Age | Commit message (Collapse) | Author |
|
(imported from commit v2.6.37-rc5-64-gf1c1807)
commit 995bd3bb5 (x86: Hpet: Avoid the comparator readback penalty)
chose 8 HPET cycles as a safe value for the ETIME check, as we had the
confirmation that the posted write to the comparator register is
delayed by two HPET clock cycles on Intel chipsets which showed
readback problems.
After that patch hit mainline we got reports from machines with newer
AMD chipsets which seem to have an even longer delay. See
http://thread.gmane.org/gmane.linux.kernel/1054283 and
http://thread.gmane.org/gmane.linux.kernel/1069458 for further
information.
Boris tried to come up with an ACPI based selection of the minimum
HPET cycles, but this failed on a couple of test machines. And of
course we did not get any useful information from the hardware folks.
For now our only option is to chose a paranoid high and safe value for
the minimum HPET cycles used by the ETIME check. Adjust the minimum ns
value for the HPET clockevent accordingly.
Reported-Bistected-and-Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <alpine.LFD.2.00.1012131222420.2653@localhost6.localdomain6>
Cc: Simon Kirby <sim@hostway.ca>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
(imported from commit v2.6.36-rc4-167-g995bd3b)
Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:
1) We read out the counter, add the delta and write the result to the
compare register. When a NMI or SMI hits between the read out and
the write then the counter can be ahead of the event already
2) The write to the compare register is delayed by up to two HPET
cycles in certain chipsets.
We worked around this by reading back the compare register to make
sure that the written value has hit the hardware. For certain ICH9+
chipsets this can require two readouts, as the first one can return
the previous compare register value. That's bad performance wise for
the normal case where the event is far enough in the future.
As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:
cmp = event - actual_count;
If cmp is less than 8 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and
#2 problems which would cause a wait for HPET wraparound (~306
seconds).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Nix <nix@esperi.org.uk>
Tested-by: Artur Skawina <art.08.09@gmail.com>
Cc: Damien Wyart <damien.wyart@free.fr>
Tested-by: John Drescher <drescherjm@gmail.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <alpine.LFD.2.00.1009151500060.2416@localhost6.localdomain6>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 050438ed5a05b25cdf287f5691e56a58c2606997 upstream.
In kexec jump support, jump back address passed to the kexeced
kernel via function calling ABI, that is, the function call
return address is the jump back entry.
Furthermore, jump back entry == 0 should be used to signal that
the jump back or preserve context is not enabled in the original
kernel.
But in the current implementation the stack position used for
function call return address is not cleared context
preservation is disabled. The patch fixes this bug.
Reported-and-tested-by: Yin Kangkai <kangkai.yin@intel.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1310607277-25029-1-git-send-email-ying.huang@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit b7798d28ec15d20fd34b70fa57eb13f0cf6d1ecd upstream.
Rebooting on the Dell E5420 often hangs with the keyboard or ACPI
methods, but is reliable via the PCI method.
[ hpa: this was deferred because we believed for a long time that the
recent reshuffling of the boot priorities in commit
660e34cebf0a11d54f2d5dd8838607452355f321 fixed this platform.
Unfortunately that turned out to be incorrect. ]
Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
Link: http://lkml.kernel.org/r/1305248699-2347-1-git-send-email-daniel.blueman@gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 26018874e3584f1658570d41d57d4c34f6a53aa0 upstream.
Some PCIe cards ship with a PCI-PCIe bridge which is not
visible as a PCI device in Linux. But the device-id of the
bridge is present in the IOMMU tables which causes a boot
crash in the IOMMU driver.
This patch fixes by removing these cards from the IOMMU
handling. This is a pure -stable fix, a real fix to handle
this situation appriatly will follow for the next merge
window.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 0de66d5b35ee148455e268b2782873204ffdef4b upstream.
The driver contains several loops counting on an u16 value
where the exit-condition is checked against variables that
can have values up to 0xffff. In this case the loops will
never exit. This patch fixed 3 such loops.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 27c2127a15d340706c0aa84e311188a14468d841 upstream.
Unfortunatly there are systems where the AMD IOMMU does not
cover all devices. This breaks with the current driver as it
initializes the global dma_ops variable. This patch limits
the AMD IOMMU to the devices listed in the IVRS table fixing
DMA for devices not covered by the IOMMU.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit d47cc0db8fd6011de2248df505fc34990b7451bf upstream.
The workaround for Bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=33012
introduced a read and a write to the MC4 mask msr.
Unfortunatly this MSR is not emulated by the KVM hypervisor
so that the kernel will get a #GP and crashes when applying
this workaround when running inside KVM.
