Age | Commit message (Collapse) | Author |
|
Convert AMD erratum 400 to the bug infrastructure. Then, retract all
exports for modules since they're not needed now and make the AMD
erratum checking machinery local to amd.c. Use forward declarations to
avoid shuffling too much code around needlessly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-7-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Convert the AMD erratum 383 testing code to the bug infrastructure. This
allows keeping the AMD-specific erratum testing machinery private to
amd.c and not export symbols to modules needlessly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-6-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
... to the new facility.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-5-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
... to the new facility. Add a reference to the wikipedia article
explaining the FDIV test we're doing here.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-4-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
... to using the new facility and drop the cpuinfo_x86 member.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-3-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
We add another 32-bit vector at the end of the ->x86_capability
bitvector which collects bugs present in CPUs. After all, a CPU bug is a
kind of a capability, albeit a strange one.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-2-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading update from Peter Anvin:
"This patchset lets us update the CPU microcode very, very early in
initialization if the BIOS fails to do so (never happens, right?)
This is handy for dealing with things like the Atom erratum where we
have to run without PSE because microcode loading happens too late.
As I mentioned in the x86/mm push request it depends on that
infrastructure but it is otherwise a standalone feature."
* 'x86/microcode' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Kconfig: Make early microcode loading a configuration feature
x86/mm/init.c: Copy ucode from initrd image to kernel memory
x86/head64.c: Early update ucode in 64-bit
x86/head_32.S: Early update ucode in 32-bit
x86/microcode_intel_early.c: Early update ucode on Intel's CPU
x86/tlbflush.h: Define __native_flush_tlb_global_irq_disabled()
x86/microcode_intel_lib.c: Early update ucode on Intel's CPU
x86/microcode_core_early.c: Define interfaces for early loading ucode
x86/common.c: load ucode in 64 bit or show loading ucode info in 32 bit on AP
x86/common.c: Make have_cpuid_p() a global function
x86/microcode_intel.h: Define functions and macros for early loading ucode
x86, doc: Documentation for early microcode loading
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm changes from Peter Anvin:
"This is a huge set of several partly interrelated (and concurrently
developed) changes, which is why the branch history is messier than
one would like.
The *really* big items are two humonguous patchsets mostly developed
by Yinghai Lu at my request, which completely revamps the way we
create initial page tables. In particular, rather than estimating how
much memory we will need for page tables and then build them into that
memory -- a calculation that has shown to be incredibly fragile -- we
now build them (on 64 bits) with the aid of a "pseudo-linear mode" --
a #PF handler which creates temporary page tables on demand.
This has several advantages:
1. It makes it much easier to support things that need access to data
very early (a followon patchset uses this to load microcode way
early in the kernel startup).
2. It allows the kernel and all the kernel data objects to be invoked
from above the 4 GB limit. This allows kdump to work on very large
systems.
3. It greatly reduces the difference between Xen and native (Xen's
equivalent of the #PF handler are the temporary page tables created
by the domain builder), eliminating a bunch of fragile hooks.
The patch series also gets us a bit closer to W^X.
Additional work in this pull is the 64-bit get_user() work which you
were also involved with, and a bunch of cleanups/speedups to
__phys_addr()/__pa()."
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (105 commits)
x86, mm: Move reserving low memory later in initialization
x86, doc: Clarify the use of asm("%edx") in uaccess.h
x86, mm: Redesign get_user with a __builtin_choose_expr hack
x86: Be consistent with data size in getuser.S
x86, mm: Use a bitfield to mask nuisance get_user() warnings
x86/kvm: Fix compile warning in kvm_register_steal_time()
x86-32: Add support for 64bit get_user()
x86-32, mm: Remove reference to alloc_remap()
x86-32, mm: Remove reference to resume_map_numa_kva()
x86-32, mm: Rip out x86_32 NUMA remapping code
x86/numa: Use __pa_nodebug() instead
x86: Don't panic if can not alloc buffer for swiotlb
mm: Add alloc_bootmem_low_pages_nopanic()
x86, 64bit, mm: hibernate use generic mapping_init
x86, 64bit, mm: Mark data/bss/brk to nx
x86: Merge early kernel reserve for 32bit and 64bit
x86: Add Crash kernel low reservation
x86, kdump: Remove crashkernel range find limit for 64bit
memblock: Add memblock_mem_size()
x86, boot: Not need to check setup_header version for setup_data
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
- Rework of the ACPI namespace scanning code from Rafael J. Wysocki
with contributions from Bjorn Helgaas, Jiang Liu, Mika Westerberg,
Toshi Kani, and Yinghai Lu.
