summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/sections.h
AgeCommit message (Collapse)Author
2009-10-20x86-64: align RODATA kernel section to 2MB with CONFIG_DEBUG_RODATASuresh Siddha
CONFIG_DEBUG_RODATA chops the large pages spanning boundaries of kernel text/rodata/data to small 4KB pages as they are mapped with different attributes (text as RO, RODATA as RO and NX etc). On x86_64, preserve the large page mappings for kernel text/rodata/data boundaries when CONFIG_DEBUG_RODATA is enabled. This is done by allowing the RODATA section to be hugepage aligned and having same RWX attributes for the 2MB page boundaries Extra Memory pages padding the sections will be freed during the end of the boot and the kernel identity mappings will have different RWX permissions compared to the kernel text mappings. Kernel identity mappings to these physical pages will be mapped with smaller pages but large page mappings are still retained for kernel text,rodata,data mappings. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> LKML-Reference: <20091014220254.190119924@sbs-t61.sc.intel.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-03-14x86: add brk allocation for very, very early allocationsJeremy Fitzhardinge
Impact: new interface Add a brk()-like allocator which effectively extends the bss in order to allow very early code to do dynamic allocations. This is better than using statically allocated arrays for data in subsystems which may never get used. The space for brk allocations is in the bss ELF segment, so that the space is mapped properly by the code which maps the kernel, and so that bootloaders keep the space free rather than putting a ramdisk or something into it. The bss itself, delimited by __bss_stop, ends before the brk area (__brk_base to __brk_limit). The kernel text, data and bss is reserved up to __bss_stop. Any brk-allocated data is reserved separately just before the kernel pagetable is built, as that code allocates from unreserved spaces in the e820 map, potentially allocating from any unused brk memory. Ultimately any unused memory in the brk area is used in the general kernel memory pool. Initially the brk space is set to 1MB, which is probably much larger than any user needs (the largest current user is i386 head_32.S's code to build the pagetables to map the kernel, which can get fairly large with a big kernel image and no PSE support). So long as the system has sufficient memory for the bootloader to reserve the kernel+1MB brk, there are no bad effects resulting from an over-large brk. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22x86, um: ... and asm-x86 moveAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: H. Peter Anvin <hpa@zytor.com>