This issue was reported as:
https://bugzilla.kernel.org/show_bug.cgi?id=35132
and is fixed with this patch. The change just let the kernel
ignore any #GP it gets while accessing this MSR by using the
_safe msr access methods.
Reported-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit e9cdd343a5e42c43bcda01e609fa23089e026470 upstream.
Commit b87cf80af3ba4b4c008b4face3c68d604e1715c6 added support for
ARAT (Always Running APIC timer) on AMD processors that are not
affected by erratum 400. This erratum is present on certain processor
families and prevents APIC timer from waking up the CPU when it
is in a deep C state, including C1E state.
Determining whether a processor is affected by this erratum may
have some corner cases and handling these cases is somewhat
complicated. In the interest of simplicity we won't claim ARAT
support on processor families below 0x12 and will go back to
broadcasting timer when going idle.
Signed-off-by: Boris Ostrovsky <ostr@amd64.org>
Link: http://lkml.kernel.org/r/1306423192-19774-1-git-send-email-ostr@amd64.org
Tested-by: Boris Petkov <borislav.petkov@amd.com>
Cc: Hans Rosenfeld <Hans.Rosenfeld@amd.com>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit d9a5ac9ef306eb5cc874f285185a15c303c50009 upstream.
b may be added to a list, but is not removed before being freed
in the case of an error. This is done in the corresponding
deallocation function, so the code here has been changed to
follow that.
The sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression E,E1,E2;
identifier l;
@@
*list_add(&E->l,E1);
... when != E1
when != list_del(&E->l)
when != list_del_init(&E->l)
when != E = E2
*kfree(E);// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/1305294731-12127-1-git-send-email-julia@diku.dk
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit e503f9e4b092e2349a9477a333543de8f3c7f5d9 upstream.
This patch fixes a bug reported by a customer, who found
that many unreasonable error interrupts reported on all
non-boot CPUs (APs) during the system boot stage.
According to Chapter 10 of Intel Software Developer Manual
Volume 3A, Local APIC may signal an illegal vector error when
an LVT entry is set as an illegal vector value (0~15) under
FIXED delivery mode (bits 8-11 is 0), regardless of whether
the mask bit is set or an interrupt actually happen. These
errors are seen as error interrupts.
The initial value of thermal LVT entries on all APs always reads
0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
sequence to them and LVT registers are reset to 0s except for
the mask bits which are set to 1s when APs receive INIT IPI.
When the BIOS takes over the thermal throttling interrupt,
the LVT thermal deliver mode should be SMI and it is required
from the kernel to keep AP's LVT thermal monitoring register
programmed as such as well.
This issue happens when BIOS does not take over thermal throttling
interrupt, AP's LVT thermal monitor register will be restored to
0x10000 which means vector 0 and fixed deliver mode, so all APs will
signal illegal vector error interrupts.
This patch check if interrupt delivery mode is not fixed mode before
restoring AP's LVT thermal monitor register.
Signed-off-by: Youquan Song <youquan.song@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yong Wang <yong.y.wang@intel.com>
Cc: hpa@linux.intel.com
Cc: joe@perches.com
Cc: jbaron@redhat.com
Cc: trenn@suse.de
Cc: kent.liu@intel.com
Cc: chaohong.guo@intel.com
Link: http://lkml.kernel.org/r/1303402963-17738-1-git-send-email-youquan.song@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 14fb57dccb6e1defe9f89a66f548fcb24c374c1d upstream.
Trying to enable the local APIC timer on early K8 revisions
uncovers a number of other issues with it, in conjunction with
the C1E enter path on AMD. Fixing those causes much more churn
and troubles than the benefit of using that timer brings so
don't enable it on K8 at all, falling back to the original
functionality the kernel had wrt to that.
Reported-and-bisected-by: Nick Bowler <nbowler@elliptictech.com>
Cc: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Joerg-Volker-Peetz <jvpeetz@web.de>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305636919-31165-3-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 328935e6348c6a7cb34798a68c326f4b8372e68a upstream.
This reverts commit e20a2d205c05cef6b5783df339a7d54adeb50962, as it crashes
certain boxes with specific AMD CPU models.
Moving the lower endpoint of the Erratum 400 check to accomodate
earlier K8 revisions (A-E) opens a can of worms which is simply
not worth to fix properly by tweaking the errata checking
framework:
* missing IntPenging MSR on revisions < CG cause #GP:
http://marc.info/?l=linux-kernel&m=130541471818831
* makes earlier revisions use the LAPIC timer instead of the C1E
idle routine which switches to HPET, thus not waking up in
deeper C-states:
http://lkml.org/lkml/2011/4/24/20
Therefore, leave the original boundary starting with K8-revF.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 87dc669ba25777b67796d7262c569429e58b1ed4 upstream.