- ACPI power resources handling and ACPI device PM update from Rafael
J Wysocki.
- ACPICA update to version 20130117 from Bob Moore and Lv Zheng with
contributions from Aaron Lu, Chao Guan, Jesper Juhl, and Tim Gardner.
- Support for Intel Lynxpoint LPSS from Mika Westerberg.
- cpuidle update from Len Brown including Intel Haswell support, C1
state for intel_idle, removal of global pm_idle.
- cpuidle fixes and cleanups from Daniel Lezcano.
- cpufreq fixes and cleanups from Viresh Kumar and Fabio Baltieri with
contributions from Stratos Karafotis and Rickard Andersson.
- Intel P-states driver for Sandy Bridge processors from Dirk
Brandewie.
- cpufreq driver for Marvell Kirkwood SoCs from Andrew Lunn.
- cpufreq fixes related to ordering issues between acpi-cpufreq and
powernow-k8 from Borislav Petkov and Matthew Garrett.
- cpufreq support for Calxeda Highbank processors from Mark Langsdorf
and Rob Herring.
- cpufreq driver for the Freescale i.MX6Q SoC and cpufreq-cpu0 update
from Shawn Guo.
- cpufreq Exynos fixes and cleanups from Jonghwan Choi, Sachin Kamat,
and Inderpal Singh.
- Support for "lightweight suspend" from Zhang Rui.
- Removal of the deprecated power trace API from Paul Gortmaker.
- Assorted updates from Andreas Fleig, Colin Ian King, Davidlohr Bueso,
Joseph Salisbury, Kees Cook, Li Fei, Nishanth Menon, ShuoX Liu,
Srinivas Pandruvada, Tejun Heo, Thomas Renninger, and Yasuaki
Ishimatsu.
* tag 'pm+acpi-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (267 commits)
PM idle: remove global declaration of pm_idle
unicore32 idle: delete stray pm_idle comment
openrisc idle: delete pm_idle
mn10300 idle: delete pm_idle
microblaze idle: delete pm_idle
m32r idle: delete pm_idle, and other dead idle code
ia64 idle: delete pm_idle
cris idle: delete idle and pm_idle
ARM64 idle: delete pm_idle
ARM idle: delete pm_idle
blackfin idle: delete pm_idle
sparc idle: rename pm_idle to sparc_idle
sh idle: rename global pm_idle to static sh_idle
x86 idle: rename global pm_idle to static x86_idle
APM idle: register apm_cpu_idle via cpuidle
cpufreq / intel_pstate: Add kernel command line option disable intel_pstate.
cpufreq / intel_pstate: Change to disallow module build
tools/power turbostat: display SMI count by default
intel_idle: export both C1 and C1E
ACPI / hotplug: Fix concurrency issues and memory leaks
...
|
|
Remove 32-bit x86 a cmdline param "no-hlt",
and the cpuinfo_x86.hlt_works_ok that it sets.
If a user wants to avoid HLT, then "idle=poll"
is much more useful, as it avoids invocation of HLT
in idle, while "no-hlt" failed to do so.
Indeed, hlt_works_ok was consulted in only 3 places.
First, in /proc/cpuinfo where "hlt_bug yes"
would be printed if and only if the user booted
the system with "no-hlt" -- as there was no other code
to set that flag.
Second, check_hlt() would not invoke halt() if "no-hlt"
were on the cmdline.
Third, it was consulted in stop_this_cpu(), which is invoked
by native_machine_halt()/reboot_interrupt()/smp_stop_nmi_callback() --
all cases where the machine is being shutdown/reset.
The flag was not consulted in the more frequently invoked
play_dead()/hlt_play_dead() used in processor offline and suspend.
