [0000000000000000] (null) Call Trace: Instruction dump: f84d0278 e9a100d8 7c7b03a6 e84101a0 7c4ff120 e8410170 7c5a03a6 e8010070 e8410080 e8610088 e8810090 e8210078 <4c000024> 48000000 e8610178 88ed023b Kernel BUG at c000000000043e80 [verbose debug info unavailable] Unexpected TM Bad Thing exception at c000000000043e80 (msr 0x201033) Oops: Unrecoverable exception, sig: 6 [#2] CPU: 0 PID: 2006 Comm: tm-execed Tainted: G D task: c0000000fbea6d80 ti: c00000003ffec000 task.ti: c0000000fb7ec000 NIP: c000000000043e80 LR: c000000000015a24 CTR: 0000000000000000 REGS: c00000003ffef7e0 TRAP: 0700 Tainted: G D MSR: 8000000300201033 <SF,ME,IR,DR,RI,LE,TM[SE]> CR: 28002828 XER: 00000000 CFAR: c000000000015a20 SOFTE: 0 PACATMSCRATCH: b00000010000d033 GPR00: 0000000000000000 c00000003ffefa60 c000000000db5500 c0000000fbead000 GPR04: 8000000300001033 2222222222222222 2222222222222222 00000000ff160000 GPR08: 0000000000000000 800000010000d033 c0000000fb7e3ea0 c00000000fe00004 GPR12: 0000000000002200 c00000000fe00000 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c0000000fbea7410 00000000ff160000 GPR24: c0000000ffe1f600 c0000000fbea8700 c0000000fbea8700 c0000000fbead000 GPR28: c000000000e20198 c0000000fbea6d80 c0000000fbeab680 c0000000fbea6d80 NIP [c000000000043e80] tm_restore_sprs+0xc/0x1c LR [c000000000015a24] __switch_to+0x1f4/0x420 Call Trace: Instruction dump: 7c800164 4e800020 7c0022a6 f80304a8 7c0222a6 f80304b0 7c0122a6 f80304b8 4e800020 e80304a8 7c0023a6 e80304b0 <7c0223a6> e80304b8 7c0123a6 4e800020 This fixes CVE-2016-5828. Fixes: bc2a9408fa65 ("powerpc: Hook in new transactional memory code") Cc: stable@vger.kernel.org # v3.9+ Signed-off-by: Cyril Bur <cyrilbur@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12arm64: mm: remove page_mapping check in __sync_icache_dcacheShaokun Zhang
[ Upstream commit 20c27a4270c775d7ed661491af8ac03264d60fc6 ] __sync_icache_dcache unconditionally skips the cache maintenance for anonymous pages, under the assumption that flushing is only required in the presence of D-side aliases [see 7249b79f6b4cc ("arm64: Do not flush the D-cache for anonymous pages")]. Unfortunately, this breaks migration of anonymous pages holding self-modifying code, where userspace cannot be reasonably expected to reissue maintenance instructions in response to a migration. This patch fixes the problem by removing the broken page_mapping(page) check from the cache syncing code, otherwise we may end up fetching and executing stale instructions from the PoU. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12kprobes/x86: Clear TF bit in fault on single-steppingMasami Hiramatsu
[ Upstream commit dcfc47248d3f7d28df6f531e6426b933de94370d ] Fix kprobe_fault_handler() to clear the TF (trap flag) bit of the flags register in the case of a fault fixup on single-stepping. If we put a kprobe on the instruction which caused a page fault (e.g. actual mov instructions in copy_user_*), that fault happens on the single-stepping buffer. In this case, kprobes resets running instance so that the CPU can retry execution on the original ip address. However, current code forgets to reset the TF bit. Since this fault happens with TF bit set for enabling single-stepping, when it retries, it causes a debug exception and kprobes can not handle it because it already reset itself. On the most of x86-64 platform, it can be easily reproduced by using kprobe tracer. E.g. # cd /sys/kernel/debug/tracing # echo p copy_user_enhanced_fast_string+5 > kprobe_events # echo 1 > events/kprobes/enable And you'll see a kernel panic on do_debug(), since the debug trap is not handled by kprobes. To fix this problem, we just need to clear the TF bit when resetting running kprobe. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: systemtap@sourceware.org Cc: stable@vger.kernel.org # All the way back to ancient kernels Link: http://lkml.kernel.org/r/20160611140648.25885.37482.stgit@devbox [ Updated the comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-11MIPS: KVM: Fix modular KVM under QEMUJames Hogan