While the tracer accesses ptrace breakpoints, the child task may
concurrently exit due to a SIGKILL and thus release its breakpoints
at the same time. We can then dereference some freed pointers.
To fix this, hold a reference on the child breakpoints before
manipulating them.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Link: http://lkml.kernel.org/r/1302284067-7860-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit e20a2d205c05cef6b5783df339a7d54adeb50962 upstream.
Older AMD K8 processors (Revisions A-E) are affected by erratum
400 (APIC timer interrupts don't occur in C states greater than
C1). This, for example, means that X86_FEATURE_ARAT flag should
not be set for these parts.
This addresses regression introduced by commit
b87cf80af3ba4b4c008b4face3c68d604e1715c6 ("x86, AMD: Set ARAT
feature on AMD processors") where the system may become
unresponsive until external interrupt (such as keyboard input)
occurs. This results, for example, in time not being reported
correctly, lack of progress on the system and other lockups.
Reported-by: Joerg-Volker Peetz <jvpeetz@web.de>
Tested-by: Joerg-Volker Peetz <jvpeetz@web.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Link: http://lkml.kernel.org/r/1304113663-6586-1-git-send-email-ostr@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 665d3e2af83c8fbd149534db8f57d82fa6fa6753 upstream.
The GART can only map physical memory below 1TB. Make sure
the gart driver in the kernel does not try to map memory
above 1TB.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/1303134346-5805-5-git-send-email-joerg.roedel@amd.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 07a7795ca2e6e66d00b184efb46bd0e23d90d3fe upstream.
A bug in the family-model-stepping matching code caused the presence of
errata to go undetected when OSVW was not used. This causes hangs on
some K8 systems because the E400 workaround is not enabled.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1282141190-930137-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 5bbc097d890409d8eff4e3f1d26f11a9d6b7c07e upstream.
This patch disables GartTlbWlk errors on AMD Fam10h CPUs if
the BIOS forgets to do is (or is just too old). Letting
these errors enabled can cause a sync-flood on the CPU
causing a reboot.
The AMD BKDG recommends disabling GART TLB Wlk Error completely.
This patch is the fix for
https://bugzilla.kernel.org/show_bug.cgi?id=33012
on my machine.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/20110415131152.GJ18463@8bytes.org
Tested-by: Alexandre Demers <alexandre.f.demers@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 9d8888c2a214aece2494a49e699a097c2ba9498b upstream.
Remove check_c1e_idle() and use the new AMD errata checking framework
instead.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit d78d671db478eb8b14c78501c0cee1cc7baf6967 upstream.
Errata are defined using the AMD_LEGACY_ERRATUM() or AMD_OSVW_ERRATUM()
macros. The latter is intended for newer errata that have an OSVW id
assigned, which it takes as first argument. Both take a variable number
of family-specific model-stepping ranges created by AMD_MODEL_RANGE().
Iff an erratum has an OSVW id, OSVW is available on the CPU, and the
OSVW id is known to the hardware, it is used to determine whether an
erratum is present. Otherwise, the model-stepping ranges are matched
against the current CPU to find out whether the erratum applies.
For certain special errata, the code using this framework might have to
conduct further checks to make sure an erratum is really (not) present.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit b87cf80af3ba4b4c008b4face3c68d604e1715c6 upstream.
Support for Always Running APIC timer (ARAT) was introduced in
commit db954b5898dd3ef3ef93f4144158ea8f97deb058. This feature
allows us to avoid switching timers from LAPIC to something else
(e.g. HPET) and go into timer broadcasts when entering deep
C-states.
AMD processors don't provide a CPUID bit for that feature but
they also keep APIC timers running in deep C-states (except for
cases when the processor is affected by erratum 400). Therefore
we should set ARAT feature bit on AMD CPUs.
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
LKML-Reference: <1300205624-4813-1-git-send-email-ostr@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
This reverts upstream commit e5f15b45ddf3afa2bbbb10c7ea34fb32b6de0a0e
It caused problems in the stable tree and should not have been there.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 84ac7cdbdd0f04df6b96153f7a79127fd6e45467 upstream.
On laptops with core i5/i7, there were reports that after resume
graphics workloads were performing poorly on a specific AP, while
the other cpu's were ok. This was observed on a 32bit kernel
specifically.
