Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
|
|
handle_mm_fault returning VM_FAULT_RETRY or VM_FAULT_COMPLETED means
mmap_lock has been released. However with per-VMA locks behavior is
different and the caller should still release it. To make the rules
consistent for the caller, drop the per-VMA lock when returning
VM_FAULT_RETRY or VM_FAULT_COMPLETED. Currently the only path returning
VM_FAULT_RETRY under per-VMA locks is do_swap_page and no path returns
VM_FAULT_COMPLETED for now.
[willy@infradead.org: fix riscv]
Link: https://lkml.kernel.org/r/CAJuCfpE6GWEx1rPBmNpUfoD5o-gNFz9-UFywzCE2PbEGBiVz7g@mail.gmail.com
Link: https://lkml.kernel.org/r/20230630211957.1341547-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Handle most file-backed faults under the VMA lock", v3.
This patchset adds the ability to handle page faults on parts of files
which are already in the page cache without taking the mmap lock.
This patch (of 10):
Provide lock_vma_under_rcu() when CONFIG_PER_VMA_LOCK is not defined to
eliminate ifdefs in the users.
Link: https://lkml.kernel.org/r/20230724185410.1124082-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230724185410.1124082-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The CPU performs "shadow stack accesses" when it expects to encounter
shadow stack mappings. These accesses can be implicit (via CALL/RET
instructions) or explicit (instructions like WRSS).
Shadow stack accesses to shadow-stack mappings can result in faults in
normal, valid operation just like regular accesses to regular mappings.
Shadow stacks need some of the same features like delayed allocation, swap
and copy-on-write. The kernel needs to use faults to implement those
features.
The architecture has concepts of both shadow stack reads and shadow stack
writes. Any shadow stack access to non-shadow stack memory will generate
a fault with the shadow stack error code bit set.
This means that, unlike normal write protection, the fault handler needs
to create a type of memory that can be written to (with instructions that
generate shadow stack writes), even to fulfill a read access. So in the
case of COW memory, the COW needs to take place even with a shadow stack
read. Otherwise the page will be left (shadow stack) writable in
userspace. So to trigger the appropriate behavior, set FAULT_FLAG_WRITE
for shadow stack accesses, even if the access was a shadow stack read.
For the purpose of making this clearer, consider the following example.
If a process has a shadow stack, and forks, the shadow stack PTEs will
become read-only due to COW. If the CPU in one process performs a shadow
stack read access to the shadow stack, for example executing a RET and
causing the CPU to read the shadow stack copy of the return address, then
in order for the fault to be resolved the PTE will need to be set with
shadow stack permissions. But then the memory would be changeable from
userspace (from CALL, RET, WRSS, etc). So this scenario needs to trigger
COW, otherwise the shared page would be changeable from both processes.
Shadow stack accesses can also result in errors, such as when a shadow
stack overflows, or if a shadow stack access occurs to a non-shadow-stack
mapping. Also, generate the errors for invalid shadow stack accesses.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-16-rick.p.edgecombe%40intel.com
|
|
.. and make x86 use it.
This basically extracts the existing x86 "find and expand faulting vma"
code, but extends it to also take the mmap lock for writing in case we
actually do need to expand the vma.
We've historically short-circuited that case, and have some rather ugly
special logic to serialize the stack segment expansion (since we only
hold the mmap lock for reading) that doesn't match the normal VM
locking.
That slight violation of locking worked well, right up until it didn't:
the maple tree code really does want proper locking even for simple
extension of an existing vma.
So extract the code for "look up the vma of the fault" from x86, fix it
up to do the necessary write locking, and make it available as a helper
function for other architectures that can use the common helper.
Note: I say "common helper", but it really only handles the normal
stack-grows-down case. Which is all architectures except for PA-RISC
and IA64. So some rare architectures can't use the helper, but if they
care they'll just need to open-code this logic.
It's also worth pointing out that this code really would like to have an
optimistic "mmap_upgrade_trylock()" to make it quicker to go from a
read-lock (for the common case) to taking the write lock (for having to
extend the vma) in the normal single-threaded situation where there is
no other locking activity.
But that _is_ all the very uncommon special case, so while it would be
nice to have such an operation, it probably doesn't matter in reality.
I did put in the skeleton code for such a possible future expansion,
even if it only acts as pseudo-documentation for what we're doing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Attempt VMA lock-based page fault handling first, and fall back to the
existing mmap_lock-based handling if that fails.