Since Linux-3.0 there has been a run-time notice upon "no-hlt" invocations
indicating that it would be removed in 2012.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: x86@kernel.org
|
|
mwait_idle() is a C1-only idle loop intended to be more efficient
than HLT, starting on Pentium-4 HT-enabled processors.
But mwait_idle() has been replaced by the more general
mwait_idle_with_hints(), which handles both C1 and deeper C-states.
ACPI processor_idle and intel_idle use only mwait_idle_with_hints(),
and no longer use mwait_idle().
Here we simplify the x86 native idle code by removing mwait_idle(),
and the "idle=mwait" bootparam used to invoke it.
Since Linux 3.0 there has been a boot-time warning when "idle=mwait"
was invoked saying it would be removed in 2012. This removal
was also noted in the (now removed:-) feature-removal-schedule.txt.
After this change, kernels configured with
(CONFIG_ACPI=n && CONFIG_INTEL_IDLE=n) when run on hardware
that supports MWAIT will simply use HLT. If MWAIT is desired
on those systems, cpuidle and the cpuidle drivers above
can be enabled.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: x86@kernel.org
|
|
This macro is only invoked by Xen,
so make its definition specific to Xen.
> set_pm_idle_to_default()
< xen_set_default_idle()
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: xen-devel@lists.xensource.com
|
|
Remove static declaration in have_cpuid_p() to make it a global function. The
function will be called in early loading microcode.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1356075872-3054-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all
64-bit code has to use page tables. This makes it awkward before we
have first set up properly all-covering page tables to access objects
that are outside the static kernel range.
So far we have dealt with that simply by mapping a fixed amount of
low memory, but that fails in at least two upcoming use cases:
1. We will support load and run kernel, struct boot_params, ramdisk,
command line, etc. above the 4 GiB mark.
2. need to access ramdisk early to get microcode to update that as
early possible.
We could use early_iomap to access them too, but it will make code to
messy and hard to be unified with 32 bit.
Hence, set up a #PF table and use a fixed number of buffers to set up
page tables on demand. If the buffers fill up then we simply flush
them and start over. These buffers are all in __initdata, so it does
not increase RAM usage at runtime.
Thus, with the help of the #PF handler, we can set the final kernel
mapping from blank, and switch to init_level4_pgt later.
During the switchover in head_64.S, before #PF handler is available,
we use three pages to handle kernel crossing 1G, 512G boundaries with
sharing page by playing games with page aliasing: the same page is
mapped twice in the higher-level tables with appropriate wraparound.
The kernel region itself will be properly mapped; other mappings may
be spurious.
early_make_pgtable is using kernel high mapping address to access pages
to set page table.
-v4: Add phys_base offset to make kexec happy, and add
init_mapping_kernel() - Yinghai
-v5: fix compiling with xen, and add back ident level3 and level2 for xen
also move back init_level4_pgt from BSS to DATA again.
because we have to clear it anyway. - Yinghai
-v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai
-v7: remove not needed clear_page for init_level4_page
it is with fill 512,8,0 already in head_64.S - Yinghai
-v8: we need to keep that handler alive until init_mem_mapping and don't
let early_trap_init to trash that early #PF handler.
So split early_trap_pf_init out and move it down. - Yinghai
-v9: switchover only cover kernel space instead of 1G so could avoid
touch possible mem holes. - Yinghai
-v11: change far jmp back to far return to initial_code, that is needed
to fix failure that is reported by Konrad on AMD systems. - Yinghai
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Change amd_get_nb_id to return u16 to support >255 memory controllers,
and related consistency fixes.
Signed-off-by: Daniel J Blueman <daniel@numascale-asia.com>
Link: http://lkml.kernel.org/r/1353997932-8475-2-git-send-email-daniel@numascale-asia.com
Signed-off-by: Borislav Petkov <bp@alien8.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull "Nuke 386-DX/SX support" from Ingo Molnar:
"This tree removes ancient-386-CPUs support and thus zaps quite a bit
of complexity:
24 files changed, 56 insertions(+), 425 deletions(-)
... which complexity has plagued us with extra work whenever we wanted
to change SMP primitives, for years.