Debug showed that the PAT init was not happening on that AP
during resume and hence it contributing to the poor workload
performance on that cpu.
On this system, resume flow looked like this:
1. BP starts the resume sequence and we reinit BP's MTRR's/PAT
early on using mtrr_bp_restore()
2. Resume sequence brings all AP's online
3. Resume sequence now kicks off the MTRR reinit on all the AP's.
4. For some reason, between point 2 and 3, we moved from BP
to one of the AP's. My guess is that printk() during resume
sequence is contributing to this. We don't see similar
behavior with the 64bit kernel but there is no guarantee that
at this point the remaining resume sequence (after AP's bringup)
has to happen on BP.
5. set_mtrr() was assuming that we are still on BP and skipped the
MTRR/PAT init on that cpu (because of 1 above)
6. But we were on an AP and this led to not reprogramming PAT
on this cpu leading to bad performance.
Fix this by doing unconditional mtrr_if->set_all() in set_mtrr()
during MTRR/PAT init. This might be unnecessary if we are still
running on BP. But it is of no harm and will guarantee that after
resume, all the cpu's will be in sync with respect to the
MTRR/PAT registers.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1301438292-28370-1-git-send-email-eric@anholt.net>
Signed-off-by: Eric Anholt <eric@anholt.net>
Tested-by: Keith Packard <keithp@keithp.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit e5f15b45ddf3afa2bbbb10c7ea34fb32b6de0a0e upstream.
Now cleanup_highmap actually is in two steps: one is early in head64.c
and only clears above _end; a second one is in init_memory_mapping() and
tries to clean from _brk_end to _end.
It should check if those boundaries are PMD_SIZE aligned but currently
does not.
Also init_memory_mapping() is called several times for numa or memory
hotplug, so we really should not handle initial kernel mappings there.
This patch moves cleanup_highmap() down after _brk_end is settled so
we can do everything in one step.
Also we honor max_pfn_mapped in the implementation of cleanup_highmap.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
LKML-Reference: <alpine.DEB.2.00.1103171739050.3382@kaball-desktop>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 371c394af27ab7d1e58a66bc19d9f1f3ac1f67b4 upstream.
The latest binutils (2.21.0.20110302/Ubuntu) breaks the build
yet another time, under CONFIG_XEN=y due to a .size directive that
refers to a slightly differently named (hence, to the now very
strict and unforgiving assembler, non-existent) symbol.
[ mingo:
This unnecessary build breakage caused by new binutils
version 2.21 gets escallated back several kernel releases spanning
several years of Linux history, affecting over 130,000 upstream
kernel commits (!), on CONFIG_XEN=y 64-bit kernels (i.e. essentially
affecting all major Linux distro kernel configs).
Git annotate tells us that this slight debug symbol code mismatch
bug has been introduced in 2008 in commit 3d75e1b8:
3d75e1b8 (Jeremy Fitzhardinge 2008-07-08 15:06:49 -0700 1231) ENTRY(xen_do_hypervisor_callback) # do_hypervisor_callback(struct *pt_regs)
The 'bug' is just a slight assymetry in ENTRY()/END()
debug-symbols sequences, with lots of assembly code between the
ENTRY() and the END():
ENTRY(xen_do_hypervisor_callback) # do_hypervisor_callback(struct *pt_regs)
...
END(do_hypervisor_callback)
Human reviewers almost never catch such small mismatches, and binutils
never even warned about it either.
This new binutils version thus breaks the Xen build on all upstream kernels
since v2.6.27, out of the blue.
This makes a straightforward Git bisection of all 64-bit Xen-enabled kernels
impossible on such binutils, for a bisection window of over hundred
thousand historic commits. (!)
This is a major fail on the side of binutils and binutils needs to turn
this show-stopper build failure into a warning ASAP. ]
Signed-off-by: Alexander van Heukelum <heukelum@fastmail.fm>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <kees.cook@canonical.com>
LKML-Reference: <1299877178-26063-1-git-send-email-heukelum@fastmail.fm>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 1d3e09a304e6c4e004ca06356578b171e8735d3c upstream.
Commit 7f74f8f28a2bd9db9404f7d364e2097a0c42cc12
(x86 quirk: Fix polarity for IRQ0 pin2 override on SB800
systems) introduced a regression. It removed some SB600 specific
code to determine the revision ID without adapting a
corresponding revision ID check for SB600.
See this mail thread:
http://marc.info/?l=linux-kernel&m=129980296006380&w=2
This patch adapts the corresponding check to cover all SB600
revisions.