Link: https://lkml.kernel.org/r/20230227173632.3292573-30-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This reverts commit 3f1e2c7a9099c1ed32c67f12cdf432ba782cf51f.
As noticed by Qun-Wei Lin, arch_sync_kernel_mappings() in
arch/x86/mm/fault.c is only used with CONFIG_X86_32, whereas KMSAN is only
supported on x86_64, where this code is not compiled.
The patch in question dates back to downstream KMSAN branch based on
v5.8-rc5, it sneaked into upstream unnoticed in v6.1.
Link: https://lkml.kernel.org/r/20230111101806.3236991-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Qun-Wei Lin <qun-wei.lin@mediatek.com>
Link: https://github.com/google/kmsan/issues/91
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
KMSAN assumes shadow and origin pages for every allocated page are
accessible. For pages between [VMALLOC_START, VMALLOC_END] those metadata
pages start at KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START,
therefore we must sync a bigger memory region.
Link: https://lkml.kernel.org/r/20220915150417.722975-37-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In a large enough fleet of computers, it is common to have a few bad CPUs.
Those can often be identified by seeing that some commonly run kernel code,
which runs fine everywhere else, keeps crashing on the same CPU core on one
particular bad system.
However, the failure modes in CPUs that have gone bad over the years are
often oddly specific, and the only bad behavior seen might be segfaults
in programs like bash, python, or various system daemons that run fine
everywhere else.
Add a printk() to show_signal_msg() to print the CPU, core, and socket
at segfault time.
This is not perfect, since the task might get rescheduled on another
CPU between when the fault hit, and when the message is printed, but in
practice this has been good enough to help people identify several bad
CPU cores.
For example:
segfault[1349]: segfault at 0 ip 000000000040113a sp 00007ffc6d32e360 error 4 in \
segfault[401000+1000] likely on CPU 0 (core 0, socket 0)
This printk can be controlled through /proc/sys/debug/exception-trace.
[ bp: Massage a bit, add "likely" to the printed line to denote that
the CPU number is not always reliable. ]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220805101644.2e674553@imladris.surriel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Prepare with moving the IRQ extended quiescent states
entrypoints to context tracking. For now those are dumb redirection to
existing RCU calls.
[ paulmck: Apply Stephen Rothwell feedback from -next. ]
[ paulmck: Apply Nathan Chancellor feedback. ]
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
|
|
I observed that for each of the shared file-backed page faults, we're very
likely to retry one more time for the 1st write fault upon no page. It's
because we'll need to release the mmap lock for dirty rate limit purpose
with balance_dirty_pages_ratelimited() (in fault_dirty_shared_page()).
Then after that throttling we return VM_FAULT_RETRY.
We did that probably because VM_FAULT_RETRY is the only way we can return
to the fault handler at that time telling it we've released the mmap lock.
However that's not ideal because it's very likely the fault does not need
to be retried at all since the pgtable was well installed before the
throttling, so the next continuous fault (including taking mmap read lock,
walk the pgtable, etc.) could be in most cases unnecessary.
It's not only slowing down page faults for shared file-backed, but also add
more mmap lock contention which is in most cases not needed at all.
To observe this, one could try to write to some shmem page and look at
"pgfault" value in /proc/vmstat, then we should expect 2 counts for each
shmem write simply because we retried, and vm event "pgfault" will capture
that.
To make it more efficient, add a new VM_FAULT_COMPLETED return code just to
show that we've completed the whole fault and released the lock. It's also
a hint that we should very possibly not need another fault immediately on
this page because we've just completed it.
This patch provides a ~12% perf boost on my aarch64 test VM with a simple
program sequentially dirtying 400MB shmem file being mmap()ed and these are
the time it needs:
Before: 650.980 ms (+-1.94%)
After: 569.396 ms (+-1.38%)
I believe it could help more than that.
We need some special care on GUP and the s390 pgfault handler (for gmap
code before returning from pgfault), the rest changes in the page fault
handlers should be relatively straightforward.
Another thing to mention is that mm_account_fault() does take this new
fault as a generic fault to be accounted, unlike VM_FAULT_RETRY.
I explicitly didn't touch hmm_vma_fault() and break_ksm() because they do
not handle VM_FAULT_RETRY even with existing code, so I'm literally keeping
them as-is.