Unfortunately there's a nostalgic cost: your old original 386 DX33
system from early 1991 won't be able to boot modern Linux kernels
anymore. Sniff."
I'm not sentimental. Good riddance.
* 'x86-nuke386-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, 386 removal: Document Nx586 as a 386 and thus unsupported
x86, cleanups: Simplify sync_core() in the case of no CPUID
x86, 386 removal: Remove CONFIG_X86_POPAD_OK
x86, 386 removal: Remove CONFIG_X86_WP_WORKS_OK
x86, 386 removal: Remove CONFIG_INVLPG
x86, 386 removal: Remove CONFIG_BSWAP
x86, 386 removal: Remove CONFIG_XADD
x86, 386 removal: Remove CONFIG_CMPXCHG
x86, 386 removal: Remove CONFIG_M386 from Kconfig
|
|
Simplify the implementation of sync_core() for the case where we may
not have the CPUID instruction available.
[ v2: stylistic cleanup of the #else clause per suggestion by Borislav
Petkov. ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1354132230-21854-9-git-send-email-hpa@linux.intel.com
Cc: Borislav Petkov <bp@alien8.de>
|
|
Remove the CONFIG_M386 symbol from Kconfig so that it cannot be
selected.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1354132230-21854-2-git-send-email-hpa@linux.intel.com
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
CPUID 0x8000001d works quite similar to Intels' CPUID function 4.
Use it to determine number of cache leafs.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/20121019085933.GE26718@alberich
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull generic execve() changes from Al Viro:
"This introduces the generic kernel_thread() and kernel_execve()
functions, and switches x86, arm, alpha, um and s390 over to them."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (26 commits)
s390: convert to generic kernel_execve()
s390: switch to generic kernel_thread()
s390: fold kernel_thread_helper() into ret_from_fork()
s390: fold execve_tail() into start_thread(), convert to generic sys_execve()
um: switch to generic kernel_thread()
x86, um/x86: switch to generic sys_execve and kernel_execve
x86: split ret_from_fork
alpha: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
alpha: switch to generic kernel_thread()
alpha: switch to generic sys_execve()
arm: get rid of execve wrapper, switch to generic execve() implementation
arm: optimized current_pt_regs()
arm: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
arm: split ret_from_fork, simplify kernel_thread() [based on patch by rmk]
generic sys_execve()
generic kernel_execve()
new helper: current_pt_regs()
preparation for generic kernel_thread()
um: kill thread->forking
um: let signal_delivered() do SIGTRAP on singlestepping into handler
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/asm changes from Ingo Molnar:
"The one change that stands out is the alternatives patching change
that prevents us from ever patching back instructions from SMP to UP:
this simplifies things and speeds up CPU hotplug.
Other than that it's smaller fixes, cleanups and improvements."
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Unspaghettize do_trap()
x86_64: Work around old GAS bug
x86: Use REP BSF unconditionally
x86: Prefer TZCNT over BFS
x86/64: Adjust types of temporaries used by ffs()/fls()/fls64()
x86: Drop unnecessary kernel_eflags variable on 64-bit
x86/smp: Don't ever patch back to UP if we unplug cpus
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
single-stepping
user_enable/disable_single_step() was designed for ptrace, it assumes
a single user and does unnecessary and wrong things for uprobes. For
example:
- arch_uprobe_enable_step() can't trust TIF_SINGLESTEP, an
application itself can set X86_EFLAGS_TF which must be
preserved after arch_uprobe_disable_step().
- we do not want to set TIF_SINGLESTEP/TIF_FORCED_TF in
arch_uprobe_enable_step(), this only makes sense for ptrace.
- otoh we leak TIF_SINGLESTEP if arch_uprobe_disable_step()
doesn't do user_disable_single_step(), the application will
be killed after the next syscall.
- arch_uprobe_enable_step() does access_process_vm() we do
not need/want.
Change arch_uprobe_enable/disable_step() to set/clear X86_EFLAGS_TF
directly, this is much simpler and more correct. However, we need to
clear TIF_BLOCKSTEP/DEBUGCTLMSR_BTF before executing the probed insn,
add set_task_blockstep(false).