Tested-by: Wang Lei <f3d27b@gmail.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <20110315143137.GD29499@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 9a6d44b9adb777ca9549e88cd55bd8f2673c52a2 upstream.
Emit warning when "mem=nopentium" is specified on any arch other
than x86_32 (the only that arch supports it).
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
BugLink: http://bugs.launchpad.net/bugs/553464
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
LKML-Reference: <1296783486-23033-2-git-send-email-kamal@canonical.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 77eed821accf5dd962b1f13bed0680e217e49112 upstream.
Avoid removing all of memory and panicing when "mem={invalid}"
is specified, e.g. mem=blahblah, mem=0, or mem=nopentium (on
platforms other than x86_32).
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
BugLink: http://bugs.launchpad.net/bugs/553464
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
LKML-Reference: <1296783486-23033-1-git-send-email-kamal@canonical.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 7f74f8f28a2bd9db9404f7d364e2097a0c42cc12 upstream.
On some SB800 systems polarity for IOAPIC pin2 is wrongly
specified as low active by BIOS. This caused system hangs after
resume from S3 when HPET was used in one-shot mode on such
systems because a timer interrupt was missed (HPET signal is
high active).
For more details see:
http://marc.info/?l=linux-kernel&m=129623757413868
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Tested-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20110224145346.GD3658@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit e7a3481c0246c8e45e79c629efd63b168e91fcda upstream.
If the guest domain has been suspend/resumed or migrated, then the
system clock backing the pvclock clocksource may revert to a smaller
value (ie, can be non-monotonic across the migration/save-restore).
Make sure we zero last_value in that case so that the domain
continues to see clock updates.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit f7448548a9f32db38f243ccd4271617758ddfe2c upstream.
Markus Kohn ran into a hard hang regression on an acer aspire
1310, when acpi is enabled. git bisect showed the following
commit as the bad one that introduced the boot regression.
commit d0af9eed5aa91b6b7b5049cae69e5ea956fd85c3
Author: Suresh Siddha <suresh.b.siddha@intel.com>
Date: Wed Aug 19 18:05:36 2009 -0700
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
Because of the UP configuration of that platform,
native_smp_prepare_cpus() bailed out (in smp_sanity_check())
before doing the set_mtrr_aps_delayed_init()
Further down the boot path, native_smp_cpus_done() will call the
delayed MTRR initialization for the AP's (mtrr_aps_init()) with
mtrr_aps_delayed_init not set. This resulted in the boot
processor reprogramming its MTRR's to the values seen during the
start of the OS boot. While this is not needed ideally, this
shouldn't have caused any side-effects. This is because the
reprogramming of MTRR's (set_mtrr_state() that gets called via
set_mtrr()) will check if the live register contents are
different from what is being asked to write and will do the actual
write only if they are different.
BP's mtrr state is read during the start of the OS boot and
typically nothing would have changed when we ask to reprogram it
on BP again because of the above scenario on an UP platform. So
on a normal UP platform no reprogramming of BP MTRR MSR's
happens and all is well.
However, on this platform, bios seems to be modifying the fixed
mtrr range registers between the start of OS boot and when we
double check the live registers for reprogramming BP MTRR
registers. And as the live registers are modified, we end up
reprogramming the MTRR's to the state seen during the start of
the OS boot.
During ACPI initialization, something in the bios (probably smi
handler?) don't like this fact and results in a hard lockup.
We didn't see this boot hang issue on this platform before the
commit d0af9eed5aa91b6b7b5049cae69e5ea956fd85c3, because only
the AP's (if any) will program its MTRR's to the value that BP
had at the start of the OS boot.
Fix this issue by checking mtrr_aps_delayed_init before
continuing further in the mtrr_aps_init(). Now, only AP's (if
any) will program its MTRR's to the BP values during boot.
Addresses https://bugzilla.novell.com/show_bug.cgi?id=623393
[ By the way, this behavior of the bios modifying MTRR's after the start
of the OS boot is not common and the kernel is not prepared to
handle this situation well. Irrespective of this issue, during
suspend/resume, linux kernel will try to reprogram the BP's MTRR values
to the values seen during the start of the OS boot. So suspend/resume might
be already broken on this platform for all linux kernel versions. ]
Reported-and-bisected-by: Markus Kohn <jabber@gmx.org>
Tested-by: Markus Kohn <jabber@gmx.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Thomas Renninger <trenn@novell.com>
Cc: Rafael Wysocki <rjw@novell.com>
Cc: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <1296694975.4418.402.camel@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 086e8ced65d9bcc4a8e8f1cd39b09640f2883f90 upstream.