Link: https://lkml.kernel.org/r/20220530183450.42886-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vineet Gupta <vgupta@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm part]
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Weinberger <richard@nod.at>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Will Deacon <will@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Helge Deller <deller@gmx.de>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit in Fixes uses accessors based on the access mode, i.e., it
distinguishes its access if instr carries a user address or a kernel
address.
Since that commit, sparse complains about passing an argument without
__user annotation to get_user(), which expects a pointer of the __user
address space:
arch/x86/mm/fault.c:152:29: warning: incorrect type in argument 1 (different address spaces)
arch/x86/mm/fault.c:152:29: expected void const volatile [noderef] __user *ptr
arch/x86/mm/fault.c:152:29: got unsigned char *[assigned] instr
Cast instr to __user when accessing user memory.
No functional change. No change in the generated object code.
[ bp: Simplify commit message. ]
Fixes: 35f1c89b0cce ("x86/fault: Fix AMD erratum #91 errata fixup for user code")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220201144055.5670-1-lukas.bulwahn@gmail.com
|
|
Since commit 4064b9827063 ("mm: allow VM_FAULT_RETRY for multiple
times") allowed VM_FAULT_RETRY for multiple times, the
FAULT_FLAG_ALLOW_RETRY bit of fault_flag will not be changed in the page
fault path, so the following check is no longer needed:
flags & FAULT_FLAG_ALLOW_RETRY
So just remove it.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20211110123358.36511-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Peter Xu <peterx@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pick up dependent cc_platform_has() changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Current code has an explicit check for hitting the task stack guard;
but overflowing any of the other stacks will get you a non-descript
general #DF warning.
Improve matters by using get_stack_info_noinstr() to detetrmine if and
which stack guard page got hit, enabling a better stack warning.
In specific, Michael Wang reported what turned out to be an NMI
exception stack overflow, which is now clearly reported as such:
[] BUG: NMI stack guard page was hit at 0000000085fd977b (stack is 000000003a55b09e..00000000d8cce1a5)
Reported-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Wang <yun.wang@linux.alibaba.com>
Link: https://lkml.kernel.org/r/YUTE/NuqnaWbST8n@hirez.programming.kicks-ass.net
|
|
The function __bad_area_nosemaphore() calls kernelmode_fixup_or_oops()
with the parameter @signal being actually @pkey, which will send a
signal numbered with the argument in @pkey.
This bug can be triggered when the kernel fails to access user-given
memory pages that are protected by a pkey, so it can go down the
do_user_addr_fault() path and pass the !user_mode() check in
__bad_area_nosemaphore().
Most cases will simply run the kernel fixup code to make an -EFAULT. But
when another condition current->thread.sig_on_uaccess_err is met, which
is only used to emulate vsyscall, the kernel will generate the wrong
signal.
Add a new parameter @pkey to kernelmode_fixup_or_oops() to fix this.
[ bp: Massage commit message, fix build error as reported by the 0day
bot: https://lkml.kernel.org/r/202109202245.APvuT8BX-lkp@intel.com ]
Fixes: 5042d40a264c ("x86/fault: Bypass no_context() for implicit kernel faults from usermode")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Jiashuo Liang <liangjs@pku.edu.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20210730030152.249106-1-liangjs@pku.edu.cn
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
|
|
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.
Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
|
|
__bad_area_nosemaphore() calls both force_sig_pkuerr() and
force_sig_fault() when handling SEGV_PKUERR. This does not cause
problems because the second signal is filtered by the legacy_queue()
check in __send_signal() because in both cases, the signal is SIGSEGV,
the second one seeing that the first one is already pending.
This causes the kernel to do unnecessary work so send the signal only
once for SEGV_PKUERR.
[ bp: Massage commit message. ]
Fixes: 9db812dbb29d ("signal/x86: Call force_sig_pkuerr from __bad_area_nosemaphore")
Suggested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Jiashuo Liang <liangjs@pku.edu.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lkml.kernel.org/r/20210601085203.40214-1-liangjs@pku.edu.cn
|
|
With the removal of kprobe::handle_fault there is no reason left that
kprobe_page_fault() would ever return true on x86, make sure it
doesn't happen by accident.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210525073213.660594073@infradead.org
|
|
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
|
|
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
|
|
Add KFENCE test suite, testing various error detection scenarios. Makes
use of KUnit for test organization. Since KFENCE's interface to obtain
error reports is via the console, the test verifies that KFENCE outputs
expected reports to the console.