[ Upstream commit 797179bc4fe06c89e47a9f36f886f68640b423f8 ] Copy __kvm_mips_vcpu_run() into unmapped memory, so that we can never get a TLB refill exception in it when KVM is built as a module. This was observed to happen with the host MIPS kernel running under QEMU, due to a not entirely transparent optimisation in the QEMU TLB handling where TLB entries replaced with TLBWR are copied to a separate part of the TLB array. Code in those pages continue to be executable, but those mappings persist only until the next ASID switch, even if they are marked global. An ASID switch happens in __kvm_mips_vcpu_run() at exception level after switching to the guest exception base. Subsequent TLB mapped kernel instructions just prior to switching to the guest trigger a TLB refill exception, which enters the guest exception handlers without updating EPC. This appears as a guest triggered TLB refill on a host kernel mapped (host KSeg2) address, which is not handled correctly as user (guest) mode accesses to kernel (host) segments always generate address error exceptions. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: kvm@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: <stable@vger.kernel.org> # 3.10.x- Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-11ARM: 8579/1: mm: Fix definition of pmd_mknotpresentSteve Capper
[ Upstream commit 56530f5d2ddc9b9fade7ef8db9cb886e9dc689b5 ] Currently pmd_mknotpresent will use a zero entry to respresent an invalidated pmd. Unfortunately this definition clashes with pmd_none, thus it is possible for a race condition to occur if zap_pmd_range sees pmd_none whilst __split_huge_pmd_locked is running too with pmdp_invalidate just called. This patch fixes the race condition by modifying pmd_mknotpresent to create non-zero faulting entries (as is done in other architectures), removing the ambiguity with pmd_none. [catalin.marinas@arm.com: using L_PMD_SECT_VALID instead of PMD_TYPE_SECT] Fixes: 8d9625070073 ("ARM: mm: Transparent huge page support for LPAE systems.") Cc: <stable@vger.kernel.org> # 3.11+ Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Russell King <linux@armlinux.org.uk> Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-11ARM: 8578/1: mm: ensure pmd_present only checks the valid bitWill Deacon
[ Upstream commit 624531886987f0f1b5d01fb598034d039198e090 ] In a subsequent patch, pmd_mknotpresent will clear the valid bit of the pmd entry, resulting in a not-present entry from the hardware's perspective. Unfortunately, pmd_present simply checks for a non-zero pmd value and will therefore continue to return true even after a pmd_mknotpresent operation. Since pmd_mknotpresent is only used for managing huge entries, this is only an issue for the 3-level case. This patch fixes the 3-level pmd_present implementation to take into account the valid bit. For bisectability, the change is made before the fix to pmd_mknotpresent. [catalin.marinas@arm.com: comment update regarding pmd_mknotpresent patch] Fixes: 8d9625070073 ("ARM: mm: Transparent huge page support for LPAE systems.") Cc: <stable@vger.kernel.org> # 3.11+ Cc: Russell King <linux@armlinux.org.uk> Cc: Steve Capper <Steve.Capper@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-06-19x86, build: copy ldlinux.c32 to image.isoH. Peter Anvin
[ Upstream commit 9c77679cadb118c0aa99e6f88533d91765a131ba ] For newer versions of Syslinux, we need ldlinux.c32 in addition to isolinux.bin to reside on the boot disk, so if the latter is found, copy it, too, to the isoimage tree. Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: Linux Stable Tree <stable@vger.kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>