In x2apic mode, we need to set the upper address register of the fault
handling interrupt register of the vt-d hardware. Without this
irq migration of the vt-d fault handling interrupt is broken.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <1291225233.2648.39.camel@sbsiddha-MOBL3>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Tested-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 7f7fbf45c6b748074546f7f16b9488ca71de99c1 upstream.
Interrupt-remapping gets enabled very early in the boot, as it determines the
apic mode that the processor can use. And the current code enables the vt-d
fault handling before the setup_local_APIC(). And hence the APIC LDR registers
and data structure in the memory may not be initialized. So the vt-d fault
handling in logical xapic/x2apic modes were broken.
Fix this by enabling the vt-d fault handling in the end_local_APIC_setup()
A cleaner fix of enabling fault handling while enabling intr-remapping
will be addressed for v2.6.38. [ Enabling intr-remapping determines the
usage of x2apic mode and the apic mode determines the fault-handling
configuration. ]
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <20101201062244.541996375@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
[The mainline kernel doesn't have this problem. Commit "(23588c3) x86,
amd: Add support for CPUID topology extension of AMD CPUs" removed the
family check. But 2.6.32.y needs to be fixed.]
This CPU family check is not required -- existence of the NodeId MSR
is indicated by a CPUID feature flag which is already checked in
amd_fixup_dcm() -- and it needlessly prevents amd_fixup_dcm() to be
called for newer AMD CPUs.
In worst case this can lead to a panic in the scheduler code for AMD
family 0x15 multi-node AMD CPUs. I just have a picture of VGA console
output so I can't copy-and-paste it herein, but the call stack of such
a panic looked like:
do_divide_error
...
find_busiest_group
run_rebalance_domains
...
apic_timer_interrupt
...
cpu_idle
The mainline kernel doesn't have this problem. Commit "(23588c3) x86,
amd: Add support for CPUID topology extension of AMD CPUs" removed the
family check. But 2.6.32.y needs to be fixed.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
upstream ea53069231f9317062910d6e772cca4ce93de8c8
x86, hotplug: Use mwait to offline a processor, fix the legacy case
Here included also some small follow-on patches to the same code:
upstream a68e5c94f7d3dd64fef34dd5d97e365cae4bb42a
x86, hotplug: Move WBINVD back outside the play_dead loop
upstream ce5f68246bf2385d6174856708d0b746dc378f20
x86, hotplug: In the MWAIT case of play_dead, CLFLUSH the cache line
https://bugzilla.kernel.org/show_bug.cgi?id=5471
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 6c0aca288e726405b01dacb12cac556454d34b2a upstream.
When a single step exception fires, the trap bits, used to
signal hardware breakpoints, are in a random state.
These trap bits might be set if another exception will follow,
like a breakpoint in the next instruction, or a watchpoint in the
previous one. Or there can be any junk there.
So if we handle these trap bits during the single step exception,
we are going to handle an exception twice, or we are going to
handle junk.
Just ignore them in this case.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=21332
Reported-by: Michael Stefaniuc <mstefani@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Alexandre Julliard <julliard@winehq.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit dab5fff14df2cd16eb1ad4c02e83915e1063fece upstream.
We didn't free per_cpu(acfreq_data, cpu)->freq_table
when acpi_freq driver is unloaded.
Resulting in the following messages in /sys/kernel/debug/kmemleak:
unreferenced object 0xf6450e80 (size 64):
comm "modprobe", pid 1066, jiffies 4294677317 (age 19290.453s)
hex dump (first 32 bytes):
00 00 00 00 e8 a2 24 00 01 00 00 00 00 9f 24 00 ......$.......$.
02 00 00 00 00 6a 18 00 03 00 00 00 00 35 0c 00 .....j.......5..
backtrace:
[<c123ba97>] kmemleak_alloc+0x27/0x50
[<c109f96f>] __kmalloc+0xcf/0x110
[<f9da97ee>] acpi_cpufreq_cpu_init+0x1ee/0x4e4 [acpi_cpufreq]
[<c11cd8d2>] cpufreq_add_dev+0x142/0x3a0
[<c11920b7>] sysdev_driver_register+0x97/0x110
[<c11cce56>] cpufreq_register_driver+0x86/0x140
[<f9dad080>] 0xf9dad080
[<c1001130>] do_one_initcall+0x30/0x160
[<c10626e9>] sys_init_module+0x99/0x1e0
[<c1002d97>] sysenter_do_call+0x12/0x26
[<ffffffff>] 0xffffffff
https://bugzilla.kernel.org/show_bug.cgi?id=15807#c21
Tested-by: Toralf Forster <toralf.foerster@gmx.de>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 37a2f9f30a360fb03522d15c85c78265ccd80287 upstream.