Note: with or without this patch, there is another (hopefully minor)
problem. A probed "pushf" insn can see the wrong X86_EFLAGS_TF set by
uprobes. Perhaps we should change _disable to update the stack, or
teach arch_uprobe_skip_sstep() to emulate this insn.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
|
|
On 64 bit x86 we save the current eflags in cpu_init for use in
ret_from_fork. Strictly speaking reserved bits in EFLAGS should
be read as written but in practise it is unlikely that EFLAGS
could ever be extended in this way and the kernel alread clears
any undefined flags early on.
The equivalent 32 bit code simply hard codes 0x0202 as the new
EFLAGS.
This change makes 64 bit use the same mechanism to setup the
initial EFLAGS on fork. Note that 64 bit resets EFLAGS before
calling schedule_tail() as opposed to 32 bit which calls
schedule_tail() first. Therefore the correct value for EFLAGS
has opposite IF bit.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/20120824195847.GA31628@moon
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Testing show different CPU type(micro architectures and NUMA mode) has
different balance points between the TLB flush all and multiple invlpg.
And there also has cases the tlb flush change has no any help.
This patch give a interface to let x86 vendor developers have a chance
to set different shift for different CPU type.
like some machine in my hands, balance points is 16 entries on
Romely-EP; while it is at 8 entries on Bloomfield NHM-EP; and is 256 on
IVB mobile CPU. but on model 15 core2 Xeon using invlpg has nothing
help.
For untested machine, do a conservative optimization, same as NHM CPU.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Link: http://lkml.kernel.org/r/1340845344-27557-5-git-send-email-alex.shi@intel.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
For 4KB pages, x86 CPU has 2 or 1 level TLB, first level is data TLB and
instruction TLB, second level is shared TLB for both data and instructions.
For hupe page TLB, usually there is just one level and seperated by 2MB/4MB
and 1GB.
Although each levels TLB size is important for performance tuning, but for
genernal and rude optimizing, last level TLB entry number is suitable. And
in fact, last level TLB always has the biggest entry number.
This patch will get the biggest TLB entry number and use it in furture TLB
optimizing.
Accroding Borislav's suggestion, except tlb_ll[i/d]_* array, other
function and data will be released after system boot up.
For all kinds of x86 vendor friendly, vendor specific code was moved to its
specific files.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Link: http://lkml.kernel.org/r/1340845344-27557-2-git-send-email-alex.shi@intel.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 trampoline rework from H. Peter Anvin:
"This code reworks all the "trampoline"/"realmode" code (various bits
that need to live in the first megabyte of memory, most but not all of
which runs in real mode at some point) in the kernel into a single
object. The main reason for doing this is that it eliminates the last
place in the kernel where we needed pages to be mapped RWX. This code
separates all that code into proper R/RW/RX pages."
Fix up conflicts in arch/x86/kernel/Makefile (mca removed next to reboot
code), and arch/x86/kernel/reboot.c (reboot code moved around in one
branch, modified in this one), and arch/x86/tools/relocs.c (mostly same
code came in earlier due to working around the ld bugs just before the
3.4 release).
Also remove stale x86-relocs entry from scripts/.gitignore as per Peter
Anvin.
* commit '61f5446169046c217a5479517edac3a890c3bee7': (36 commits)
x86, realmode: Move end signature into header.S
x86, relocs: When printing an error, say relative or absolute
x86, relocs: More relocations which may end up as absolute
x86, relocs: Workaround for binutils 2.22.52.0.1 section bug
xen-acpi-processor: Add missing #include <xen/xen.h>
acpi, bgrd: Add missing <linux/io.h> to drivers/acpi/bgrt.c
x86, realmode: Change EFER to a single u64 field
x86, realmode: Move kernel/realmode.c to realmode/init.c
x86, realmode: Move not-common bits out of trampoline_common.S
x86, realmode: Mask out EFER.LMA when saving trampoline EFER
x86, realmode: Fix no cache bits test in reboot_32.S
x86, realmode: Make sure all generated files are listed in targets
x86, realmode: build fix: remove duplicate build
x86, realmode: read cr4 and EFER from kernel for 64-bit trampoline
x86, realmode: fixes compilation issue in tboot.c
x86, realmode: move relocs from scripts/ to arch/x86/tools
x86, realmode: header for trampoline code
x86, realmode: flattened rm hierachy
x86, realmode: don't copy real_mode_header
x86, realmode: fix 64-bit wakeup sequence
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull fpu state cleanups from Ingo Molnar:
"This tree streamlines further aspects of FPU handling by eliminating
the prepare_to_copy() complication and moving that logic to
arch_dup_task_struct().
