Age | Commit message (Collapse) | Author |
|
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.
Doing this is a bit intrusive: virt_to_pfn() requires
PHYS_PFN_OFFSET and PAGE_SHIFT to be defined, and this is defined in
<asm/page.h>, so this must be included *before* <asm/memory.h>.
The use of macros were obscuring the unclear inclusion order here,
as the macros would eventually be resolved, but a static inline
like this cannot be compiled with unresolved macros.
The naive solution to include <asm/page.h> at the top of
<asm/memory.h> does not work, because <asm/memory.h> sometimes
includes <asm/page.h> at the end of itself, which would create a
confusing inclusion loop. So instead, take the approach to always
unconditionally include <asm/page.h> at the end of <asm/memory.h>
arch/arm uses <asm/memory.h> explicitly in a lot of places,
however it turns out that if we just unconditionally include
<asm/memory.h> into <asm/page.h> and switch all inclusions of
<asm/memory.h> to <asm/page.h> instead, we enforce the right
order and <asm/memory.h> will always have access to the
definitions.
Put an inclusion guard in place making it impossible to include
<asm/memory.h> explicitly.
Link: https://lore.kernel.org/linux-mm/20220701160004.2ffff4e5ab59a55499f4c736@linux-foundation.org/
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|
Use the appropriate SPDX license identifier and drop the previous
boilerplate license text.
Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
|
|
I believe the flush_cache_all() after scu_enable() is to "Ensure that
the data accessed by CPU0 before the SCU was initialised is visible
to the other CPUs." as commented in scu_enable(). So here
flush_cache_all() is a duplication, remove it.
Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
|
|
For MMU configurations, VECTORS_BASE is always 0xffff0000, a macro
definition will suffice.
For no-MMU, exception base address is dynamically determined in
subsequent patches. To preserve bisectability, now make the
macro applicable for no-MMU scenario too.
Thanks to 0-DAY kernel test infrastructure that found the
bisectability issue. This macro will be restricted to MMU case upon
dynamically determining exception base address for no-MMU.
Once exception address is handled dynamically for no-MMU,
VECTORS_BASE can be removed from Kconfig.
Signed-off-by: afzal mohammed <afzal.mohd.ma@gmail.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
All low-level PM/SMP code using virt_to_phys() should actually use
__pa_symbol() against kernel symbols. Update code where relevant to move
away from virt_to_phys().
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Reviewed-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
These smp_operations structures are not over-written, so add "const"
qualifier and replace __initdata with __initconst.
Also, add "static" where it is possible.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Moritz Fischer <moritz.fischer@ettus.com>
Acked-by: Stephen Boyd <sboyd@codeaurora.org> # qcom part
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Patrice Chotard <patrice.chotard@st.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Acked-by: Wei Xu <xuwei5@hisilicon.com>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Acked-by: Shawn Guo <shawnguo@kernel.org>
Acked-by: Matthias Brugger <matthias.bgg@gmail.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Liviu Dudau <Liviu.Dudau@arm.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Add cpu hotplug support for berlin SoCs such as BG2 and BG2Q. These SoC
don't support power off cpu independently, but we also want cpu hotplug
support in these SoCs. We achieve this goal by putting the dying CPU in
WFI state after the coherency is disabled, then asserting the dying CPU
reset bit to put the CPU in reset state.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
|
|
In Berlin SoCs, there are two kinds of cpu reset control registers: the
first one's corresponding bits will be self-cleared after some cycles,
while the second one's bits won't. Previously the first kind of reset
control register is used, this patch uses the second kind one to prepare
for the next hotplug commit.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
|
|
All ARMv5 and older CPUs invalidate their caches in the early assembly
setup function, prior to enabling the MMU. This is because the L1
cache should not contain any data relevant to the execution of the
kernel at this point; all data should have been flushed out to memory.
This requirement should also be true for ARMv6 and ARMv7 CPUs - indeed,
these typically do not search their caches when caching is disabled (as
it needs to be when the MMU is disabled) so this change should be safe.
ARMv7 allows there to be CPUs which search their caches while caching is
disabled, and it's permitted that the cache is uninitialised at boot;
for these, the architecture reference manual requires that an
implementation specific code sequence is used immediately after reset
to ensure that the cache is placed into a sane state. Such
functionality is definitely outside the remit of the Linux kernel, and
must be done by the SoC's firmware before _any_ CPU gets to the Linux
kernel.
Changing the data cache clean+invalidate to a mere invalidate allows us
to get rid of a lot of platform specific hacks around this issue for
their secondary CPU bringup paths - some of which were buggy.
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Tested-by: Dinh Nguyen <dinguyen@opensource.altera.com>
Acked-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Tested-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Acked-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Michal Simek <michal.simek@xilinx.com>
Tested-by: Wei Xu <xuwei5@hisilicon.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Adds SMP support for Berlin SoCs. Secondary CPUs are reset, then
execute the instruction we put in the reset exception register, setting
the pc at the address contained in the software reset address register,
which is the physical address of the Berlin secondary startup.
This implementation avoid using the pen lock mechanism.
Signed-off-by: Antoine Ténart <antoine.tenart@free-electrons.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
|