[elver@google.com: fix typo in test]
Link: https://lkml.kernel.org/r/X9lHQExmHGvETxY4@elver.google.com
[elver@google.com: show access type in report]
Link: https://lkml.kernel.org/r/20210111091544.3287013-2-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-9-elver@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of removing the fault handling portion of the stack trace based on
the fault handler's name, just use struct pt_regs directly.
Change kfence_handle_page_fault() to take a struct pt_regs, and plumb it
through to kfence_report_error() for out-of-bounds, use-after-free, or
invalid access errors, where pt_regs is used to generate the stack trace.
If the kernel is a DEBUG_KERNEL, also show registers for more information.
Link: https://lkml.kernel.org/r/20201105092133.2075331-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add architecture specific implementation details for KFENCE and enable
KFENCE for the x86 architecture. In particular, this implements the
required interface in <asm/kfence.h> for setting up the pool and
providing helper functions for protecting and unprotecting pages.
For x86, we need to ensure that the pool uses 4K pages, which is done
using the set_memory_4k() helper function.
[elver@google.com: add missing copyright and description header]
Link: https://lkml.kernel.org/r/20210118092159.145934-2-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge recent cleanups to the x86 MM code to resolve a conflict.
Conflicts:
arch/x86/mm/fault.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
efi_recover_from_page_fault() doesn't recover -- it does a special EFI
mini-oops. Rename it to make it clear that it crashes.
While renaming it, I noticed a blatant bug: a page fault oops in a
different thread happening concurrently with an EFI runtime service call
would be misinterpreted as an EFI page fault. Fix that.
This isn't quite exact. The situation could be improved by using a
special CS for calls into EFI.
[ bp: Massage commit message and simplify in interrupt check. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/f43b1e80830dc78ed60ed8b0826f4f189254570c.1612924255.git.luto@kernel.org
|
|
A SMAP-violating kernel access is not a recoverable condition. Imagine
kernel code that, outside of a uaccess region, dereferences a pointer to
the user range by accident. If SMAP is on, this will reliably generate
as an intentional user access. This makes it easy for bugs to be
overlooked if code is inadequately tested both with and without SMAP.
This was discovered because BPF can generate invalid accesses to user
memory, but those warnings only got printed if SMAP was off. Make it so
that this type of error will be discovered with SMAP on as well.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/66a02343624b1ff46f02a838c497fc05c1a871b3.1612924255.git.luto@kernel.org
|
|
If the kernel gets a SMEP violation or a fault that would have been a
SMEP violation if it had SMEP support, it shouldn't run fixups. Just
OOPS.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/46160d8babce2abf1d6daa052146002efa24ac56.1612924255.git.luto@kernel.org
|
|
The name no_context() has never been very clear. It's only called for
faults from kernel mode, so rename it and change the no-longer-useful
user_mode(regs) check to a WARN_ON_ONCE.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c21940efe676024bb4bc721f7d70c29c420e127e.1612924255.git.luto@kernel.org
|
|
Drop an indentation level and remove the last user_mode(regs) == true
caller of no_context() by directly OOPSing for implicit kernel faults
from usermode.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/6e3d1129494a8de1e59d28012286e3a292a2296e.1612924255.git.luto@kernel.org
|
|
Not all callers of no_context() want to run exception fixups.
Separate the OOPS code out from the fixup code in no_context().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/450f8d8eabafb83a5df349108c8e5ea83a2f939d.1612924255.git.luto@kernel.org
|
|
Right now, the case of the kernel trying to execute from user memory
is treated more or less just like the kernel getting a page fault on a
user access. In the failure path, it checks for erratum #93, tries to
otherwise fix up the error, and then oopses.
If it manages to jump to the user address space, with or without SMEP,
it should not try to resolve the page fault. This is an error, pure and
simple. Rearrange the code so that this case is caught early, check for
erratum #93, and bail out.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/ab8719c7afb8bd501c4eee0e36493150fbbe5f6a.1612924255.git.luto@kernel.org
|
|
In general, page fault errors for WRUSS should be just like get_user(),
etc. Fix three bugs in this area:
There is a comment that says that, if the kernel can't handle a page fault
on a user address due to OOM, the OOM-kill-and-retry logic would be
skipped. The code checked kernel *privilege*, not kernel mode, so it
missed WRUSS. This means that the kernel would malfunction if it got OOM
on a WRUSS fault -- this would be a kernel-mode, user-privilege fault, and
the OOM killer would be invoked and the handler would retry the faulting
instruction.