It also fixes the FPU dumps in threaded core dumps, removes and old
(and now invalid) assumption plus micro-optimizes the exit path by
avoiding an FPU save for dead tasks."
Fixed up trivial add-add conflict in arch/sh/kernel/process.c that came
in because we now do the FPU handling in arch_dup_task_struct() rather
than the legacy (and now gone) prepare_to_copy().
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, fpu: drop the fpu state during thread exit
x86, xsave: remove thread_has_fpu() bug check in __sanitize_i387_state()
coredump: ensure the fpu state is flushed for proper multi-threaded core dump
fork: move the real prepare_to_copy() users to arch_dup_task_struct()
|
|
Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This patch changes 64-bit trampoline so that CR4 and
EFER are provided by the kernel instead of using fixed
values.
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@intel.com>
Link: http://lkml.kernel.org/r/1336501366-28617-24-git-send-email-jarkko.sakkinen@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Use kick_all_cpus_sync() and remove cpu_idle_wait().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120507175652.190382227@linutronix.de
Cc: x86@kernel.org
|
|
The X86_32-only disable_hlt/enable_hlt mechanism was used by the
32-bit floppy driver. Its effect was to replace the use of the
HLT instruction inside default_idle() with cpu_relax() - essentially
it turned off the use of HLT.
This workaround was commented in the code as:
"disable hlt during certain critical i/o operations"
"This halt magic was a workaround for ancient floppy DMA
wreckage. It should be safe to remove."
H. Peter Anvin additionally adds:
"To the best of my knowledge, no-hlt only existed because of
flaky power distributions on 386/486 systems which were sold to
run DOS. Since DOS did no power management of any kind,
including HLT, the power draw was fairly uniform; when exposed
to the much hhigher noise levels you got when Linux used HLT
caused some of these systems to fail.
They were by far in the minority even back then."
Alan Cox further says:
"Also for the Cyrix 5510 which tended to go castors up if a HLT
occurred during a DMA cycle and on a few other boxes HLT during
DMA tended to go astray.
Do we care ? I doubt it. The 5510 was pretty obscure, the 5520
fixed it, the 5530 is probably the oldest still in any kind of
use."
So, let's finally drop this.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephen Hemminger <shemminger@vyatta.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/n/tip-3rhk9bzf0x9rljkv488tloib@git.kernel.org
[ If anyone cares then alternative instruction patching could be
used to replace HLT with a one-byte NOP instruction. Much simpler. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Peter Anvin:
"The biggest textual change is the cleanup to use symbolic constants
for x86 trap values.
The only *functional* change and the reason for the x86/x32 dependency
is the move of is_ia32_task() into <asm/thread_info.h> so that it can
be used in other code that needs to understand if a system call comes
from the compat entry point (and therefore uses i386 system call
numbers) or not. One intended user for that is the BPF system call
filter. Moving it out of <asm/compat.h> means we can define it
unconditionally, returning always true on i386."
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Move is_ia32_task to asm/thread_info.h from asm/compat.h
x86: Rename trap_no to trap_nr in thread_struct
x86: Use enum instead of literals for trap values
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x32 support for x86-64 from Ingo Molnar:
"This tree introduces the X32 binary format and execution mode for x86:
32-bit data space binaries using 64-bit instructions and 64-bit kernel
syscalls.
This allows applications whose working set fits into a 32 bits address
space to make use of 64-bit instructions while using a 32-bit address
space with shorter pointers, more compressed data structures, etc."