The copy of /proc/vmcore to a user buffer proceeds much faster
if the kernel addresses memory as cached.
With this patch we have seen an increase in transfer rate from
less than 15MB/s to 80-460MB/s, depending on size of the
transfer. This makes a big difference in time needed to save a
system dump.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
LKML-Reference: <E1OtMLz-0001yp-Ia@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 75e3cfbed6f71a8f151dc6e413b6ce3c390030cb upstream.
Currently the redirection hint in the interrupt-remapping table entry
is set to 0, which means the remapped interrupt is directed to the
processors listed in the destination. So in logical flat mode
in the presence of intr-remapping, this results in a single
interrupt multi-casted to multiple cpu's as specified by the destination
bit mask. But what we really want is to send that interrupt to one of the cpus
based on the lowest priority delivery mode.
Set the redirection hint in the IRTE to '1' to indicate that we want
the remapped interrupt to be directed to only one of the processors
listed in the destination.
This fixes the issue of same interrupt getting delivered to multiple cpu's
in the logical flat mode in the presence of interrupt-remapping. While
there is no functional issue observed with this behavior, this will
impact performance of such configurations (<=8 cpu's using logical flat
mode in the presence of interrupt-remapping)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100827181049.013051492@sbsiddha-MOBL3.sc.intel.com>
Cc: Weidong Han <weidong.han@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 3fdbf004c1706480a7c7fac3c9d836fa6df20d7d upstream.
Instead of adapting the CPU family check in amd_special_default_mtrr()
for each new CPU family assume that all new AMD CPUs support the
necessary bits in SYS_CFG MSR.
Tom2Enabled is architectural (defined in APM Vol.2).
Tom2ForceMemTypeWB is defined in all BKDGs starting with K8 NPT.
In pre K8-NPT BKDG this bit is reserved (read as zero).
W/o this adaption Linux would unnecessarily complain about bad MTRR
settings on every new AMD CPU family, e.g.
[ 0.000000] WARNING: BIOS bug: CPU MTRRs don't cover all of memory, losing 4863MB of RAM.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123235.GB20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 286e5b97eb22baab9d9a41ca76c6b933a484252c upstream.
Avoids a potential infinite loop.
It was observed once, during an EC hacking/debugging
session - not in regular operation.
Signed-off-by: Daniel Drake <dsd@laptop.org>
Cc: dilinger@queued.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 76fac077db6b34e2c6383a7b4f3f4f7b7d06d8ce upstream.
x86 smp_ops now has a new op, stop_other_cpus which takes a parameter
"wait" this allows the caller to specify if it wants to stop until all
the cpus have processed the stop IPI. This is required specifically
for the kexec case where we should wait for all the cpus to be stopped
before starting the new kernel. We now wait for the cpus to stop in
all cases except for panic/kdump where we expect things to be broken
and we are doing our best to make things work anyway.
This patch fixes a legitimate regression, which was introduced during
2.6.30, by commit id 4ef702c10b5df18ab04921fc252c26421d4d6c75.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
LKML-Reference: <1286833028.1372.20.camel@ank32.eng.vmware.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 3ee48b6af49cf534ca2f481ecc484b156a41451d upstream.
During the reading of /proc/vmcore the kernel is doing
ioremap()/iounmap() repeatedly. And the buildup of un-flushed
vm_area_struct's is causing a great deal of overhead. (rb_next()
is chewing up most of that time).
This solution is to provide function set_iounmap_nonlazy(). It
causes a subsequent call to iounmap() to immediately purge the
vma area (with try_purge_vmap_area_lazy()).
With this patch we have seen the time for writing a 250MB
compressed dump drop from 71 seconds to 44 seconds.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: kexec@lists.infradead.org
LKML-Reference: <E1OwHZ4-0005WK-Tw@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit b7d460897739e02f186425b7276e3fdb1595cea7 upstream.
rc2 kernel crashes when booting second cpu on this CONFIG_VMSPLIT_2G_OPT
laptop: whereas cloning from kernel to low mappings pgd range does need
to limit by both KERNEL_PGD_PTRS and KERNEL_PGD_BOUNDARY, cloning kernel
pgd range itself must not be limited by the smaller KERNEL_PGD_BOUNDARY.
Signed-off-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1008242235120.2515@sister.anvils>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit fd89a137924e0710078c3ae855e7cec1c43cb845 upstream.