A failed user access from kernel while a fatal signal is pending should
fail even if the instruction in question was WRUSS.
do_sigbus() should not send SIGBUS for WRUSS -- it should handle it like
any other kernel mode failure.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/a7b7bcea730bd4069e6b7e629236bb2cf526c2fb.1612924255.git.luto@kernel.org
|
|
If fault_signal_pending() returns true, then the core mm has unlocked the
mm for us. Add a comment to help future readers of this code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c56de3d103f40e6304437b150aa7b215530d23f7.1612924255.git.luto@kernel.org
|
|
bad_area() and its relatives are called from many places in fault.c, and
exactly one of them wants the F00F workaround.
__bad_area_nosemaphore() no longer contains any kernel fault code, which
prepares for further cleanups.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/e9668729a48ce6754022b0a4415631e8ebdd00e7.1612924255.git.luto@kernel.org
|
|
mm_fault_error() is logically just the end of do_user_addr_fault().
Combine the functions. This makes the code easier to read.
Most of the churn here is from renaming hw_error_code to error_code in
do_user_addr_fault().
This makes no difference at all to the generated code (objdump -dr) as
compared to changing noinline to __always_inline in the definition of
mm_fault_error().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/dedc4d9c9b047e51ce38b991bd23971a28af4e7b.1612924255.git.luto@kernel.org
|
|
According to the Revision Guide for AMD Athlon™ 64 and AMD Opteron™
Processors, only early revisions of family 0xF are affected. This will
avoid unnecessarily fetching instruction bytes before sending SIGSEGV to
user programs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/477173b7784bc28afb3e53d76ae5ef143917e8dd.1612924255.git.luto@kernel.org
|
|
The recent rework of probe_kernel_address() and its conversion to
get_kernel_nofault() inadvertently broke is_prefetch(). Before this
change, probe_kernel_address() was used as a sloppy "read user or
kernel memory" helper, but it doesn't do that any more. The new
get_kernel_nofault() reads *kernel* memory only, which completely broke
is_prefetch() for user access.
Adjust the code to the correct accessor based on access mode. The
manual address bounds check is no longer necessary, since the accessor
helpers (get_user() / get_kernel_nofault()) do the right thing all by
themselves. As a bonus, by using the correct accessor, the open-coded
address bounds check is not needed anymore.
[ bp: Massage commit message. ]
Fixes: eab0c6089b68 ("maccess: unify the probe kernel arch hooks")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/b91f7f92f3367d2d3a88eec3b09c6aab1b2dc8ef.1612924255.git.luto@kernel.org
|
|
The implementation was rather buggy. It unconditionally marked PTEs
read-only, even for VM_SHARED mappings. I'm not sure whether this is
actually a problem, but it certainly seems unwise. More importantly, it
released the mmap lock before flushing the TLB, which could allow a racing
CoW operation to falsely believe that the underlying memory was not
writable.
I can't find any users at all of this mechanism, so just remove it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Stas Sergeev <stsp2@yandex.ru>
Link: https://lkml.kernel.org/r/f3086de0babcab36f69949b5780bde851f719bc8.1611078018.git.luto@kernel.org
|
|
vDSO functions can now leverage an exception fixup mechanism similar to
kernel exception fixup. For vDSO exception fixup, the initial user is
Intel's Software Guard Extensions (SGX), which will wrap the low-level
transitions to/from the enclave, i.e. EENTER and ERESUME instructions,
in a vDSO function and leverage fixup to intercept exceptions that would
otherwise generate a signal. This allows the vDSO wrapper to return the
fault information directly to its caller, obviating the need for SGX
applications and libraries to juggle signal handlers.
Attempt to fixup vDSO exceptions immediately prior to populating and
sending signal information. Except for the delivery mechanism, an
exception in a vDSO function should be treated like any other exception
in userspace, e.g. any fault that is successfully handled by the kernel
should not be directly visible to userspace.
Although it's debatable whether or not all exceptions are of interest to
enclaves, defer to the vDSO fixup to decide whether to do fixup or
generate a signal. Future users of vDSO fixup, if there ever are any,
will undoubtedly have different requirements than SGX enclaves, e.g. the
fixup vs. signal logic can be made function specific if/when necessary.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-19-jarkko@kernel.org
|
|
vDSO exception fixup is a replacement for signals in limited situations.