Fix up trivial context conflicts in arch/x86/{Kconfig,vdso/vma.c}
* 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
x32: Fix alignment fail in struct compat_siginfo
x32: Fix stupid ia32/x32 inversion in the siginfo format
x32: Add ptrace for x32
x32: Switch to a 64-bit clock_t
x32: Provide separate is_ia32_task() and is_x32_task() predicates
x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls
x86/x32: Fix the binutils auto-detect
x32: Warn and disable rather than error if binutils too old
x32: Only clear TIF_X32 flag once
x32: Make sure TS_COMPAT is cleared for x32 tasks
fs: Remove missed ->fds_bits from cessation use of fd_set structs internally
fs: Fix close_on_exec pointer in alloc_fdtable
x32: Drop non-__vdso weak symbols from the x32 VDSO
x32: Fix coding style violations in the x32 VDSO code
x32: Add x32 VDSO support
x32: Allow x32 to be configured
x32: If configured, add x32 system calls to system call tables
x32: Handle process creation
x32: Signal-related system calls
x86: Add #ifdef CONFIG_COMPAT to <asm/sys_ia32.h>
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
|
|
Disintegrate asm/system.h for X86.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
cc: x86@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/bug.h> cleanup from Paul Gortmaker:
"The changes shown here are to unify linux's BUG support under the one
<linux/bug.h> file. Due to historical reasons, we have some BUG code
in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in
linux/kernel.h predates the addition of linux/bug.h, but old code in
kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h
was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions. Here
is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and hence
relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2. But
to ensure that git history for bisect doesn't get needless build
failures introduced, the commits have been reorderd to fix the problem
areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414"
Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.
* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
kernel.h: doesn't explicitly use bug.h, so don't include it.
bug: consolidate BUILD_BUG_ON with other bug code
BUG: headers with BUG/BUG_ON etc. need linux/bug.h
bug.h: add include of it to various implicit C users
lib: fix implicit users of kernel.h for TAINT_WARN
spinlock: macroize assert_spin_locked to avoid bug.h dependency
x86: relocate get/set debugreg fcns to include/asm/debugreg.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/debug changes from Ingo Molnar.
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Fix section warnings
x86-64: Fix CFI data for common_interrupt()
x86: Properly _init-annotate NMI selftest code
x86/debug: Fix/improve the show_msr=<cpus> debug print out
|
|
There are precedences of trap number being referred to as
trap_nr. However thread struct refers trap number as trap_no.
Change it to trap_nr.
Also use enum instead of left-over literals for trap values.
This is pure cleanup, no functional change intended.
Suggested-by: Ingo Molnar <mingo@eltu.hu>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120312092555.5379.942.sendpatchset@srdronam.in.ibm.com
[ Fixed the math-emu build ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Merge reason: We are going to merge a dependent patch.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Since we already have a debugreg.h header file, move the
assoc. get/set functions to it. In addition to it being the
logical home for them, it has a secondary advantage. The
functions that are moved use BUG(). So we really need to
have linux/bug.h in scope. But asm/processor.h is used about
600 times, vs. only about 15 for debugreg.h -- so adding bug.h
to the latter reduces the amount of time we'll be processing
it during a compile.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
|
|
So far this has only been used in process_64.c, but the x32 code will
need it in additional code.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Factor out IA32 (compatibility instruction set) from 32-bit address
space in the thread_info flags; this is a precondition patch for x32
support.
Originally-by: H. J. Lu <hjl.tools@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/n/tip-4pr1xnnksprt7t0h3w5fw4rv@git.kernel.org
|
|
This makes us recognize when we try to restore FPU state that matches
what we already have in the FPU on this CPU, and avoids the restore
entirely if so.
To do this, we add two new data fields:
- a percpu 'fpu_owner_task' variable that gets written any time we
update the "has_fpu" field, and thus acts as a kind of back-pointer
to the task that owns the CPU. The exception is when we save the FPU
state as part of a context switch - if the save can keep the FPU
state around, we leave the 'fpu_owner_task' variable pointing at the
task whose FP state still remains on the CPU.