This patch fixes machine crashes which occur when heavily exercising the
CPU hotplug codepaths on a 32-bit kernel. These crashes are caused by
AMD Erratum 383 and result in a fatal machine check exception. Here's
the scenario:
1. On 32-bit, the swapper_pg_dir page table is used as the initial page
table for booting a secondary CPU.
2. To make this work, swapper_pg_dir needs a direct mapping of physical
memory in it (the low mappings). By adding those low, large page (2M)
mappings (PAE kernel), we create the necessary conditions for Erratum
383 to occur.
3. Other CPUs which do not participate in the off- and onlining game may
use swapper_pg_dir while the low mappings are present (when leave_mm is
called). For all steps below, the CPU referred to is a CPU that is using
swapper_pg_dir, and not the CPU which is being onlined.
4. The presence of the low mappings in swapper_pg_dir can result
in TLB entries for addresses below __PAGE_OFFSET to be established
speculatively. These TLB entries are marked global and large.
5. When the CPU with such TLB entry switches to another page table, this
TLB entry remains because it is global.
6. The process then generates an access to an address covered by the
above TLB entry but there is a permission mismatch - the TLB entry
covers a large global page not accessible to userspace.
7. Due to this permission mismatch a new 4kb, user TLB entry gets
established. Further, Erratum 383 provides for a small window of time
where both TLB entries are present. This results in an uncorrectable
machine check exception signalling a TLB multimatch which panics the
machine.
There are two ways to fix this issue:
1. Always do a global TLB flush when a new cr3 is loaded and the
old page table was swapper_pg_dir. I consider this a hack hard
to understand and with performance implications
2. Do not use swapper_pg_dir to boot secondary CPUs like 64-bit
does.
This patch implements solution 2. It introduces a trampoline_pg_dir
which has the same layout as swapper_pg_dir with low_mappings. This page
table is used as the initial page table of the booting CPU. Later in the
bringup process, it switches to swapper_pg_dir and does a global TLB
flush. This fixes the crashes in our test cases.
-v2: switch to swapper_pg_dir right after entering start_secondary() so
that we are able to access percpu data which might not be mapped in the
trampoline page table.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
LKML-Reference: <20100816123833.GB28147@aftab>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 1dedefd1a066a795a87afca9c0236e1a94de9bf6 upstream.
Some extra CPU features such as ARAT is needed in early boot so
that x86_init function pointers can be set up properly.
http://lkml.org/lkml/2010/5/18/519
At start_kernel() level, this patch moves init_scattered_cpuid_features()
from check_bugs() to setup_arch() -> early_cpu_init() which is earlier than
platform specific x86_init layer setup. Suggested by HPA.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
LKML-Reference: <1274295685-6774-2-git-send-email-jacob.jun.pan@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 6dcbfe4f0b4e17e289d56fa534b7ce5a6b7f63a3 upstream.
This fixes possible cases of not collecting valid error info in
the MCE error thresholding groups on F10h hardware.
The current code contains a subtle problem of checking only the
Valid bit of MSR0000_0413 (which is MC4_MISC0 - DRAM
thresholding group) in its first iteration and breaking out if
the bit is cleared.
But (!), this MSR contains an offset value, BlkPtr[31:24], which
points to the remaining MSRs in this thresholding group which
might contain valid information too. But if we bail out only
after we checked the valid bit in the first MSR and not the
block pointer too, we miss that other information.
The thing is, MC4_MISC0[BlkPtr] is not predicated on
MCi_STATUS[MiscV] or MC4_MISC0[Valid] and should be checked
prior to iterating over the MCI_MISCj thresholding group,
irrespective of the MC4_MISC0[Valid] setting.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 1cf180c94e9166cda083ff65333883ab3648e852 upstream.
free_irq_cfg() is not freeing the cpumask_vars in irq_cfg. Fixing this
triggers a use after free caused by the fact that copying struct
irq_cfg is done with memcpy, which copies the pointer not the cpumask.
Fix both places.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
LKML-Reference: <alpine.LFD.2.00.1009282052570.2416@localhost6.localdomain6>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 021989622810b02aab4b24f91e1f5ada2b654579 upstream.
create_irq() returns -1 if the interrupt allocation failed, but the
code checks for irq == 0.
Use create_irq_nr() instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <alpine.LFD.2.00.1009282310360.2416@localhost6.localdomain6>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 258af47479980d8238a04568b94a4e55aa1cb537 upstream.
The guest can use the paravirt clock in kvmclock.c which is used
by sched_clock(), which in turn is used by the tracing mechanism
for timestamps, which leads to infinite recursion.
Disable mcount/tracing for kvmclock.o.
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|