Signals and vDSO exception fixup need to provide similar information to
userspace, including the hardware error code.
That hardware error code needs to be sanitized. For instance, if userspace
accesses a kernel address, the error code could indicate to userspace
whether the address had a Present=1 PTE. That can leak information about
the kernel layout to userspace, which is bad.
The existing signal code does this sanitization, but fairly late in the
signal process. The vDSO exception code runs before the sanitization
happens.
Move error code sanitization out of the signal code and into a helper.
Call the helper in the signal code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-18-jarkko@kernel.org
|
|
The x86 architecture has a set of page fault error codes. These indicate
things like whether the fault occurred from a write, or whether it
originated in userspace.
The SGX hardware architecture has its own per-page memory management
metadata (EPCM) [*] and hardware which is separate from the normal x86 MMU.
The architecture has a new page fault error code: PF_SGX. This new error
code bit is set whenever a page fault occurs as the result of the SGX MMU.
These faults occur for a variety of reasons. For instance, an access
attempt to enclave memory from outside the enclave causes a PF_SGX fault.
PF_SGX would also be set for permission conflicts, such as if a write to an
enclave page occurs and the page is marked read-write in the x86 page
tables but is read-only in the EPCM.
These faults do not always indicate errors, though. SGX pages are
encrypted with a key that is destroyed at hardware reset, including
suspend. Throwing a SIGSEGV allows user space software to react and recover
when these events occur.
Include PF_SGX in the PF error codes list and throw SIGSEGV when it is
encountered.
[*] Intel SDM: 36.5.1 Enclave Page Cache Map (EPCM)
[ bp: Add bit 15 to the comment above enum x86_pf_error_code too. ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-7-jarkko@kernel.org
|
|
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
|
|
KVM was switched to interrupt-based mechanism for 'page ready' event
delivery in Linux-5.8 (see commit 2635b5c4a0e4 ("KVM: x86: interrupt based
APF 'page ready' event delivery")) and #PF (ab)use for 'page ready' event
delivery was removed. Linux guest switched to this new mechanism
exclusively in 5.9 (see commit b1d405751cd5 ("KVM: x86: Switch KVM guest to
using interrupts for page ready APF delivery")) so it is not possible to
get #PF for a 'page ready' event even when the guest is running on top
of an older KVM (APF mechanism won't be enabled). Update the comment in
exc_page_fault() to reflect the new reality.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201002154313.1505327-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory
by sending them a SIGBUS on return to user space and umapping the
faulty memory, by Tony Luck and Youquan Song.
- memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
- New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
- Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the
hw eval phase and they don't make it into production.
- Misc fixes, improvements and cleanups, as always.
* tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Allow for copy_mc_fragile symbol checksum to be generated
x86/mce: Decode a kernel instruction to determine if it is copying from user
x86/mce: Recover from poison found while copying from user space
x86/mce: Avoid tail copy when machine check terminated a copy from user
x86/mce: Add _ASM_EXTABLE_CPY for copy user access
x86/mce: Provide method to find out the type of an exception handler
x86/mce: Pass pointer to saved pt_regs to severity calculation routines
x86/copy_mc: Introduce copy_mc_enhanced_fast_string()
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list
x86/mce: Add Skylake quirk for patrol scrub reported errors
RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE()
x86/mce: Annotate mce_rd/wrmsrl() with noinstr
x86/mce/dev-mcelog: Do not update kflags on AMD systems
x86/mce: Stop mce_reign() from re-computing severity for every CPU
x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR
x86/mce: Increase maximum number of banks to 64
x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check()
x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap
RAS/CEC: Fix cec_init() prototype
|
|
All instructions copying data between kernel and user memory
are tagged with either _ASM_EXTABLE_UA or _ASM_EXTABLE_CPY
entries in the exception table. ex_fault_handler_type() returns
EX_HANDLER_UACCESS for both of these.
Recovery is only possible when the machine check was triggered
on a read from user memory. In this case the same strategy for
recovery applies as if the user had made the access in ring3. If
the fault was in kernel memory while copying to user there is no
current recovery plan.
For MOV and MOVZ instructions a full decode of the instruction
is done to find the source address. For MOVS instructions
the source address is in the %rsi register. The function
fault_in_kernel_space() determines whether the source address is
kernel or user, upgrade it from "static" so it can be used here.
Co-developed-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201006210910.21062-7-tony.luck@intel.com
|