Age | Commit message (Collapse) | Author |
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The Kconfig currently controlling compilation of this code is:
arch/x86/Kconfig:config X86_CHECK_BIOS_CORRUPTION
arch/x86/Kconfig: bool "Check for low memory corruption"
...meaning that it currently is not being built as a module by
anyone.
Lets remove the couple traces of modularity so that when reading
the code there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the
non-modular case, the init ordering remains unchanged with this
commit.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1440459295-21814-4-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
based on attribute
Some high end Intel Xeon systems report uncorrectable memory errors as a
recoverable machine check. Linux has included code for some time to
process these and just signal the affected processes (or even recover
completely if the error was in a read only page that can be replaced by
reading from disk).
But we have no recovery path for errors encountered during kernel code
execution. Except for some very specific cases were are unlikely to ever
be able to recover.
Enter memory mirroring. Actually 3rd generation of memory mirroing.
Gen1: All memory is mirrored
Pro: No s/w enabling - h/w just gets good data from other side of the
mirror
Con: Halves effective memory capacity available to OS/applications
Gen2: Partial memory mirror - just mirror memory begind some memory controllers
Pro: Keep more of the capacity
Con: Nightmare to enable. Have to choose between allocating from
mirrored memory for safety vs. NUMA local memory for performance
Gen3: Address range partial memory mirror - some mirror on each memory
controller
Pro: Can tune the amount of mirror and keep NUMA performance
Con: I have to write memory management code to implement
The current plan is just to use mirrored memory for kernel allocations.
This has been broken into two phases:
1) This patch series - find the mirrored memory, use it for boot time
allocations
2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the
unused mirrored memory from mm/memblock.c and only give it out to
select kernel allocations (this is still being scoped because
page_alloc.c is scary).
This patch (of 3):
Add extra "flags" to memblock to allow selection of memory based on
attribute. No functional changes
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update X86 code to use NUMA_NO_NODE instead of MAX_NUMNODES while
calling memblock APIs, because memblock API will be changed to use
NUMA_NO_NODE and will produce warning during boot otherwise.
See:
https://lkml.org/lkml/2013/12/9/898
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change set_corruption_check() and set_corruption_check_period()
in kernel/check.c to call kstrtoul() instead of calling
obsoleted simple_strtoul().
Signed-off-by: Shuah Khan <shuahkhan@gmail.com>
Link: http://lkml.kernel.org/r/1336326908.2897.12.camel@lorien2
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Other than sanity check and debug message, the x86 specific version of
memblock reserve/free functions are simple wrappers around the generic
versions - memblock_reserve/free().
This patch adds debug messages with caller identification to the
generic versions and replaces x86 specific ones and kills them.
arch/x86/include/asm/memblock.h and arch/x86/mm/memblock.c are empty
after this change and removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-14-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
setup_bios_corruption_check() and memtest do_one_pass() open code
memblock free area iteration using memblock_x86_find_in_range_size().
Convert them to use for_each_free_mem_range() instead.
This leaves memblock_x86_find_in_range_size() and
memblock_x86_check_reserved_size() unused. Kill them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-8-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
25818f0f28 (memblock: Make MEMBLOCK_ERROR be 0) thankfully made
MEMBLOCK_ERROR 0 and there already are codes which expect error return
to be 0. There's no point in keeping MEMBLOCK_ERROR around. End its
misery.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310457490-3356-6-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Due to commit 781c5a67f152c17c3e4a9ed9647f8c0be6ea5ae9 it is
likely that the number of areas to scan for BIOS corruption is 0
-- especially when the first 64K is already reserved
(X86_RESERVE_LOW is 64K by default).
If that's the case then don't set up the scan.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Cc: <stable@kernel.org>
LKML-Reference: <20110225202838.2229.71011.sendpatchset@nchumbalkar.americas.hpqcorp.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
1. replace find_e820_area with memblock_find_in_range
2. replace reserve_early with memblock_x86_reserve_range
3. replace free_early with memblock_x86_free_range.
4. NO_BOOTMEM will switch to use memblock too.
5. use _e820, _early wrap in the patch, in following patch, will
replace them all
6. because memblock_x86_free_range support partial free, we can remove some special care
7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill()
so adjust some calling later in setup.c::setup_arch()
-- corruption_check and mptable_update
-v2: Move reserve_brk() early
Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range()
that could happen We have more then 128 RAM entry in E820 tables, and
memblock_x86_fill() could use memblock_find_in_range() to find a new place for
memblock.memory.region array.
and We don't need to use extend_brk() after fill_memblock_area()
So move reserve_brk() early before fill_memblock_area().
-v3: Move find_smp_config early
To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable
in right place.
-v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in
memblock.reserved already..
use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later.
-v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit
active_region for 32bit does include high pages
need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped()
-v6: Use current_limit instead
-v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L
-v8: Set memblock_can_resize early to handle EFI with more RAM entries
-v9: update after kmemleak changes in mainline
Suggested-by: David S. Miller <davem@davemloft.net>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Impact: fix boot crash
Need to exit early if the addr is far above 64k.
The crash got exposed by:
78a8b35: x86: make e820_update_range() handle small range update
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: <stable@kernel.org>
LKML-Reference: <49BC2279.2030101@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: fix crashes under Xen due to unrobust e820 code
find_e820_area_size() must return a properly distinguishable and
out-of-bounds value when it fails, and -1UL does not meet that
criteria on i386/PAE. Additionally, callers of the function must
check against that value.
early_reserve_e820() should be prepared for the region found to be
outside of the addressable range on 32-bits.
e820_update_range_map() should not blindly update e820, but should do
all it work on the map it got a pointer passed for (which in 50% of the
cases is &e820_saved). It must also not call e820_add_region(), as that
again acts on e820 unconditionally.
The issues were found when trying to make this option work in our Xen
kernel (i.e. where some of the silent assumptions made in the code
would not hold).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B9171B.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: cleanup
now that the code is moved and converted to a work queue,
there's some minor cleanups that can be done.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: change the implementation of the debug feature
the periodic corruption checks are better off run from a work queue; there's
nothing time critical about them and this way the amount of
interrupt-context work is reduced.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: cleanup
The corruption check code is rather sizable and it's likely to grow over
time when we add checks for more types of corruptions (there's a few
candidates in kerneloops.org that I want to add checks for)... so lets move
it to its own file
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|