- a per-thread 'last_cpu' field, that indicates which CPU that thread
used its FPU on last. We update this on every context switch
(writing an invalid CPU number if the last context switch didn't
leave the FPU in a lazily usable state), so we know that *that*
thread has done nothing else with the FPU since.
These two fields together can be used when next switching back to the
task to see if the CPU still matches: if 'fpu_owner_task' matches the
task we are switching to, we know that no other task (or kernel FPU
usage) touched the FPU on this CPU in the meantime, and if the current
CPU number matches the 'last_cpu' field, we know that this thread did no
other FP work on any other CPU, so the FPU state on the CPU must match
what was saved on last context switch.
In that case, we can avoid the 'f[x]rstor' entirely, and just clear the
CR0.TS bit.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This moves the bit that indicates whether a thread has ownership of the
FPU from the TS_USEDFPU bit in thread_info->status to a word of its own
(called 'has_fpu') in task_struct->thread.has_fpu.
This fixes two independent bugs at the same time:
- changing 'thread_info->status' from the scheduler causes nasty
problems for the other users of that variable, since it is defined to
be thread-synchronous (that's what the "TS_" part of the naming was
supposed to indicate).
So perfectly valid code could (and did) do
ti->status |= TS_RESTORE_SIGMASK;
and the compiler was free to do that as separate load, or and store
instructions. Which can cause problems with preemption, since a task
switch could happen in between, and change the TS_USEDFPU bit. The
change to TS_USEDFPU would be overwritten by the final store.
In practice, this seldom happened, though, because the 'status' field
was seldom used more than once, so gcc would generally tend to
generate code that used a read-modify-write instruction and thus
happened to avoid this problem - RMW instructions are naturally low
fat and preemption-safe.
- On x86-32, the current_thread_info() pointer would, during interrupts
and softirqs, point to a *copy* of the real thread_info, because
x86-32 uses %esp to calculate the thread_info address, and thus the
separate irq (and softirq) stacks would cause these kinds of odd
thread_info copy aliases.
This is normally not a problem, since interrupts aren't supposed to
look at thread information anyway (what thread is running at
interrupt time really isn't very well-defined), but it confused the
heck out of irq_fpu_usable() and the code that tried to squirrel
away the FPU state.
(It also caused untold confusion for us poor kernel developers).
It also turns out that using 'task_struct' is actually much more natural
for most of the call sites that care about the FPU state, since they
tend to work with the task struct for other reasons anyway (ie
scheduling). And the FPU data that we are going to save/restore is
found there too.
Thanks to Arjan Van De Ven <arjan@linux.intel.com> for pointing us to
the %esp issue.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Reported-and-tested-by: Raphael Prevost <raphael@buro.asia>
Acked-and-tested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Found out that show_msr=<cpus> is broken, when I asked a
user to use it to capture debug info about broken MTRR's
whose MTRR settings are probably different between CPUs.
Only the first CPUs MSRs are printed, but that is not
enough to track down the suspected bug.
For years we called print_cpu_msr from print_cpu_info(),
but this commit:
| commit 2eaad1fddd7450a48ad464229775f97fbfe8af36
| Author: Mike Travis <travis@sgi.com>
| Date: Thu Dec 10 17:19:36 2009 -0800
|
| x86: Limit the number of processor bootup messages
removed the print_cpu_info() call from all APs.
Put it back - it will only print MSRs when the user
specifically requests them via show_msr=<cpus>.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/1329069237-11483-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space. However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files. The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:
text data bss dec hex filename
4737168 506459 972040 6215667 5ed7f3 vmlinux.o.before
4737444 506459 972040 6215943 5ed907 vmlinux.o.after
for a difference of 276 bytes for an example UP config.
If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
I got a request to make it easier to determine the microcode
update level on Intel CPUs. This patch adds a new "microcode"
field to /proc/cpuinfo.
The microcode level is also outputed on fatal machine checks
together with the other CPUID model information.
I removed the respective code from the microcode update driver,
it just reads the field from cpu_data. Also when the microcode
is updated it fills in the new values too.
I had to add a memory barrier to native_cpuid to prevent it
being optimized away when the result is not used.
This turns out to clean up further code which already got this
information manually. This is done in followon patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1318466795-7393-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|